Demystifying Relational Latent Representations

Latent features learned by deep learning approaches have proven to be a powerful tool for machine learning. They serve as a data abstraction that makes learning easier by capturing regularities in data explicitly. Their benefits motivated their adaptation to the relational learning context. In our p...

Full description

Saved in:
Bibliographic Details
Published inInductive Logic Programming Vol. 10759; pp. 63 - 77
Main Authors Dumančić, Sebastijan, Blockeel, Hendrik
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Latent features learned by deep learning approaches have proven to be a powerful tool for machine learning. They serve as a data abstraction that makes learning easier by capturing regularities in data explicitly. Their benefits motivated their adaptation to the relational learning context. In our previous work, we introduce an approach that learns relational latent features by means of clustering instances and their relations. The major drawback of latent representations is that they are often black-box and difficult to interpret. This work addresses these issues and shows that (1) latent features created by clustering are interpretable and capture interesting properties of data; (2) they identify local regions of instances that match well with the label, which partially explains their benefit; and (3) although the number of latent features generated by this approach is large, often many of them are highly redundant and can be removed without hurting performance much.
AbstractList Latent features learned by deep learning approaches have proven to be a powerful tool for machine learning. They serve as a data abstraction that makes learning easier by capturing regularities in data explicitly. Their benefits motivated their adaptation to the relational learning context. In our previous work, we introduce an approach that learns relational latent features by means of clustering instances and their relations. The major drawback of latent representations is that they are often black-box and difficult to interpret. This work addresses these issues and shows that (1) latent features created by clustering are interpretable and capture interesting properties of data; (2) they identify local regions of instances that match well with the label, which partially explains their benefit; and (3) although the number of latent features generated by this approach is large, often many of them are highly redundant and can be removed without hurting performance much.
Author Dumančić, Sebastijan
Blockeel, Hendrik
Author_xml – sequence: 1
  givenname: Sebastijan
  orcidid: 0000-0003-0915-8034
  surname: Dumančić
  fullname: Dumančić, Sebastijan
  email: sebastijan.dumancic@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Leuven, Belgium
– sequence: 2
  givenname: Hendrik
  surname: Blockeel
  fullname: Blockeel, Hendrik
  email: hendrik.blockeel@cs.kuleuven.be
  organization: Department of Computer Science, KU Leuven, Leuven, Belgium
BookMark eNqNkMtOwzAQRQ0URFv6BWz4AZeZ-L1E5SlVQkKwttJkUgohKXFY9O-ZPhYsWdk642PduSMxaNqGhLhEmCKAuw7OSyUVBuk8BJAQzZGYMFXMdgiOxRAtolRKh5O_Mx_0QAxBQSaD0-pMjBCyAMY4p87FJKUPAMDgLT8ciuktfW1Sv6o2q2Z59UJ13q_aJq-v5nlPTc9k3VHi246nC3Fa5XWiyeEci7f7u9fZo5w_PzzNbuZyySl6SVlVlGBtRRWHLW2JDDKnPDkqtV0Aki28LgsinWuHldFOLRQpYw2gq9RY4P7ftO44GHVx0bafKSLEbUGRF40q8sJx10bkgtjJ9s66a79_KPWRtlLB4bu8Lt7zdU9dijbzGkyIFiPX80_JmJAp8AfpF9Ffdqg
ContentType Book Chapter
Copyright Springer International Publishing AG, part of Springer Nature 2018
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
DBID FFUUA
DEWEY 4
DOI 10.1007/978-3-319-78090-0_5
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISBN 9783319780900
3319780905
EISSN 1611-3349
Editor Vrain, Christel
Lachiche, Nicolas
Editor_xml – sequence: 1
  fullname: Vrain, Christel
– sequence: 2
  fullname: Lachiche, Nicolas
EndPage 77
ExternalDocumentID EBC6284059_61_74
EBC5592308_61_74
GroupedDBID 0D6
0DA
38.
AABBV
ABFTD
ABPUQ
ACOUV
ADIEE
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
AZZ
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-g331t-e2fcd066fef809d6d12fc2738e7ed46b01e6c84dcee4a471f5473b3e3565017f3
ISBN 9783319780894
3319780891
ISSN 0302-9743
IngestDate Tue Jul 29 20:11:10 EDT 2025
Mon Apr 07 01:58:04 EDT 2025
Wed May 28 23:23:11 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA8.9-QA10.3Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g331t-e2fcd066fef809d6d12fc2738e7ed46b01e6c84dcee4a471f5473b3e3565017f3
OCLC 1029055773
ORCID 0000-0003-0915-8034
PQID EBC5592308_61_74
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_319_78090_0_5
proquest_ebookcentralchapters_6284059_61_74
proquest_ebookcentralchapters_5592308_61_74
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 27th International Conference, ILP 2017, Orléans, France, September 4-6, 2017, Revised Selected Papers
PublicationTitle Inductive Logic Programming
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0001986894
ssj0002792
Score 2.0983167
Snippet Latent features learned by deep learning approaches have proven to be a powerful tool for machine learning. They serve as a data abstraction that makes...
SourceID springer
proquest
SourceType Publisher
StartPage 63
SubjectTerms Clustering
Deep learning
Relational learning
Unsupervised representation learning
Title Demystifying Relational Latent Representations
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5592308&ppg=74
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6284059&ppg=74
http://link.springer.com/10.1007/978-3-319-78090-0_5
Volume 10759
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4QwEG7c9aJefMZ3OHjSsKFQSjn6WN1s1INR461ZaPG0a-LiQX-9X4HCQkyMXghpCpnO9PHNdB6EnDClGKWJcFWklctwxLhxEgSu8qMIJxyNtDaK4t09Hz2x8Uv40iTzL6JL8mSQfv0YV_IfqaINcjVRsn-QbP1TNOAd8sUTEsazA37bZtbKXdCkajWOP6Zecmpc_o2n1dSeRdU8uNLTTyzjMpzJur4V1uvcuAE8FJ6wVQDSrGUEoKJjBLBGwI4ZccGSdX7TUhwDrLxIeKIsMFzvhMAP8Y_76qIrhQl7wrex53oybI4Re3VeFt3pJLEeXlxCdYG6IySnMmI90otE2CfL58Px7XNjFIsFFyZf40pNIC2zJDUE16mjyuzAHXpaikLnbruADI_rZM2EkTgmvgMkbpAlPdskq3d1ltz5FhksysZpZOOUsnE6stkmT9fDx8uRW9WvcF9Bbu5qP0sVJnymM5CnuKJoMKFQGuuC8cSjmqeCKeAUNgFIyEwd6CTQAUA2Nsos2CH92dtM7xKH8dTLPO3ziYpZxLUIme_HNIkzmkInDffImR22LG7ZK9fetBzkXLa4_2tvDtAC3G17n1o-StN5Lm2qa_BfBhL8lwX_Jfi__ydCDshKM5sPST9__9BHAHl5clxNjW9GUk8w
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inductive+Logic+Programming&rft.atitle=Demystifying+Relational+Latent+Representations&rft.date=2018-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319780894&rft.volume=10759&rft_id=info:doi/10.1007%2F978-3-319-78090-0_5&rft.externalDBID=74&rft.externalDocID=EBC5592308_61_74
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5592308-l.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6284059-l.jpg