Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters

Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde‐3‐phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave...

Full description

Saved in:
Bibliographic Details
Published inBiotechnology and bioengineering Vol. 69; no. 5; pp. 486 - 494
Main Authors Boer, Harry, Teeri, Tuula T., Koivula, Anu
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 05.09.2000
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde‐3‐phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N‐glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The kcat and Km values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site‐directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69:486–494, 2000.
AbstractList Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k sub(cat) and K sub(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde‐3‐phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N‐glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The kcat and Km values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site‐directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69:486–494, 2000.
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.
Author Koivula, Anu
Teeri, Tuula T.
Boer, Harry
Author_xml – sequence: 1
  givenname: Harry
  surname: Boer
  fullname: Boer, Harry
  organization: VTT Biotechnology, PO Box 1500, Espoo, Finland; telephone: +358-9-4565110; fax: +358-9-4552103
– sequence: 2
  givenname: Tuula T.
  surname: Teeri
  fullname: Teeri, Tuula T.
  organization: Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
– sequence: 3
  givenname: Anu
  surname: Koivula
  fullname: Koivula, Anu
  email: anu.koivula@vtt.fi
  organization: VTT Biotechnology, PO Box 1500, Espoo, Finland; telephone: +358-9-4565110; fax: +358-9-4552103
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1469811$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10898858$$D View this record in MEDLINE/PubMed
BookMark eNqFkl1v0zAUhiM0xLrBX0C-QIhdpPgjsZ0OTSoBRrXRDlEE2o3lJCerIY2LnWp0vx6HdoO7-sY60nPeo6PzHEUHrW0hiiTBQ4IxfU1wJmJMM_yK4vAynJ7wbJS-SSQfjcaTd_HbyZydsSEe5rNTGk8fRYOHloNoEFp4zNKMHkZH3v8IpZCcP4kOCZaZlKkcRHf5QjtdduDMne6MbZGt0dyZcmErcEuNHIAHg0poGlsYu9hUzjbaA8qhEWPkoXTQQYVqZ5foKvQZjVbad9YZj9betDeou7WoMnUNDtoOrQJowzz_NHpc68bDs91_HH398H6ef4wvZ-eTfHwZ3zDKWZwWmiUZwZUWKZYiqankBRUlqXWJGRRUFxXlggtBeS3KWiQsqxMKCSlpCZKz4-jlNjdM_rUG36ml8f0-ugW79koQmkjKyF4wyWiYL9hekJKEU8zSvSARXGIme_D5DlwXS6jUypmldht1f6gAvNgB2pe6qZ1uS-P_cQnPJOlX-LzFbk0Dm_9iVO-T6uVQvRzq3ifFM5Wq4JMKOqleJ8UUVvlMUTX9W4fMeJtpfAe_HzK1-6m4YCJV36bn6oJ8-f7p-uJaXbE_Qp7S9g
CODEN BIBIAU
ContentType Journal Article
Copyright Copyright © 2000 John Wiley & Sons, Inc.
2000 INIST-CNRS
Copyright 2000 John Wiley & Sons, Inc.
Copyright_xml – notice: Copyright © 2000 John Wiley & Sons, Inc.
– notice: 2000 INIST-CNRS
– notice: Copyright 2000 John Wiley & Sons, Inc.
DBID BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7S9
L.6
7X8
DOI 10.1002/1097-0290(20000905)69:5<486::AID-BIT3>3.0.CO;2-N
DatabaseName Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Engineering Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Biology
Anatomy & Physiology
EISSN 1097-0290
EndPage 494
ExternalDocumentID 506504
10898858
1469811
BIT3
ark_67375_WNG_K1SXMZKZ_P
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: European Community
  funderid: BIO4‐CT97‐5037
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AI.
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RNS
ROL
RWI
RX1
SUPJJ
TN5
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
3EH
AAMMB
ABEML
ACSCC
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
BLYAC
EBD
EMOBN
HF~
IQODW
LH6
NDZJH
PALCI
RIWAO
RJQFR
RYL
SAMSI
SV3
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
7S9
L.6
7X8
ID FETCH-LOGICAL-g3263-5ba34910da750874f286b27c1fac03eb2abd26767726f7cf7439f42e41c2ce863
IEDL.DBID DR2
ISSN 0006-3592
IngestDate Fri Jul 11 15:16:17 EDT 2025
Thu Jul 10 22:36:00 EDT 2025
Fri Jul 11 04:22:09 EDT 2025
Fri Jul 11 01:59:50 EDT 2025
Wed Feb 19 01:32:38 EST 2025
Mon Jul 21 09:15:26 EDT 2025
Wed Jan 22 16:45:52 EST 2025
Wed Oct 30 09:52:00 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Yeast
Enzyme
Transcription promoter
Secretion
Glycosylation
Cellulose 1,4-β-cellobiosidase
Gene expression
Trichoderma reesei
Thermal stability
Fungi
Screening
Enzymatic activity
Glycosidases
Hydrolases
Ascomycetes
Fungi Imperfecti
Recombinant protein
Vector
Hybrid gene
Physicochemical properties
Thallophyta
Language English
License CC BY 4.0
Copyright 2000 John Wiley & Sons, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3263-5ba34910da750874f286b27c1fac03eb2abd26767726f7cf7439f42e41c2ce863
Notes istex:7712772D0D85E537998C8D563591BE75F399BA93
ark:/67375/WNG-K1SXMZKZ-P
European Community - No. BIO4-CT97-5037
ArticleID:BIT3
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 10898858
PQID 17680385
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_71248231
proquest_miscellaneous_49287473
proquest_miscellaneous_21462035
proquest_miscellaneous_17680385
pubmed_primary_10898858
pascalfrancis_primary_1469811
wiley_primary_10_1002_1097_0290_20000905_69_5_486_AID_BIT3_3_0_CO_2_N_BIT3
istex_primary_ark_67375_WNG_K1SXMZKZ_P
PublicationCentury 2000
PublicationDate 5 September 2000
PublicationDateYYYYMMDD 2000-09-05
PublicationDate_xml – month: 09
  year: 2000
  text: 5 September 2000
  day: 05
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationTitle Biotechnology and bioengineering
PublicationTitleAlternate Biotechnol. Bioeng
PublicationYear 2000
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References Maras M, de Bruyn A, Scharml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R. 1997. Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617-625.
Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M, Bamford DH, Korhola M. 1991. Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643-649.
Koivula A, Lappalainen A, Virtanen S, Mäntylä AL, Suominen P, Teeri TT. 1996. Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant Trichoderma reesei strains devoid of major endoglucanase genes. Prot Expr Purif 8:391-400.
Teeri TT. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160-167.
Romanos M. 1995. Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527-533.
Eftink MR. 1995. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Meth Enzymol 259:487-512.
Divne C, Ståhlberg J, Teeri TT, Jones A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309-325.
Rudd PM, Joao HC, Coghill E, Fiten P, Saunders MR, Opdenakker G, Dwek RA. 1994. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17-22.
Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller R Jr, Warren A, Kilburn DG. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267:6743-6749.
Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273-279.
Reinikainen T, Teleman O, Teeri TT. 1995. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22:392-403.
Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685.
Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT. 1992. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14:475-482.
Tomme P, McRae S, Wood TM, Claeyssens M. 1988. Chromatographic separation of cellulolytic enzymes. Meth Enzymol 160:187-192.
Cregg JM, Vedvick TS, Raschke WC. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905-909.
van Tilbeurgh H, Claeyssens M. 1985. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 187:283-288.
Penttilä M, André L, Lehtovaara P, Bailey M, Teeri T, Knowles J. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103-112.
Divne C, Ståhlberg J, Reinikainen T, Ruohonen L, Petterson G, Knowles JKC, Teeri TT, Jones A. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524-528.
Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Velicelebi G, Harpold MM, Thill GP. 1989. Continuous production of a novel lysozyme via secretion from the yeast, Pichia pastoris. Bio/Technology 7:160-164.
Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853-859.
Imperiali B, Rickert KW. 1995. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA 92:97-101.
Margolles-Clark E, Hayes CK, Harman GE, Penttilä M. 1996. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol 62:2145-2151.
Laymon RA, Adney WS, Mohagheghi A, Himmel ME, Thomas SR. 1996. Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotechnol 57/58:389-397.
Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH. 1998. Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256:119-127.
von Ossowski I, Teeri T, Kalkkinen N, Oker-Blom C. 1997. Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun 233:25-29.
Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467.
Kukuruzinska MA, Bergh MLE, Jackson BL. 1987. Protein glycosylation in yeast. Annu Rev Biochem 56:915-944.
Harjunpää V, Helin J, Koivula A, Siika-aho M, Drakenberg T. 1999. A comparative study of two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta-mannanase, Man5A. FEBS Lett 443:149-153.
Alder AJ, Greenfield NJ, Fasman GD. 1973. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Meth Enzymol 27:675-735.
Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. 1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37-44.
1987; 56
1995; 92
1989; 7
1992; 267
1997; 233
1995; 259
1999; 443
1992; 14
1972; 47
1998; 275
1998; 256
1995; 3
1995; 6
1985; 187
1997; 245
1994; 265
1991; 200
1970; 277
1988; 160
1993; 11
1997; 15
1997; 186
1996; 57/58
1995; 22
1973; 27
1987
1994; 33
1996; 62
1977; 74
1988; 63
1996; 8
References_xml – reference: von Ossowski I, Teeri T, Kalkkinen N, Oker-Blom C. 1997. Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun 233:25-29.
– reference: Harjunpää V, Helin J, Koivula A, Siika-aho M, Drakenberg T. 1999. A comparative study of two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta-mannanase, Man5A. FEBS Lett 443:149-153.
– reference: Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685.
– reference: Penttilä M, André L, Lehtovaara P, Bailey M, Teeri T, Knowles J. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103-112.
– reference: Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467.
– reference: Tomme P, McRae S, Wood TM, Claeyssens M. 1988. Chromatographic separation of cellulolytic enzymes. Meth Enzymol 160:187-192.
– reference: Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M, Bamford DH, Korhola M. 1991. Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643-649.
– reference: Maras M, de Bruyn A, Scharml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R. 1997. Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617-625.
– reference: Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH. 1998. Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256:119-127.
– reference: Margolles-Clark E, Hayes CK, Harman GE, Penttilä M. 1996. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol 62:2145-2151.
– reference: Cregg JM, Vedvick TS, Raschke WC. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905-909.
– reference: Alder AJ, Greenfield NJ, Fasman GD. 1973. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Meth Enzymol 27:675-735.
– reference: Divne C, Ståhlberg J, Teeri TT, Jones A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309-325.
– reference: Teeri TT. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160-167.
– reference: Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. 1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37-44.
– reference: Reinikainen T, Teleman O, Teeri TT. 1995. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22:392-403.
– reference: van Tilbeurgh H, Claeyssens M. 1985. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 187:283-288.
– reference: Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273-279.
– reference: Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller R Jr, Warren A, Kilburn DG. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267:6743-6749.
– reference: Eftink MR. 1995. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Meth Enzymol 259:487-512.
– reference: Romanos M. 1995. Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527-533.
– reference: Imperiali B, Rickert KW. 1995. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA 92:97-101.
– reference: Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853-859.
– reference: Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT. 1992. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14:475-482.
– reference: Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Velicelebi G, Harpold MM, Thill GP. 1989. Continuous production of a novel lysozyme via secretion from the yeast, Pichia pastoris. Bio/Technology 7:160-164.
– reference: Divne C, Ståhlberg J, Reinikainen T, Ruohonen L, Petterson G, Knowles JKC, Teeri TT, Jones A. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524-528.
– reference: Koivula A, Lappalainen A, Virtanen S, Mäntylä AL, Suominen P, Teeri TT. 1996. Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant Trichoderma reesei strains devoid of major endoglucanase genes. Prot Expr Purif 8:391-400.
– reference: Kukuruzinska MA, Bergh MLE, Jackson BL. 1987. Protein glycosylation in yeast. Annu Rev Biochem 56:915-944.
– reference: Laymon RA, Adney WS, Mohagheghi A, Himmel ME, Thomas SR. 1996. Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotechnol 57/58:389-397.
– reference: Rudd PM, Joao HC, Coghill E, Fiten P, Saunders MR, Opdenakker G, Dwek RA. 1994. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17-22.
– volume: 62
  start-page: 2145
  year: 1996
  end-page: 2151
  article-title: Improved production of endochitinase by expression in
  publication-title: Appl Environ Microbiol
– volume: 15
  start-page: 160
  year: 1997
  end-page: 167
  article-title: Crystalline cellulose degradation: new insight into the function of cellobiohydrolases
  publication-title: Trends Biotechnol
– volume: 74
  start-page: 5463
  year: 1977
  end-page: 5467
  article-title: DNA sequencing with chain‐terminating inhibitors
  publication-title: Proc Natl Acad Sci USA
– volume: 245
  start-page: 617
  year: 1997
  end-page: 625
  article-title: Structural characterization of N‐linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus RUTC 30
  publication-title: Eur J Biochem
– year: 1987
– volume: 275
  start-page: 309
  year: 1998
  end-page: 325
  article-title: High‐resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from
  publication-title: J Mol Biol
– volume: 160
  start-page: 187
  year: 1988
  end-page: 192
  article-title: Chromatographic separation of cellulolytic enzymes
  publication-title: Meth Enzymol
– volume: 56
  start-page: 915
  year: 1987
  end-page: 944
  article-title: Protein glycosylation in yeast
  publication-title: Annu Rev Biochem
– volume: 57/58
  start-page: 389
  year: 1996
  end-page: 397
  article-title: Cloning and expression of full‐length cellobiohydrolase I cDNAs in
  publication-title: Appl Biochem Biotechnol
– volume: 7
  start-page: 160
  year: 1989
  end-page: 164
  article-title: Continuous production of a novel lysozyme via secretion from the yeast,
  publication-title: Bio/Technology
– volume: 14
  start-page: 475
  year: 1992
  end-page: 482
  article-title: Investigation of the function of mutated cellulose‐binding domains of cellobiohydrolase I
  publication-title: Proteins
– volume: 92
  start-page: 97
  year: 1995
  end-page: 101
  article-title: Conformational implications of asparagine‐linked glycosylation
  publication-title: Proc Natl Acad Sci USA
– volume: 8
  start-page: 391
  year: 1996
  end-page: 400
  article-title: Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant strains devoid of major endoglucanase genes
  publication-title: Prot Expr Purif
– volume: 200
  start-page: 643
  year: 1991
  end-page: 649
  article-title: Monoclonal antibodies against core and cellulose‐binding domains of cellobiohydrolases I and II and endoglucanase I
  publication-title: Eur J Biochem
– volume: 277
  start-page: 680
  year: 1970
  end-page: 685
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
– volume: 187
  start-page: 283
  year: 1985
  end-page: 288
  article-title: Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates
  publication-title: FEBS Lett
– volume: 22
  start-page: 392
  year: 1995
  end-page: 403
  article-title: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from
  publication-title: Proteins
– volume: 186
  start-page: 37
  year: 1997
  end-page: 44
  article-title: Isolation of the glyceraldehyde‐3‐phosphate dehydrogenase gene and regulation and use of its promoter
  publication-title: Gene
– volume: 443
  start-page: 149
  year: 1999
  end-page: 153
  article-title: A comparative study of two retaining enzymes of transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta‐mannanase, Man5A
  publication-title: FEBS Lett
– volume: 47
  start-page: 273
  year: 1972
  end-page: 279
  article-title: A new reaction for colorimetric determination of carbohydrates
  publication-title: Anal Biochem
– volume: 259
  start-page: 487
  year: 1995
  end-page: 512
  article-title: Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins
  publication-title: Meth Enzymol
– volume: 267
  start-page: 6743
  year: 1992
  end-page: 6749
  article-title: The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose
  publication-title: J Biol Chem
– volume: 33
  start-page: 17
  year: 1994
  end-page: 22
  article-title: Glycoforms modify the dynamic stability and functional activity of an enzyme
  publication-title: Biochemistry
– volume: 27
  start-page: 675
  year: 1973
  end-page: 735
  article-title: Circular dichroism and optical rotatory dispersion of proteins and polypeptides
  publication-title: Meth Enzymol
– volume: 11
  start-page: 905
  year: 1993
  end-page: 909
  article-title: Recent advances in the expression of foreign genes in
  publication-title: Bio/Technology
– volume: 63
  start-page: 103
  year: 1988
  end-page: 112
  article-title: Efficient secretion of two fungal cellobiohydrolases by
  publication-title: Gene
– volume: 6
  start-page: 527
  year: 1995
  end-page: 533
  article-title: Advances in the use of for high‐level gene expression
  publication-title: Curr Opin Biotechnol
– volume: 265
  start-page: 524
  year: 1994
  end-page: 528
  article-title: The three‐dimensional crystal structure of the catalytic core of cellobiohydrolase I from
  publication-title: Science
– volume: 3
  start-page: 853
  year: 1995
  end-page: 859
  article-title: Structures and mechanisms of glycosyl hydrolases
  publication-title: Structure
– volume: 256
  start-page: 119
  year: 1998
  end-page: 127
  article-title: Modified glycosylation of cellobiohydrolase I from a high cellulase‐producing mutant strain of
  publication-title: Eur J Biochem
– volume: 233
  start-page: 25
  year: 1997
  end-page: 29
  article-title: Expression of a fungal cellobiohydrolase in insect cells
  publication-title: Biochem Biophys Res Commun
SSID ssj0007866
Score 1.606752
Snippet Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase...
SourceID proquest
pubmed
pascalfrancis
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 486
SubjectTerms activity screening
Biological and medical sciences
Biotechnology
Biotechnology - methods
Catalyst activity
Cel7A protein
cellobiohydrolase
cellobiose
Cellulase
Cellulase - isolation & purification
Cellulase - metabolism
Cellulase - secretion
cellulolytic microorganisms
Cellulose
Cellulose - metabolism
Cellulose 1,4-beta-Cellobiosidase
enzymology
expression
Fermentation
Fermenters
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Regulation, Enzymologic
Gene Expression Regulation, Fungal
Genetic engineering
Genetic technics
Genetic Testing
Genetic Testing - methods
genetics
glyceraldehyde-3-phosphate dehydrogenase
glycosidases
Glycosylation
Hot Temperature
isolation & purification
metabolism
methods
Methods. Procedures. Technologies
Modification of gene expression level
Pichia
Pichia - enzymology
Pichia - genetics
Pichia pastoris
Promoter Regions, Genetic
Promoter Regions, Genetic - genetics
Saccharomyces cerevisiae
secretion
Solubility
stability
Thermodynamic stability
Transformation, Genetic
Trichoderma
Trichoderma - enzymology
Trichoderma - genetics
Trichoderma reesei
Yeast
Title Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters
URI https://api.istex.fr/ark:/67375/WNG-K1SXMZKZ-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1097-0290%2820000905%2969%3A5%3C486%3A%3AAID-BIT3%3E3.0.CO%3B2-N
https://www.ncbi.nlm.nih.gov/pubmed/10898858
https://www.proquest.com/docview/17680385
https://www.proquest.com/docview/21462035
https://www.proquest.com/docview/49287473
https://www.proquest.com/docview/71248231
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF5VlXgdeKQ8AhT2QCo4OLV3vbt2QEiJaelDTauSiqiX1dpet1VpUsWJoP0b_GFm7DhpEeWEkHJwkk0mGn9ef5OZ-YaQNymP3QB4vWOUZxw_8IVj_MA6wroyEzKTSYr9zjtduXHgb_VFf4GMql6YUh9i9ocbXhnFfo0XuInz1bloKKZOHZeFLjAxVlAdV0D0LEM4taLBIz-QcASP9uYnp7PZ4w2-xptuM9pt8A5zurBtY4kX8qj9ueKUCsr0JgbaXITsNgmmJldnBt9W5t7JsCU-gKFWqzLysTTxHgwA3cUz9QPLLU0OHs_KURl_4rLXqXFxb1t_QH5WXilLWk6bk3HcTC5_E4z8v257SO5PqTJtl9h-RBbsoEaW2gMzHp5d0BVaFK8WWYEaudWpju5E1Qi7Grl3RW1xiVxGM3HqsveUDjPag_vAMc6DOzN0ZG1uTyjmMlCc6vgiHUHgn1sa2W-qTXNk2EDQKbbk0L0TrBKn4HOUWckpNhAc0fH3Ia1mzozpeVHrCAT7MTlYX-tFG8509IRzBHyWOyI23AcmlRpgVIHyMxbImKnEy0zichszE6cMte4UkxkqOwGvy3xmfS9hiQ0kf0IWB8OBfUaosVKx1DIZcgiFY2NCFmduolQIr3tM1clKARN9XsqLaDM6xWo7JfTX7me97X3p7xxuH-q9Olm-hqPZBzycAup5dfK6wpUGP6OzzMAOJ7n2IKbEDPDNK3C8O3P5X1b4IU5GUPzmFQqoIiaV6-RpCer5D4TtIAhEUCdbBTSvvIGa2WxaBgGg1BUktQy10ABGDTjUiEPNtaujXc10t3j-_F9-2Qtyt9RYCB1XvCSL49HELgPbHMeviv3hF8DUZNQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF6VIigceLQ8ApTugVbl4NTe9e7aASElpiV9pRWkIupltXbWbVWaVHEiaH8HP5gZO05aRDkhpByceO2Jxp_X33hmvyHkTZfHbgC83jHKM44f-MIxfmAdYV2ZCpnKpIvrnXdbsnngb3VEZ4Zk5VqYQh9i8sIN74x8vsYbHF9Ir01VQzF36rgsdIGKsZzruALCZxnCtRXLPPIDCVvwqW9-dBqbbb7M13nVrUZ7y7zBnNYtchsbgedx2Oep5pQKigQnhtpchOwuCcY21yYWV0t7b2VYE-_BUq1WWvlQ2HgHFoDw4rX6gQWXJgOfp0WzjD-x2evkOH-6bTwkP0u_FEUtp9XRMK4ml79JRv5nxz0iD8ZsmdYLeD8mM7Y3TxbqPTPsn13QFZrXr-aJgXlyp1FuzUVlF7t5cv-K4OICuYwm-tTF8lPaT2kbHgXH2BLuzNCBtZk9oZjOQH2q44vuAGL_zNLIflN1miHJBo5OcVUO3T_BQnEKTkellYziGoIjOvzep2XbmSE9z8sdgWM_IQcb6-2o6Yy7TzhHQGm5I2LDfSBTXQOkKlB-ygIZM5V4qUlcbmNm4i5DuTvFZIriTkDtUp9Z30tYYgPJn5LZXr9nnxNqrFSsa5kMOUTDsTEhi1M3USqE3z2mKmQlx4k-LxRGtBmcYsGdEvpr65Pe9r50dg-3D_V-hSxeA9LkAA8bgXpehSyVwNLgZ3SW6dn-KNMehJWYBL55BHZ4Zy7_ywg_xOYIit88QgFbxLxyhTwrUD39gzAjBIEIKmQrx-aVHSibzcaVEABKXUJSy1ALDWDUgEONONRcuzra00y38u8v_uXJlshcs727o3c2W9svyb1CciF0XPGKzA4HI7sI5HMYv84ni18J6Wjv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF6VIoo48Gh5BCjdA63g4NTe9e7aASElbksfNK2gFVEvq7W9bqvSJIpdQfs3-MPM2HHaIsoJIeXgJJuMNf7W_mZn9htCXqc8dgPg9Y5RnnH8wBeO8QPrCOvKTMhMJinud97uyvV9f7MnelNkVO-FqfQhJgtuODPK-zVO8GGaLV-KhmLq1HFZ6AITYyXVcQVEzzKESysWeeQHEo7g1d5YcTobe3yRr_Km24x2FnmHOd1b5LYv4TyRSH2-lJxSQZXfxEibi5DNkGBsc3li8U1t760MW-I9WGq1aisfKhvvwALwXbxUP7De0uTg8qzqlfEnMnudG5cPt7UH5Gftlqqm5aR5VsTN5OI3xcj_67eH5P6YK9N2Be5HZMr2Z8lcu2-Kwek5XaJl9WqZFpgldzr10d2o7mE3S-5dkVucIxfRRJ262nxKBxndgwfBETaEOzV0ZG1ujykmM1Cd6ug8HUHkn1sa2W-qTXOk2MDQKe7JobvHWCZOweeos5JT3EFwSIvvA1o3nSnosCx2BIb9mOyvre5F686494RzCISWOyI23AcqlRqgVIHyMxbImKnEy0zichszE6cMxe4UkxlKOwGxy3xmfS9hiQ0kf0Km-4O-fUaosVKx1DIZcoiFY2NCFmduolQIn3tMNchSCRM9rPRFtBmdYLmdEvpr96Pe8r70tg-2DvRug8xfw9HkBx62AfW8BlmocaXBz-gs07eDs1x7EFRiCvjmEdjfnbn8LyP8EFsjKH7zCAVcEbPKDfK0AvXlCcI8CwIRNMhmCc0rX6BoNhvXQQAodQ1JLUMtNIBRAw414lBz7epoRzPdLd8__5d_tkBmdlfW9KeN7tYLXLvBdbbQccVLMl2Mzuw8MM8iflXeKn4Be55nqw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Trichoderma+reesei+cellobiohydrolase+Cel7A+secreted+from+Pichia+pastoris+using+two+different+promoters&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Boer%2C+H&rft.au=Teeri%2C+T+T&rft.au=Koivula%2C+A&rft.date=2000-09-05&rft.issn=0006-3592&rft.volume=69&rft.issue=5+p.486-494&rft.spage=486&rft.epage=494&rft_id=info:doi/10.1002%2F1097-0290%2820000905%2969%3A5%3C486%3A%3AAID-BIT3%3E3.0.CO%3B2-N&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon