Suppressing the P2-O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries
Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the abundance of low‐cost sodium. Sodium‐based layered oxides with a P2‐type layered framework have been considered as one of the most promising...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 55; no. 26; pp. 7445 - 7449 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
20.06.2016
Wiley Subscription Services, Inc |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the abundance of low‐cost sodium. Sodium‐based layered oxides with a P2‐type layered framework have been considered as one of the most promising cathode materials for SIBs. However, they suffer from the undesired P2–O2 phase transition, which leads to rapid capacity decay and limited reversible capacities. Herein, we show that this problem can be significantly mitigated by substituting some of the nickel ions with magnesium to obtain Na0.67Mn0.67Ni0.33−xMgxO2 (0≤x≤0.33). Both the reversible capacity and the capacity retention of the P2‐type cathode material were remarkably improved as the P2–O2 phase transition was thus suppressed during cycling. This strategy might also be applicable to the modulation of the physical and chemical properties of layered oxides and provides new insight into the rational design of high‐capacity and highly stable cathode materials for SIBs.
The P2–O2 phase transition in P2‐Na0.67Mn0.67Ni0.33−xMgxO2 can be effectively suppressed by substituting some of the nickel ions with magnesium. Both the reversible capacity and the capacity retention of this cathode material were thus remarkably improved, and the various phases were characterized by scanning tunneling electron microscopy with atomic resolution. |
---|---|
AbstractList | Room-temperature sodium-ion batteries (SIBs) have shown great promise in grid-scale energy storage, portable electronics, and electric vehicles because of the abundance of low-cost sodium. Sodium-based layered oxides with a P2-type layered framework have been considered as one of the most promising cathode materials for SIBs. However, they suffer from the undesired P2-O2 phase transition, which leads to rapid capacity decay and limited reversible capacities. Herein, we show that this problem can be significantly mitigated by substituting some of the nickel ions with magnesium to obtain Na0.67Mn0.67Ni0.33-xMgxO2 (0≤x≤0.33). Both the reversible capacity and the capacity retention of the P2-type cathode material were remarkably improved as the P2-O2 phase transition was thus suppressed during cycling. This strategy might also be applicable to the modulation of the physical and chemical properties of layered oxides and provides new insight into the rational design of high-capacity and highly stable cathode materials for SIBs. Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the abundance of low‐cost sodium. Sodium‐based layered oxides with a P2‐type layered framework have been considered as one of the most promising cathode materials for SIBs. However, they suffer from the undesired P2–O2 phase transition, which leads to rapid capacity decay and limited reversible capacities. Herein, we show that this problem can be significantly mitigated by substituting some of the nickel ions with magnesium to obtain Na0.67Mn0.67Ni0.33−xMgxO2 (0≤x≤0.33). Both the reversible capacity and the capacity retention of the P2‐type cathode material were remarkably improved as the P2–O2 phase transition was thus suppressed during cycling. This strategy might also be applicable to the modulation of the physical and chemical properties of layered oxides and provides new insight into the rational design of high‐capacity and highly stable cathode materials for SIBs. The P2–O2 phase transition in P2‐Na0.67Mn0.67Ni0.33−xMgxO2 can be effectively suppressed by substituting some of the nickel ions with magnesium. Both the reversible capacity and the capacity retention of this cathode material were thus remarkably improved, and the various phases were characterized by scanning tunneling electron microscopy with atomic resolution. |
Author | You, Ya Gu, Lin Wang, Peng-Fei Wan, Li-Jun Yin, Ya-Xia Wang, Yue-Sheng Guo, Yu-Guo |
Author_xml | – sequence: 1 givenname: Peng-Fei surname: Wang fullname: Wang, Peng-Fei organization: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China – sequence: 2 givenname: Ya surname: You fullname: You, Ya organization: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China – sequence: 3 givenname: Ya-Xia surname: Yin fullname: Yin, Ya-Xia organization: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China – sequence: 4 givenname: Yue-Sheng surname: Wang fullname: Wang, Yue-Sheng organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China – sequence: 5 givenname: Li-Jun surname: Wan fullname: Wan, Li-Jun organization: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China – sequence: 6 givenname: Lin surname: Gu fullname: Gu, Lin email: l.gu@iphy.ac.cn organization: Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China – sequence: 7 givenname: Yu-Guo surname: Guo fullname: Guo, Yu-Guo email: ygguo@iccas.ac.cn organization: CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), 100190, Beijing, P.R. China |
BookMark | eNp9kU1PGzEQhq2KSgXaa8-Wet7UHu-uvUeKaIgUAtVSkHqxnHgcTIk32LuF8OtxCMqxl_nS886M9B6Rg9AFJOQrZyPOGHw3weMIGK8ZAIMP5JBXwAshpTjIdSlEIVXFP5GjlO4zrxSrD8lLO6zXEVPyYUn7O6RXUFwCvbozCel1NCH53neBdo7ODBvV8iJs48yzkRAZnG_ohVkGTH5Y0XaYp973w5vCdZFOVuvY_UNL285moJjk-Q_T9xg9ps_kozMPCb-852Py--fZ9el5Mb0cT05PpsVSCIBCcVBmIR1ruHXWglWydFA63kBppAMrDCDODS6EQjBW8apaNAvHjLDKcSOOybfd3vzL44Cp1_fdEEM-qXnDFOQDwP5LyaaWUpZ1k6lmRz35B9zodfQrEzeaM721QG8t0HsL9MlscrbvsrbYaX3q8XmvNfGvrqWQlb6djfVNO7799afl-ka8AuMYjEg |
CODEN | ACIEAY |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL 7TM K9. |
DOI | 10.1002/anie.201602202 |
DatabaseName | Istex Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 7449 |
ExternalDocumentID | 4089397371 ANIE201602202 ark_67375_WNG_VSGWQZS1_V |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51225204; 21303222; 21127901 – fundername: National Key Project on Basic Research funderid: 2012CB932900 – fundername: Chinese Academy of Sciences (CAS) |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHQN AAMNL AAYCA AFWVQ ALVPJ 7TM ABDBF ABJNI AETEA AEYWJ AGHNM AGYGG K9. |
ID | FETCH-LOGICAL-g3322-8128ac7f091dfdd2d874f24f1924a7f2d3a2eebaec38e2ad8155c9cf0a3d8f1a3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Sun Jul 13 05:13:21 EDT 2025 Fri Jul 25 12:13:45 EDT 2025 Wed Jan 22 16:27:23 EST 2025 Wed Oct 30 09:55:46 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3322-8128ac7f091dfdd2d874f24f1924a7f2d3a2eebaec38e2ad8155c9cf0a3d8f1a3 |
Notes | ark:/67375/WNG-VSGWQZS1-V Chinese Academy of Sciences (CAS) ArticleID:ANIE201602202 National Natural Science Foundation of China - No. 51225204; No. 21303222; No. 21127901 istex:D737022F92765E61A204DC728D9A4E788F4BEAB5 National Key Project on Basic Research - No. 2012CB932900 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1796777469 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_journals_1908281220 proquest_journals_1796777469 wiley_primary_10_1002_anie_201602202_ANIE201602202 istex_primary_ark_67375_WNG_VSGWQZS1_V |
PublicationCentury | 2000 |
PublicationDate | June 20, 2016 |
PublicationDateYYYYMMDD | 2016-06-20 |
PublicationDate_xml | – month: 06 year: 2016 text: June 20, 2016 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew. Chem. Int. Ed |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Angew. Chem. 2015, 127, 3495-3513 S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, Inorg. Chem. 2012, 51, 6211-6220. I. Hasa, D. Buchholz, S. Passerini, J. Hassoun, ACS Appl. Mater. Interfaces 2015, 7, 5206-5212 C. Delmas, J.-J. Braconnier, P. Hagenmuller, Mater. Res. Bull. 1982, 17, 117-123. D. Carlier, I. Saadoune, L. Croguennec, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics 2001, 144, 263-276. Y. M. Wang, Y. J. Wang, F. Wang, Nanoscale Res. Lett. 2014, 9, 197. Y. You, X. Yu, Y. Yin, K.-W. Nam, Y.-G. Guo, Nano Res. 2014, 8, 117-128. X. Deng, X. R. Liu, H. J. Yan, D. Wang, L. J. Wan, Sci. China Chem. 2014, 57, 178-183. Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A1225. D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, B. J. Hwang, C. Delmas, Dalton Trans. 2011, 40, 9306-9312. Y. Qi, L. Mu, J. Zhao, Y.-S. Hu, H. Liu, S. Dai, Angew. Chem. Int. Ed. 2015, 54, 9911-9916 D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431-3448 X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc. 2011, 158, A1307. S. Guo, P. Liu, H. Yu, Y. Zhu, M. Chen, M. Ishida, H. Zhou, Angew. Chem. Int. Ed. 2015, 54, 5894-5899 I. Hasa, D. Buchholz, S. Passerini, B. Scrosati, J. Hassoun, Adv. Energy Mater. 2014, 4, 1400083. M. Peng, B. Li, H. Yan, D. Zhang, X. Wang, D. Xia, G. Guo, Angew. Chem. Int. Ed. 2015, 54, 6452-6456 C. Delmas, C. Fouassier, P. Hagenmuller, Physica B 1980, 99, 81-85. Angew. Chem. 2015, 127, 5992-5997. Angew. Chem. 2015, 127, 10049-10054. C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3-4, 165-169. H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, Chem. Commun. 2014, 50, 3677-3680. Z. Lu, J. R. Dahn, Chem. Mater. 2001, 13, 1252-1257. J. Xu, D. H. Lee, R. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X.-Q. Yang, C. P. Grey, Y. S. Meng, Chem. Mater. 2014, 26, 1260-1269. Y. Wang, R. Xiao, Y. S. Hu, M. Avdeev, L. Chen, Nat. Commun. 2015, 6, 6954. Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A710. J. M. Paulsen, R. A. Donaberger, J. R. Dahn, Chem. Mater. 2000, 12, 2257-2267 J. F. Qu, W. Wang, Y. Chen, G. Li, X. G. Li, Phys. Rev. B 2006, 73, 092518. Angew. Chem. 2015, 127, 6552-6556 E. Talaie, V. Duffort, H. L. Smith, B. Fultz, L. F. Nazar, Energy Environ. Sci. 2015, 8, 2512-2523. D. H. Lee, J. Xu, Y. S. Meng, Phys. Chem. Chem. Phys. 2013, 15, 3304-3312. J. M. Paulsen, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 2478-2485 J. M. Paulsen, J. R. Dahn, Solid State Ionics 1999, 126, 3-24. Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, Energy Environ. Sci. 2014, 7, 1643 K. Hemalatha, M. Jayakumar, P. Bera, A. S. Prakash, J. Mater. Chem. A 2015, 3, 20908-20912. 2001; 144 2011; 158 2015; 6 1982; 17 1981; 3–4 2015; 3 2006; 73 2011; 40 2014; 26 1999; 126 2015; 8 2015; 7 2001; 148 2012; 51 2013; 15 2014; 4 2000; 147 2000; 12 1980; 99 2015 2015; 54 127 2014; 57 2014; 9 2014; 8 2014; 7 2001; 13 2014; 50 |
References_xml | – reference: S. Guo, P. Liu, H. Yu, Y. Zhu, M. Chen, M. Ishida, H. Zhou, Angew. Chem. Int. Ed. 2015, 54, 5894-5899; – reference: Y. M. Wang, Y. J. Wang, F. Wang, Nanoscale Res. Lett. 2014, 9, 197. – reference: I. Hasa, D. Buchholz, S. Passerini, J. Hassoun, ACS Appl. Mater. Interfaces 2015, 7, 5206-5212; – reference: H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, Chem. Commun. 2014, 50, 3677-3680. – reference: Y. You, X. Yu, Y. Yin, K.-W. Nam, Y.-G. Guo, Nano Res. 2014, 8, 117-128. – reference: S. Komaba, N. Yabuuchi, T. Nakayama, A. Ogata, T. Ishikawa, I. Nakai, Inorg. Chem. 2012, 51, 6211-6220. – reference: Y. You, X.-L. Wu, Y.-X. Yin, Y.-G. Guo, Energy Environ. Sci. 2014, 7, 1643; – reference: E. Talaie, V. Duffort, H. L. Smith, B. Fultz, L. F. Nazar, Energy Environ. Sci. 2015, 8, 2512-2523. – reference: M. Peng, B. Li, H. Yan, D. Zhang, X. Wang, D. Xia, G. Guo, Angew. Chem. Int. Ed. 2015, 54, 6452-6456; – reference: D. Carlier, J. H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, B. J. Hwang, C. Delmas, Dalton Trans. 2011, 40, 9306-9312. – reference: X. Deng, X. R. Liu, H. J. Yan, D. Wang, L. J. Wan, Sci. China Chem. 2014, 57, 178-183. – reference: J. Xu, D. H. Lee, R. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X.-Q. Yang, C. P. Grey, Y. S. Meng, Chem. Mater. 2014, 26, 1260-1269. – reference: Z. Lu, J. R. Dahn, Chem. Mater. 2001, 13, 1252-1257. – reference: Y. Wang, R. Xiao, Y. S. Hu, M. Avdeev, L. Chen, Nat. Commun. 2015, 6, 6954. – reference: Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A710. – reference: C. Delmas, C. Fouassier, P. Hagenmuller, Physica B 1980, 99, 81-85. – reference: Y. Qi, L. Mu, J. Zhao, Y.-S. Hu, H. Liu, S. Dai, Angew. Chem. Int. Ed. 2015, 54, 9911-9916; – reference: D. Carlier, I. Saadoune, L. Croguennec, M. Menetrier, E. Suard, C. Delmas, Solid State Ionics 2001, 144, 263-276. – reference: Angew. Chem. 2015, 127, 6552-6556; – reference: C. Delmas, J.-J. Braconnier, P. Hagenmuller, Mater. Res. Bull. 1982, 17, 117-123. – reference: J. M. Paulsen, J. R. Dahn, Solid State Ionics 1999, 126, 3-24. – reference: Angew. Chem. 2015, 127, 5992-5997. – reference: C. Delmas, J.-J. Braconnier, C. Fouassier, P. Hagenmuller, Solid State Ionics 1981, 3-4, 165-169. – reference: Z. Lu, J. R. Dahn, J. Electrochem. Soc. 2001, 148, A1225. – reference: D. H. Lee, J. Xu, Y. S. Meng, Phys. Chem. Chem. Phys. 2013, 15, 3304-3312. – reference: Angew. Chem. 2015, 127, 10049-10054. – reference: I. Hasa, D. Buchholz, S. Passerini, B. Scrosati, J. Hassoun, Adv. Energy Mater. 2014, 4, 1400083. – reference: D. Kundu, E. Talaie, V. Duffort, L. F. Nazar, Angew. Chem. Int. Ed. 2015, 54, 3431-3448; – reference: J. M. Paulsen, J. R. Dahn, J. Electrochem. Soc. 2000, 147, 2478-2485; – reference: X. Ma, H. Chen, G. Ceder, J. Electrochem. Soc. 2011, 158, A1307. – reference: Angew. Chem. 2015, 127, 3495-3513; – reference: K. Hemalatha, M. Jayakumar, P. Bera, A. S. Prakash, J. Mater. Chem. A 2015, 3, 20908-20912. – reference: J. F. Qu, W. Wang, Y. Chen, G. Li, X. G. Li, Phys. Rev. B 2006, 73, 092518. – reference: J. M. Paulsen, R. A. Donaberger, J. R. Dahn, Chem. Mater. 2000, 12, 2257-2267; – volume: 6 start-page: 6954 year: 2015 publication-title: Nat. Commun. – volume: 7 start-page: 1643 year: 2014 publication-title: Energy Environ. Sci. – volume: 54 127 start-page: 5894 5992 year: 2015 2015 end-page: 5899 5997 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 start-page: 6211 year: 2012 end-page: 6220 publication-title: Inorg. Chem. – volume: 50 start-page: 3677 year: 2014 end-page: 3680 publication-title: Chem. Commun. – volume: 15 start-page: 3304 year: 2013 end-page: 3312 publication-title: Phys. Chem. Chem. Phys. – volume: 4 start-page: 1400083 year: 2014 publication-title: Adv. Energy Mater. – volume: 158 start-page: 1307 year: 2011 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 197 year: 2014 publication-title: Nanoscale Res. Lett. – volume: 17 start-page: 117 year: 1982 end-page: 123 publication-title: Mater. Res. Bull. – volume: 13 start-page: 1252 year: 2001 end-page: 1257 publication-title: Chem. Mater. – volume: 73 start-page: 092518 year: 2006 publication-title: Phys. Rev. B – volume: 3 start-page: 20908 year: 2015 end-page: 20912 publication-title: J. Mater. Chem. A – volume: 126 start-page: 3 year: 1999 end-page: 24 publication-title: Solid State Ionics – volume: 8 start-page: 2512 year: 2015 end-page: 2523 publication-title: Energy Environ. Sci. – volume: 3–4 start-page: 165 year: 1981 end-page: 169 publication-title: Solid State Ionics – volume: 54 127 start-page: 9911 10049 year: 2015 2015 end-page: 9916 10054 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 117 year: 2014 end-page: 128 publication-title: Nano Res. – volume: 148 start-page: 1225 year: 2001 publication-title: J. Electrochem. Soc. – volume: 40 start-page: 9306 year: 2011 end-page: 9312 publication-title: Dalton Trans. – volume: 12 start-page: 2257 year: 2000 end-page: 2267 publication-title: Chem. Mater. – volume: 7 start-page: 5206 year: 2015 end-page: 5212 publication-title: ACS Appl. Mater. Interfaces – volume: 99 start-page: 81 year: 1980 end-page: 85 publication-title: Physica B – volume: 148 start-page: 710 year: 2001 publication-title: J. Electrochem. Soc. – volume: 54 127 start-page: 6452 6552 year: 2015 2015 end-page: 6456 6556 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 1260 year: 2014 end-page: 1269 publication-title: Chem. Mater. – volume: 144 start-page: 263 year: 2001 end-page: 276 publication-title: Solid State Ionics – volume: 54 127 start-page: 3431 3495 year: 2015 2015 end-page: 3448 3513 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 start-page: 178 year: 2014 end-page: 183 publication-title: Sci. China Chem. – volume: 147 start-page: 2478 year: 2000 end-page: 2485 publication-title: J. Electrochem. Soc. |
SSID | ssj0028806 |
Score | 2.6541018 |
Snippet | Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the... Room-temperature sodium-ion batteries (SIBs) have shown great promise in grid-scale energy storage, portable electronics, and electric vehicles because of the... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 7445 |
SubjectTerms | Abundance Battery cycles Chemical properties cyclability Decay Electric vehicles electrochemistry Electronics Energy storage Ions Magnesium Modulation Nickel Oxides Phase transitions Portability Rechargeable batteries Retarding Sodium Sodium-ion batteries Storage batteries Temperature effects |
Title | Suppressing the P2-O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium-Ion Batteries |
URI | https://api.istex.fr/ark:/67375/WNG-VSGWQZS1-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201602202 https://www.proquest.com/docview/1796777469 https://www.proquest.com/docview/1908281220 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF3oplFKxhVY-IG5ZEns3j-NqxVPaQNnyUC_WOLYXhJpFsCsBB8RPQOIf8ks64-wGqDi1lyiRbSXO2DPfWN_MMLaWpWDRrpogSl1CJcyiAEyrCEBHkdMhWmRfea6XxztHrb3T9umrKP4qP0R94EY7w-tr2uCgrzdekoZSBDZRs2KKFSUlTIQtQkWHdf4ogYuzCi-SMqAq9NOsjaHYeDscoSn91Zs3OPM1WvXmZmuewfRDK5bJRXM80s3i7q8cjv8zkwX2cYJFeadaPJ_YjC0X2Vx3WgLuM7unmp-eKFsOOCJFfiCeH572BT84Q-PHvZ3zlC8-dDyHsBknvZKu-Tm66RI76lvegwGq0_Pxb05KyjMTaASCZV6daFjD-0ODHZ4fHnexpUr5iR78Ejva2vzZ3QkmBRuCgSSnFsFCCkXiEIMYZ4wwadJyouXIyYPECSNBWKvBFjK1AkyKYKbICheCNKmLQH5hs-WwtMuMZ4DQPxKhdIiZjNaAuFO2ZWwsIGLKbIOte4Gpyyoph4KrC-KoJW11km-r4_72yY9f_UgdN9jqVKJqsj2vFWqhOEHgG2fvN1MdeJyMCBtMeMnVr6myPAtFMlO1zFQn392sn77-y6AV9oHuiYUmwlU2O7oa22-Id0b6u1_TfwB-bfg1 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtNAFL0qZVE2vBEpBWYB7JzaM4kfCxZVXwltTCF9qZth7JkJUVUHNYmgLFA_AYkv4Vf4hH4J945jQxErpC7YWLI9fo3vnXPu6M65AM-SWBnEVe0FsY2ohFngKd3KPZUFgc18RGRXea6Xhp291qvD9uEcfK_WwpT6EPWEG3mGG6_JwWlCevmXaigtwabcrJAWi_JZXuWWOfuIUdv4ZXcNf_FzzjfWd1c73qywgDcQFHwhqMUqjyxipbZacx1HLctbloIRFVmuheLGZMrkIjZc6RhBN09y6yuhYxsogfe9BtepjDjJ9a-9rRWrOLpDuaBJCI_q3lc6kT5fvvy-SIbpP366xGx_58cO4DZuwY-qa8q8luPmdJI1889_qEb-V313G27O6DZbKf3jDsyZ4i4srFZV7u7BFypr6nKBiwFDMsx2-MX5t9ec7bxHfGcOyl1WGxtZliq_GUa9grbp0G8KgQ2zM9ZTA0SM4fSE0Tjski_oCowHWDlpYzTrjzQ2uDj_2sUzparp0Izvw96VfP4DmC9GhXkILFEY3QTcFxZpoc4yhdRatEWojUJSmJgGvHAWIj-UuiNSnR5TGl7Ulgfpptzvbx68OeoHcr8BS5UJydkINJY40IYRcvsw-ftpKnWPH8P9BnBnKvVjSiFrLslGZG0jciXtrtd7i_9y0VNY6Oz2tuV2N916BDfoOCXdcX8J5ienU_MY6d0ke-IcisG7q7bCn7fIWM8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIgEX_hELBXwAbtkmdjY_Bw5Vt9suZcPC0h9xMU5sL6uKbNXdFZQD6iMg8SK8Cq_QJ2HG2SwUcULqgUukxHYS2zP-vrHGMwCP00QZxFXtBYmNKYVZ4CkdFp7Kg8DmPiKyyzzXy6KtnfD5fmt_Cb7XZ2Gq-BCLDTfSDLdek4Ifarv6K2goncAm16yIzoryuVvltjn-iEbb5Fm3jTP8hPPOxpv1LW-eV8AbCrK9ENMSVcQWoVJbrblO4tDy0JItomLLtVDcmFyZQiSGK50g5hZpYX0ldGIDJfC9F-BiGPkpJYtov14ErOKoDdV5JiE8Sntfh4n0-erZ_0UuTNP46Qyx_Z0eO3zrXIMf9chUbi0Hzdk0bxaf_wga-T8N3XW4OifbbK3SjhuwZMqbcHm9znF3C75QUlPnCVwOGVJh1uenJ99ectZ_j-jOHJA7nzY2tixTfjOKeyVds5HfFAIr5sesp4aIF6PZB0arsHO9oBZoDbBqy8ZoNhhrrHB68rWLJVVM05GZ3Iadc-n-HVgux6W5CyxVaNsE3BcWSaHOc4XEWrREpI1CSpiaBjx1AiIPq6gjUh0dkBNe3JJ72abcHWzuvXo7CORuA1ZqCZLz9WcicZmNYmT2Ufr3Ykp0j53hfgO4k5TFZ6ow1lySjMiFjMi1rLuxuLv3L40ewaV-uyNfdLPt-3CFHpPHHfdXYHl6NDMPkNtN84dOnRi8O28h_Ak81Fd- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressing+the+P2-O2+Phase+Transition+of+Na0.67Mn0.67Ni0.33O2+by+Magnesium+Substitution+for+Improved+Sodium-Ion+Batteries&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Wang%2C+Peng-Fei&rft.au=You%2C+Ya&rft.au=Yin%2C+Ya-Xia&rft.au=Wang%2C+Yue-Sheng&rft.date=2016-06-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=55&rft.issue=26&rft.spage=7445&rft_id=info:doi/10.1002%2Fanie.201602202&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |