Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters
Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde‐3‐phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave...
Saved in:
Published in | Biotechnology and bioengineering Vol. 69; no. 5; pp. 486 - 494 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
John Wiley & Sons, Inc
05.09.2000
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde‐3‐phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N‐glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The kcat and Km values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site‐directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69:486–494, 2000. |
---|---|
AbstractList | Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system.Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k sub(cat) and K sub(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde‐3‐phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N‐glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The kcat and Km values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site‐directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. © 2000 John Wiley & Sons, Inc. Biotechnol Bioeng 69:486–494, 2000. Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase (AOX1) promoter and the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter in a fermentor. Production of Cel7A with the AOX1 promoter gave a better yield, although part of the enzyme expressed was apparently not correctly folded. Cel7A expressed in P. pastoris is overglycosylated at its N-glycosylation sites as compared to the native T. reesei protein, but less extensive than Cel7A expressed in Saccharomyces cerevisiae. The k(cat) and K(m) values for the purified protein on soluble substrates are similar to the values found for the native Trichoderma Cel7A, whereas the degradation rate on crystalline substrate (BMCC) is somewhat reduced. The measured pH optimum also closely resembles that of purified T. reesei Cel7A. Furthermore, the hyperglycosylation does not affect the thermostability of the enzyme monitored with tryptophane fluorescence and activity measurements. On the other hand, CD measurements indicate that the formation of disulfide bridges is an important step in the correct folding of Cel7A and might explain the difficulties encountered in heterologous expression of T. reesei Cel7A. The constitutive GAP promoter expression system of P. pastoris is nevertheless well suited for activity screening of cellulase activities in microtiter plates. With this type of screening method a faster selection of site-directed and random mutants with, for instance, an altered optimum pH is possible, in contrast to the homologous T. reesei expression system. |
Author | Koivula, Anu Teeri, Tuula T. Boer, Harry |
Author_xml | – sequence: 1 givenname: Harry surname: Boer fullname: Boer, Harry organization: VTT Biotechnology, PO Box 1500, Espoo, Finland; telephone: +358-9-4565110; fax: +358-9-4552103 – sequence: 2 givenname: Tuula T. surname: Teeri fullname: Teeri, Tuula T. organization: Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden – sequence: 3 givenname: Anu surname: Koivula fullname: Koivula, Anu email: anu.koivula@vtt.fi organization: VTT Biotechnology, PO Box 1500, Espoo, Finland; telephone: +358-9-4565110; fax: +358-9-4552103 |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1469811$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/10898858$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkl1v0zAUhiM0xLrBX0C-QIhdpPgjsZ0OTSoBRrXRDlEE2o3lJCerIY2LnWp0vx6HdoO7-sY60nPeo6PzHEUHrW0hiiTBQ4IxfU1wJmJMM_yK4vAynJ7wbJS-SSQfjcaTd_HbyZydsSEe5rNTGk8fRYOHloNoEFp4zNKMHkZH3v8IpZCcP4kOCZaZlKkcRHf5QjtdduDMne6MbZGt0dyZcmErcEuNHIAHg0poGlsYu9hUzjbaA8qhEWPkoXTQQYVqZ5foKvQZjVbad9YZj9betDeou7WoMnUNDtoOrQJowzz_NHpc68bDs91_HH398H6ef4wvZ-eTfHwZ3zDKWZwWmiUZwZUWKZYiqankBRUlqXWJGRRUFxXlggtBeS3KWiQsqxMKCSlpCZKz4-jlNjdM_rUG36ml8f0-ugW79koQmkjKyF4wyWiYL9hekJKEU8zSvSARXGIme_D5DlwXS6jUypmldht1f6gAvNgB2pe6qZ1uS-P_cQnPJOlX-LzFbk0Dm_9iVO-T6uVQvRzq3ifFM5Wq4JMKOqleJ8UUVvlMUTX9W4fMeJtpfAe_HzK1-6m4YCJV36bn6oJ8-f7p-uJaXbE_Qp7S9g |
CODEN | BIBIAU |
ContentType | Journal Article |
Copyright | Copyright © 2000 John Wiley & Sons, Inc. 2000 INIST-CNRS Copyright 2000 John Wiley & Sons, Inc. |
Copyright_xml | – notice: Copyright © 2000 John Wiley & Sons, Inc. – notice: 2000 INIST-CNRS – notice: Copyright 2000 John Wiley & Sons, Inc. |
DBID | BSCLL IQODW CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 7X8 |
DOI | 10.1002/1097-0290(20000905)69:5<486::AID-BIT3>3.0.CO;2-N |
DatabaseName | Istex Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Engineering Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Biology Anatomy & Physiology |
EISSN | 1097-0290 |
EndPage | 494 |
ExternalDocumentID | 506504 10898858 1469811 BIT3 ark_67375_WNG_K1SXMZKZ_P |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: European Community funderid: BIO4‐CT97‐5037 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23N 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RBB RNS ROL RWI RX1 SUPJJ TN5 UB1 V2E VH1 W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 Y6R ZZTAW ~02 ~IA ~KM ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ 3EH AAMMB ABEML ACSCC AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY BLYAC EBD EMOBN HF~ IQODW LH6 NDZJH PALCI RIWAO RJQFR RYL SAMSI SV3 ZGI ZXP CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-g3263-5ba34910da750874f286b27c1fac03eb2abd26767726f7cf7439f42e41c2ce863 |
IEDL.DBID | DR2 |
ISSN | 0006-3592 |
IngestDate | Fri Jul 11 15:16:17 EDT 2025 Thu Jul 10 22:36:00 EDT 2025 Fri Jul 11 04:22:09 EDT 2025 Fri Jul 11 01:59:50 EDT 2025 Wed Feb 19 01:32:38 EST 2025 Mon Jul 21 09:15:26 EDT 2025 Wed Jan 22 16:45:52 EST 2025 Wed Oct 30 09:52:00 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Yeast Enzyme Transcription promoter Secretion Glycosylation Cellulose 1,4-β-cellobiosidase Gene expression Trichoderma reesei Thermal stability Fungi Screening Enzymatic activity Glycosidases Hydrolases Ascomycetes Fungi Imperfecti Recombinant protein Vector Hybrid gene Physicochemical properties Thallophyta |
Language | English |
License | CC BY 4.0 Copyright 2000 John Wiley & Sons, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3263-5ba34910da750874f286b27c1fac03eb2abd26767726f7cf7439f42e41c2ce863 |
Notes | istex:7712772D0D85E537998C8D563591BE75F399BA93 ark:/67375/WNG-K1SXMZKZ-P European Community - No. BIO4-CT97-5037 ArticleID:BIT3 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 10898858 |
PQID | 17680385 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_71248231 proquest_miscellaneous_49287473 proquest_miscellaneous_21462035 proquest_miscellaneous_17680385 pubmed_primary_10898858 pascalfrancis_primary_1469811 wiley_primary_10_1002_1097_0290_20000905_69_5_486_AID_BIT3_3_0_CO_2_N_BIT3 istex_primary_ark_67375_WNG_K1SXMZKZ_P |
PublicationCentury | 2000 |
PublicationDate | 5 September 2000 |
PublicationDateYYYYMMDD | 2000-09-05 |
PublicationDate_xml | – month: 09 year: 2000 text: 5 September 2000 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationTitle | Biotechnology and bioengineering |
PublicationTitleAlternate | Biotechnol. Bioeng |
PublicationYear | 2000 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | Maras M, de Bruyn A, Scharml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R. 1997. Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617-625. Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M, Bamford DH, Korhola M. 1991. Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643-649. Koivula A, Lappalainen A, Virtanen S, Mäntylä AL, Suominen P, Teeri TT. 1996. Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant Trichoderma reesei strains devoid of major endoglucanase genes. Prot Expr Purif 8:391-400. Teeri TT. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160-167. Romanos M. 1995. Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527-533. Eftink MR. 1995. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Meth Enzymol 259:487-512. Divne C, Ståhlberg J, Teeri TT, Jones A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309-325. Rudd PM, Joao HC, Coghill E, Fiten P, Saunders MR, Opdenakker G, Dwek RA. 1994. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17-22. Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller R Jr, Warren A, Kilburn DG. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267:6743-6749. Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273-279. Reinikainen T, Teleman O, Teeri TT. 1995. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22:392-403. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685. Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT. 1992. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14:475-482. Tomme P, McRae S, Wood TM, Claeyssens M. 1988. Chromatographic separation of cellulolytic enzymes. Meth Enzymol 160:187-192. Cregg JM, Vedvick TS, Raschke WC. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905-909. van Tilbeurgh H, Claeyssens M. 1985. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 187:283-288. Penttilä M, André L, Lehtovaara P, Bailey M, Teeri T, Knowles J. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103-112. Divne C, Ståhlberg J, Reinikainen T, Ruohonen L, Petterson G, Knowles JKC, Teeri TT, Jones A. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524-528. Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Velicelebi G, Harpold MM, Thill GP. 1989. Continuous production of a novel lysozyme via secretion from the yeast, Pichia pastoris. Bio/Technology 7:160-164. Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853-859. Imperiali B, Rickert KW. 1995. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA 92:97-101. Margolles-Clark E, Hayes CK, Harman GE, Penttilä M. 1996. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol 62:2145-2151. Laymon RA, Adney WS, Mohagheghi A, Himmel ME, Thomas SR. 1996. Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotechnol 57/58:389-397. Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH. 1998. Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256:119-127. von Ossowski I, Teeri T, Kalkkinen N, Oker-Blom C. 1997. Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun 233:25-29. Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467. Kukuruzinska MA, Bergh MLE, Jackson BL. 1987. Protein glycosylation in yeast. Annu Rev Biochem 56:915-944. Harjunpää V, Helin J, Koivula A, Siika-aho M, Drakenberg T. 1999. A comparative study of two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta-mannanase, Man5A. FEBS Lett 443:149-153. Alder AJ, Greenfield NJ, Fasman GD. 1973. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Meth Enzymol 27:675-735. Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. 1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37-44. 1987; 56 1995; 92 1989; 7 1992; 267 1997; 233 1995; 259 1999; 443 1992; 14 1972; 47 1998; 275 1998; 256 1995; 3 1995; 6 1985; 187 1997; 245 1994; 265 1991; 200 1970; 277 1988; 160 1993; 11 1997; 15 1997; 186 1996; 57/58 1995; 22 1973; 27 1987 1994; 33 1996; 62 1977; 74 1988; 63 1996; 8 |
References_xml | – reference: von Ossowski I, Teeri T, Kalkkinen N, Oker-Blom C. 1997. Expression of a fungal cellobiohydrolase in insect cells. Biochem Biophys Res Commun 233:25-29. – reference: Harjunpää V, Helin J, Koivula A, Siika-aho M, Drakenberg T. 1999. A comparative study of two retaining enzymes of Trichoderma reesei: transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta-mannanase, Man5A. FEBS Lett 443:149-153. – reference: Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277:680-685. – reference: Penttilä M, André L, Lehtovaara P, Bailey M, Teeri T, Knowles J. 1988. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene 63:103-112. – reference: Sanger F, Nicklen S, Coulson AR. 1977. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467. – reference: Tomme P, McRae S, Wood TM, Claeyssens M. 1988. Chromatographic separation of cellulolytic enzymes. Meth Enzymol 160:187-192. – reference: Aho S, Olkkonen V, Jalava T, Paloheimo M, Bühler R, Niku-Paavola M, Bamford DH, Korhola M. 1991. Monoclonal antibodies against core and cellulose-binding domains of Trichoderma reesei cellobiohydrolases I and II and endoglucanase I. Eur J Biochem 200:643-649. – reference: Maras M, de Bruyn A, Scharml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R. 1997. Structural characterization of N-linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus Trichoderma reesei RUTC 30. Eur J Biochem 245:617-625. – reference: Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH. 1998. Modified glycosylation of cellobiohydrolase I from a high cellulase-producing mutant strain of Trichoderma reesei. Eur J Biochem 256:119-127. – reference: Margolles-Clark E, Hayes CK, Harman GE, Penttilä M. 1996. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol 62:2145-2151. – reference: Cregg JM, Vedvick TS, Raschke WC. 1993. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905-909. – reference: Alder AJ, Greenfield NJ, Fasman GD. 1973. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Meth Enzymol 27:675-735. – reference: Divne C, Ståhlberg J, Teeri TT, Jones A. 1998. High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309-325. – reference: Teeri TT. 1997. Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160-167. – reference: Waterham HR, Digan ME, Koutz PJ, Lair SV, Cregg JM. 1997. Isolation of the Pichia pastoris glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene 186:37-44. – reference: Reinikainen T, Teleman O, Teeri TT. 1995. Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from Trichoderma reesei. Proteins 22:392-403. – reference: van Tilbeurgh H, Claeyssens M. 1985. Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates. FEBS Lett 187:283-288. – reference: Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal Biochem 47:273-279. – reference: Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller R Jr, Warren A, Kilburn DG. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267:6743-6749. – reference: Eftink MR. 1995. Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins. Meth Enzymol 259:487-512. – reference: Romanos M. 1995. Advances in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol 6:527-533. – reference: Imperiali B, Rickert KW. 1995. Conformational implications of asparagine-linked glycosylation. Proc Natl Acad Sci USA 92:97-101. – reference: Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3:853-859. – reference: Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, Knowles JKC, Teeri TT. 1992. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins 14:475-482. – reference: Digan ME, Lair SV, Brierley RA, Siegel RS, Williams ME, Ellis SB, Kellaris PA, Provow SA, Craig WS, Velicelebi G, Harpold MM, Thill GP. 1989. Continuous production of a novel lysozyme via secretion from the yeast, Pichia pastoris. Bio/Technology 7:160-164. – reference: Divne C, Ståhlberg J, Reinikainen T, Ruohonen L, Petterson G, Knowles JKC, Teeri TT, Jones A. 1994. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science 265:524-528. – reference: Koivula A, Lappalainen A, Virtanen S, Mäntylä AL, Suominen P, Teeri TT. 1996. Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant Trichoderma reesei strains devoid of major endoglucanase genes. Prot Expr Purif 8:391-400. – reference: Kukuruzinska MA, Bergh MLE, Jackson BL. 1987. Protein glycosylation in yeast. Annu Rev Biochem 56:915-944. – reference: Laymon RA, Adney WS, Mohagheghi A, Himmel ME, Thomas SR. 1996. Cloning and expression of full-length Trichoderma reesei cellobiohydrolase I cDNAs in Escherichia coli. Appl Biochem Biotechnol 57/58:389-397. – reference: Rudd PM, Joao HC, Coghill E, Fiten P, Saunders MR, Opdenakker G, Dwek RA. 1994. Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17-22. – volume: 62 start-page: 2145 year: 1996 end-page: 2151 article-title: Improved production of endochitinase by expression in publication-title: Appl Environ Microbiol – volume: 15 start-page: 160 year: 1997 end-page: 167 article-title: Crystalline cellulose degradation: new insight into the function of cellobiohydrolases publication-title: Trends Biotechnol – volume: 74 start-page: 5463 year: 1977 end-page: 5467 article-title: DNA sequencing with chain‐terminating inhibitors publication-title: Proc Natl Acad Sci USA – volume: 245 start-page: 617 year: 1997 end-page: 625 article-title: Structural characterization of N‐linked oligosaccharides from cellobiohydrolase I secreted by the filamentous fungus RUTC 30 publication-title: Eur J Biochem – year: 1987 – volume: 275 start-page: 309 year: 1998 end-page: 325 article-title: High‐resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from publication-title: J Mol Biol – volume: 160 start-page: 187 year: 1988 end-page: 192 article-title: Chromatographic separation of cellulolytic enzymes publication-title: Meth Enzymol – volume: 56 start-page: 915 year: 1987 end-page: 944 article-title: Protein glycosylation in yeast publication-title: Annu Rev Biochem – volume: 57/58 start-page: 389 year: 1996 end-page: 397 article-title: Cloning and expression of full‐length cellobiohydrolase I cDNAs in publication-title: Appl Biochem Biotechnol – volume: 7 start-page: 160 year: 1989 end-page: 164 article-title: Continuous production of a novel lysozyme via secretion from the yeast, publication-title: Bio/Technology – volume: 14 start-page: 475 year: 1992 end-page: 482 article-title: Investigation of the function of mutated cellulose‐binding domains of cellobiohydrolase I publication-title: Proteins – volume: 92 start-page: 97 year: 1995 end-page: 101 article-title: Conformational implications of asparagine‐linked glycosylation publication-title: Proc Natl Acad Sci USA – volume: 8 start-page: 391 year: 1996 end-page: 400 article-title: Immunoaffinity chromatographic purification of cellobiohydrolase II mutants from recombinant strains devoid of major endoglucanase genes publication-title: Prot Expr Purif – volume: 200 start-page: 643 year: 1991 end-page: 649 article-title: Monoclonal antibodies against core and cellulose‐binding domains of cellobiohydrolases I and II and endoglucanase I publication-title: Eur J Biochem – volume: 277 start-page: 680 year: 1970 end-page: 685 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature – volume: 187 start-page: 283 year: 1985 end-page: 288 article-title: Detection and differentiation of cellulase components using low molecular mass fluorogenic substrates publication-title: FEBS Lett – volume: 22 start-page: 392 year: 1995 end-page: 403 article-title: Effects of pH and high ionic strength on the adsorption and activity of native and mutated cellobiohydrolase I from publication-title: Proteins – volume: 186 start-page: 37 year: 1997 end-page: 44 article-title: Isolation of the glyceraldehyde‐3‐phosphate dehydrogenase gene and regulation and use of its promoter publication-title: Gene – volume: 443 start-page: 149 year: 1999 end-page: 153 article-title: A comparative study of two retaining enzymes of transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the beta‐mannanase, Man5A publication-title: FEBS Lett – volume: 47 start-page: 273 year: 1972 end-page: 279 article-title: A new reaction for colorimetric determination of carbohydrates publication-title: Anal Biochem – volume: 259 start-page: 487 year: 1995 end-page: 512 article-title: Use of multiple spectroscopic methods to monitor equilibrium unfolding of proteins publication-title: Meth Enzymol – volume: 267 start-page: 6743 year: 1992 end-page: 6749 article-title: The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose publication-title: J Biol Chem – volume: 33 start-page: 17 year: 1994 end-page: 22 article-title: Glycoforms modify the dynamic stability and functional activity of an enzyme publication-title: Biochemistry – volume: 27 start-page: 675 year: 1973 end-page: 735 article-title: Circular dichroism and optical rotatory dispersion of proteins and polypeptides publication-title: Meth Enzymol – volume: 11 start-page: 905 year: 1993 end-page: 909 article-title: Recent advances in the expression of foreign genes in publication-title: Bio/Technology – volume: 63 start-page: 103 year: 1988 end-page: 112 article-title: Efficient secretion of two fungal cellobiohydrolases by publication-title: Gene – volume: 6 start-page: 527 year: 1995 end-page: 533 article-title: Advances in the use of for high‐level gene expression publication-title: Curr Opin Biotechnol – volume: 265 start-page: 524 year: 1994 end-page: 528 article-title: The three‐dimensional crystal structure of the catalytic core of cellobiohydrolase I from publication-title: Science – volume: 3 start-page: 853 year: 1995 end-page: 859 article-title: Structures and mechanisms of glycosyl hydrolases publication-title: Structure – volume: 256 start-page: 119 year: 1998 end-page: 127 article-title: Modified glycosylation of cellobiohydrolase I from a high cellulase‐producing mutant strain of publication-title: Eur J Biochem – volume: 233 start-page: 25 year: 1997 end-page: 29 article-title: Expression of a fungal cellobiohydrolase in insect cells publication-title: Biochem Biophys Res Commun |
SSID | ssj0007866 |
Score | 1.606752 |
Snippet | Heterologous expression of T. reesei cellobiohydrolase Cel7A in a methylotrophic yeast Pichia pastoris was tested both under the P. pastoris alcohol oxidase... |
SourceID | proquest pubmed pascalfrancis wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 486 |
SubjectTerms | activity screening Biological and medical sciences Biotechnology Biotechnology - methods Catalyst activity Cel7A protein cellobiohydrolase cellobiose Cellulase Cellulase - isolation & purification Cellulase - metabolism Cellulase - secretion cellulolytic microorganisms Cellulose Cellulose - metabolism Cellulose 1,4-beta-Cellobiosidase enzymology expression Fermentation Fermenters Fundamental and applied biological sciences. Psychology gene expression Gene Expression Regulation, Enzymologic Gene Expression Regulation, Fungal Genetic engineering Genetic technics Genetic Testing Genetic Testing - methods genetics glyceraldehyde-3-phosphate dehydrogenase glycosidases Glycosylation Hot Temperature isolation & purification metabolism methods Methods. Procedures. Technologies Modification of gene expression level Pichia Pichia - enzymology Pichia - genetics Pichia pastoris Promoter Regions, Genetic Promoter Regions, Genetic - genetics Saccharomyces cerevisiae secretion Solubility stability Thermodynamic stability Transformation, Genetic Trichoderma Trichoderma - enzymology Trichoderma - genetics Trichoderma reesei Yeast |
Title | Characterization of Trichoderma reesei cellobiohydrolase Cel7A secreted from Pichia pastoris using two different promoters |
URI | https://api.istex.fr/ark:/67375/WNG-K1SXMZKZ-P/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2F1097-0290%2820000905%2969%3A5%3C486%3A%3AAID-BIT3%3E3.0.CO%3B2-N https://www.ncbi.nlm.nih.gov/pubmed/10898858 https://www.proquest.com/docview/17680385 https://www.proquest.com/docview/21462035 https://www.proquest.com/docview/49287473 https://www.proquest.com/docview/71248231 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF5VlXgdeKQ8AhT2QCo4OLV3vbt2QEiJaelDTauSiqiX1dpet1VpUsWJoP0b_GFm7DhpEeWEkHJwkk0mGn9ef5OZ-YaQNymP3QB4vWOUZxw_8IVj_MA6wroyEzKTSYr9zjtduXHgb_VFf4GMql6YUh9i9ocbXhnFfo0XuInz1bloKKZOHZeFLjAxVlAdV0D0LEM4taLBIz-QcASP9uYnp7PZ4w2-xptuM9pt8A5zurBtY4kX8qj9ueKUCsr0JgbaXITsNgmmJldnBt9W5t7JsCU-gKFWqzLysTTxHgwA3cUz9QPLLU0OHs_KURl_4rLXqXFxb1t_QH5WXilLWk6bk3HcTC5_E4z8v257SO5PqTJtl9h-RBbsoEaW2gMzHp5d0BVaFK8WWYEaudWpju5E1Qi7Grl3RW1xiVxGM3HqsveUDjPag_vAMc6DOzN0ZG1uTyjmMlCc6vgiHUHgn1sa2W-qTXNk2EDQKbbk0L0TrBKn4HOUWckpNhAc0fH3Ia1mzozpeVHrCAT7MTlYX-tFG8509IRzBHyWOyI23AcmlRpgVIHyMxbImKnEy0zichszE6cMte4UkxkqOwGvy3xmfS9hiQ0kf0IWB8OBfUaosVKx1DIZcgiFY2NCFmduolQIr3tM1clKARN9XsqLaDM6xWo7JfTX7me97X3p7xxuH-q9Olm-hqPZBzycAup5dfK6wpUGP6OzzMAOJ7n2IKbEDPDNK3C8O3P5X1b4IU5GUPzmFQqoIiaV6-RpCer5D4TtIAhEUCdbBTSvvIGa2WxaBgGg1BUktQy10ABGDTjUiEPNtaujXc10t3j-_F9-2Qtyt9RYCB1XvCSL49HELgPbHMeviv3hF8DUZNQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF6VIigceLQ8ApTugVbl4NTe9e7aASElpiV9pRWkIupltXbWbVWaVHEiaH8HP5gZO05aRDkhpByceO2Jxp_X33hmvyHkTZfHbgC83jHKM44f-MIxfmAdYV2ZCpnKpIvrnXdbsnngb3VEZ4Zk5VqYQh9i8sIN74x8vsYbHF9Ir01VQzF36rgsdIGKsZzruALCZxnCtRXLPPIDCVvwqW9-dBqbbb7M13nVrUZ7y7zBnNYtchsbgedx2Oep5pQKigQnhtpchOwuCcY21yYWV0t7b2VYE-_BUq1WWvlQ2HgHFoDw4rX6gQWXJgOfp0WzjD-x2evkOH-6bTwkP0u_FEUtp9XRMK4ml79JRv5nxz0iD8ZsmdYLeD8mM7Y3TxbqPTPsn13QFZrXr-aJgXlyp1FuzUVlF7t5cv-K4OICuYwm-tTF8lPaT2kbHgXH2BLuzNCBtZk9oZjOQH2q44vuAGL_zNLIflN1miHJBo5OcVUO3T_BQnEKTkellYziGoIjOvzep2XbmSE9z8sdgWM_IQcb6-2o6Yy7TzhHQGm5I2LDfSBTXQOkKlB-ygIZM5V4qUlcbmNm4i5DuTvFZIriTkDtUp9Z30tYYgPJn5LZXr9nnxNqrFSsa5kMOUTDsTEhi1M3USqE3z2mKmQlx4k-LxRGtBmcYsGdEvpr65Pe9r50dg-3D_V-hSxeA9LkAA8bgXpehSyVwNLgZ3SW6dn-KNMehJWYBL55BHZ4Zy7_ywg_xOYIit88QgFbxLxyhTwrUD39gzAjBIEIKmQrx-aVHSibzcaVEABKXUJSy1ALDWDUgEONONRcuzra00y38u8v_uXJlshcs727o3c2W9svyb1CciF0XPGKzA4HI7sI5HMYv84ni18J6Wjv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwvV1Lb9NAEF6VIoo48Gh5BCjdA63g4NTe9e7aASElbksfNK2gFVEvq7W9bqvSJIpdQfs3-MPM2HHaIsoJIeXgJJuMNf7W_mZn9htCXqc8dgPg9Y5RnnH8wBeO8QPrCOvKTMhMJinud97uyvV9f7MnelNkVO-FqfQhJgtuODPK-zVO8GGaLV-KhmLq1HFZ6AITYyXVcQVEzzKESysWeeQHEo7g1d5YcTobe3yRr_Km24x2FnmHOd1b5LYv4TyRSH2-lJxSQZXfxEibi5DNkGBsc3li8U1t760MW-I9WGq1aisfKhvvwALwXbxUP7De0uTg8qzqlfEnMnudG5cPt7UH5Gftlqqm5aR5VsTN5OI3xcj_67eH5P6YK9N2Be5HZMr2Z8lcu2-Kwek5XaJl9WqZFpgldzr10d2o7mE3S-5dkVucIxfRRJ262nxKBxndgwfBETaEOzV0ZG1ujykmM1Cd6ug8HUHkn1sa2W-qTXOk2MDQKe7JobvHWCZOweeos5JT3EFwSIvvA1o3nSnosCx2BIb9mOyvre5F686494RzCISWOyI23AcqlRqgVIHyMxbImKnEy0zichszE6cMxe4UkxlKOwGxy3xmfS9hiQ0kf0Km-4O-fUaosVKx1DIZcoiFY2NCFmduolQIn3tMNchSCRM9rPRFtBmdYLmdEvpr96Pe8r70tg-2DvRug8xfw9HkBx62AfW8BlmocaXBz-gs07eDs1x7EFRiCvjmEdjfnbn8LyP8EFsjKH7zCAVcEbPKDfK0AvXlCcI8CwIRNMhmCc0rX6BoNhvXQQAodQ1JLUMtNIBRAw414lBz7epoRzPdLd8__5d_tkBmdlfW9KeN7tYLXLvBdbbQccVLMl2Mzuw8MM8iflXeKn4Be55nqw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+Trichoderma+reesei+cellobiohydrolase+Cel7A+secreted+from+Pichia+pastoris+using+two+different+promoters&rft.jtitle=Biotechnology+and+bioengineering&rft.au=Boer%2C+H&rft.au=Teeri%2C+T+T&rft.au=Koivula%2C+A&rft.date=2000-09-05&rft.issn=0006-3592&rft.volume=69&rft.issue=5+p.486-494&rft.spage=486&rft.epage=494&rft_id=info:doi/10.1002%2F1097-0290%2820000905%2969%3A5%3C486%3A%3AAID-BIT3%3E3.0.CO%3B2-N&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3592&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3592&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3592&client=summon |