Enhancing Electroreduction CO2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks

Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the conc...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 6; pp. e2305199 - n/a
Main Authors Shao, Ping, Wan, Yu‐Mei, Yi, Luocai, Chen, Shumei, Zhang, Hai‐Xia, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.02.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF‐144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF‐144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3− on the pore surfaces, the Cu@BIF‐144(Zn) catalyst exhibits a perfect synergetic effect between the BIF‐144(Zn) host and the Cu NP guest during CO2RR. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products, with the maximum FECH4 value of 41.8% at −1.6 V and FEC2H4 value of 12.9% at −1.5 V versus RHE. The Cu@BIF‐144(Zn) tandem catalyst with CO‐rich microenvironment generated by the Zn catalytic center in the BIF‐144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2RR to multi‐electron‐transfer products. A tandem catalyst of Cu@BIF‐144(Zn) is successfully synthesized with uniformly ultrasmall Cu NPs located near the Zn sites according to the BH(im)3− bridge, by a solution impregnation and in situ electrochemical transformation. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts highly improve the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products compared to commercial Cu NPs and BIF‐144(Zn) alone.
AbstractList Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF‐144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF‐144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3− on the pore surfaces, the Cu@BIF‐144(Zn) catalyst exhibits a perfect synergetic effect between the BIF‐144(Zn) host and the Cu NP guest during CO2RR. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products, with the maximum FECH4 value of 41.8% at −1.6 V and FEC2H4 value of 12.9% at −1.5 V versus RHE. The Cu@BIF‐144(Zn) tandem catalyst with CO‐rich microenvironment generated by the Zn catalytic center in the BIF‐144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2RR to multi‐electron‐transfer products. A tandem catalyst of Cu@BIF‐144(Zn) is successfully synthesized with uniformly ultrasmall Cu NPs located near the Zn sites according to the BH(im)3− bridge, by a solution impregnation and in situ electrochemical transformation. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts highly improve the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products compared to commercial Cu NPs and BIF‐144(Zn) alone.
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.
Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF‐144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF‐144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3− on the pore surfaces, the Cu@BIF‐144(Zn) catalyst exhibits a perfect synergetic effect between the BIF‐144(Zn) host and the Cu NP guest during CO2RR. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products, with the maximum FECH4 value of 41.8% at −1.6 V and FEC2H4 value of 12.9% at −1.5 V versus RHE. The Cu@BIF‐144(Zn) tandem catalyst with CO‐rich microenvironment generated by the Zn catalytic center in the BIF‐144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2RR to multi‐electron‐transfer products.
Author Yi, Luocai
Zhang, Hai‐Xia
Shao, Ping
Zhang, Jian
Wan, Yu‐Mei
Chen, Shumei
Author_xml – sequence: 1
  givenname: Ping
  surname: Shao
  fullname: Shao, Ping
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Yu‐Mei
  surname: Wan
  fullname: Wan, Yu‐Mei
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Luocai
  surname: Yi
  fullname: Yi, Luocai
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Shumei
  surname: Chen
  fullname: Chen, Shumei
  email: csm@fzu.edu.cn
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Hai‐Xia
  orcidid: 0000-0002-1521-4250
  surname: Zhang
  fullname: Zhang, Hai‐Xia
  email: zhanghaixia@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jian
  surname: Zhang
  fullname: Zhang, Jian
  organization: Chinese Academy of Sciences
BookMark eNpdkUtrGzEURkVxoE6abdaCbrqxq4fHGi1bYzcG5wFJ1uLqMYkSjeRKMwnTZX95J7j1oqt7Pzh83Ms5RZOYokPogpI5JYR9LW0Ic0YYJxWV8gOa0iXls2XN5OS4U_IRnZbyTAinbCGm6Pc6PkE0Pj7idXCmyyk725vOp4hXNwx3CV8ONicDWadY8KsHfA_RuvYfb6CDMBRfsB7wNpqU9ynDoaDH17cF-4i_pzzmbest_EoBOoc3GVr3lvJL-YROGgjFnf-dZ-hhs75fXc52Nz-2q2-72SNnRM44VMBrwrUTtdaG2cbQCozgQgs9PmMtbaQQrKGVFaRuqgbkgpNG8yVQC5qfoS-H3n1OP3tXOtX6YlwIEF3qi2K1IFLWfFGP6Of_0OfU5zhep5hknFZELKuRkgfqzQc3qH32LeRBUaLefah3H-roQ91d7XbHxP8AfNmFEg
ContentType Journal Article
Copyright 2023 Wiley‐VCH GmbH
2024 Wiley‐VCH GmbH
2023 Wiley-VCH GmbH.
Copyright_xml – notice: 2023 Wiley‐VCH GmbH
– notice: 2024 Wiley‐VCH GmbH
– notice: 2023 Wiley-VCH GmbH.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.202305199
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202305199
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22275192; 21935010; 21773242
– fundername: National Key Research and Development Program of China
  funderid: 2021YFA1501500; 2018YFA0208600
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
EBD
EMOBN
JG9
L7M
SV3
7X8
ID FETCH-LOGICAL-g3209-3a5a3803be78bbc2dfc15ac737b7b124dd1f9772f15d708f5fa9430fb36a1dab3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Fri Jul 11 07:16:48 EDT 2025
Tue Aug 12 12:11:06 EDT 2025
Wed Jan 22 16:16:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3209-3a5a3803be78bbc2dfc15ac737b7b124dd1f9772f15d708f5fa9430fb36a1dab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1521-4250
PQID 2923150765
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_miscellaneous_2870998348
proquest_journals_2923150765
wiley_primary_10_1002_smll_202305199_SMLL202305199
PublicationCentury 2000
PublicationDate 2024-02-01
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2023 2022 2022; 3 2 14
2020; 4
2020 2020 2015 2021 2020 2021; 11 142 5 143 142 11
2020 2022 2016 2022 2021; 59 15 16 61 143
2022 2021 2021; 61 11 57
2021 2019; 143 3
2017 2021 2018 2022 2018 2022 2019; 46 2 30 144 57 61 58
2020; 120
2019 2020; 10 32
2020 2022 2020 2018 2021 2017 2016 2020; 49 8 40 9 11 7 6 59
2022; 13
2021 2021 2019 2020; 13 60 58 59
2023; 614
2015 2018 2022 2021; 137 18 32 4
2021 2023 2022 2020; 60 13 61 59
2019; 141
References_xml – volume: 59 15 16 61 143
  start-page: 1925 7861 7194 7242
  year: 2020 2022 2016 2022 2021
  publication-title: Angew. Chem., Int. Ed. Nano Res. Cryst. Growth Des. Angew. Chem., Int. Ed. J. Am. Chem. Soc.
– volume: 11 142 5 143 142 11
  start-page: 1409 6302 8679 690 7350
  year: 2020 2020 2015 2021 2020 2021
  publication-title: Nat. Commun. J. Am. Chem. Soc. ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Catal.
– volume: 141
  start-page: 2490
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 8536
  year: 2020
  publication-title: Chem. Rev.
– volume: 614
  start-page: 262
  year: 2023
  publication-title: Nature
– volume: 61 11 57
  year: 2022 2021 2021
  publication-title: Angew. Chem., Int. Ed. ACS Catal Chem. Commun.
– volume: 49 8 40 9 11 7 6 59
  start-page: 6632 1506 156
  year: 2020 2022 2020 2018 2021 2017 2016 2020
  publication-title: Chem. Soc. Rev. ACS Cent. Sci. J Energy Chem Adv. Energy Mater. Adv. Energy Mater. Adv. Energy Mater. Adv. Energy Mater. Angew. Chem., Int. Ed.
– volume: 3 2 14
  start-page: 235 504 8896
  year: 2023 2022 2022
  publication-title: SusMat SusMat ACS Appl. Mater. Interfaces
– volume: 137 18 32 4
  start-page: 2189 1034
  year: 2015 2018 2022 2021
  publication-title: J. Am. Chem. Soc. Nano Lett. Adv. Funct. Mater. ACS Appl. Energy Mater.
– volume: 60 13 61 59
  year: 2021 2023 2022 2020
  publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 13
  start-page: 2591
  year: 2022
  publication-title: Nat. Commun.
– volume: 143 3
  start-page: 8829 75
  year: 2021 2019
  publication-title: J. Am. Chem. Soc. Nat. Catal.
– volume: 10 32
  start-page: 3462
  year: 2019 2020
  publication-title: Nat. Commun. Adv. Mater.
– volume: 4
  start-page: 1688
  year: 2020
  publication-title: Joule
– volume: 13 60 58 59
  year: 2021 2021 2019 2020
  publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
– volume: 46 2 30 144 57 61 58
  start-page: 4774 327 1103 4041
  year: 2017 2021 2018 2022 2018 2022 2019
  publication-title: Chem. Soc. Rev. Acc Mater Res Adv. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed.
SSID ssj0031247
Score 2.513765
Snippet Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more...
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2305199
SubjectTerms Boron
boron imidazolate frameworks
Carbon dioxide
Catalysts
Chemical reduction
Copper
Cu nanoparticles
electrocatalytic CO2 reduction reaction
Electrochemistry
multi‐electron‐transfer products
Nanoparticles
tandem catalysts
Zinc
Title Enhancing Electroreduction CO2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202305199
https://www.proquest.com/docview/2923150765
https://www.proquest.com/docview/2870998348
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MJz34Nq6v1MQrCi2FetTNblbjKz4Sb6SlrW50WbOwJnr0lzsDC64e9QSENoF8M51v2ulXQvZFrHD9L_KcttwLjUw9zfSRB_mQDX0NATPGjcIXl1HvPjx7EA9Tu_grfYhmwg09oxyv0cGVzg-_RUPzwQsuHQCFBhKCO_iwYAtZ0U2jH8UheJWnq0DM8lB4q1Zt9Nnhz-4_-OU0Sy3DTHeRqPoDq-qS54NxoQ_Sj1_ajf_5gyWyMOGg9LgymmUyY7MVMj-lTLhKPjvZEypxZI-0Ux2UM0KNV0SRtq8YLYa0924g-KmRBrulb31F73A-elC3L-eFUO6E6nd6imqZrxNro-0xvbzOaT-jJ6ifQE8HfaM-IMcuLO3WxWL5Grnvdu7aPW9yXIP3yBlWUCihuPS5trHUOmXGpYFQKaCtYw1IGBM4YJvMBcLEvnTCKdR-d5pHKjBK83Uymw0zu0FoLJ1SYWiOAgYXF0oeCCslJFssskb4LbJdw5VMfC5PGHJVoLeRaJG95jV4Cy6BqMwOx9AGhidIMHkoW4SV2CSvlapHUuk3swRRSRpUktuL8_PmafMvnbbIHNyHVan3NpktRmO7A0ym0LultX4BEyHuHg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcgAO5S1CCywSHN3au37lwIGmiRKaBASp1Ju7690tEY1TxQkoPfKP-lf4Rcz4RcsRqQdOlu1da7Wexze7s98AvAkiSft_oWOVEY6v49RRXLUdjIeM7yp0mBEdFB6Nw_6R_-E4ON6Ay_osTMkP0Sy4kWYU9poUnBak9_6whuazM9o7QAyNKKRd5VUemvUPjNryd4MD_MVvOe91J52-UxUWcE4Fp71-GUgRu0KZKFYq5dqmXiBTHJeKFDo8rT2LuIhbL9CRG9vASmIpt0qE0tNSCfzuLbhNZcSJrv_gc8NYJbB3Uc8FvaRDVF81T6TL966P9xqivYqLC8fWuw-_6ikp81m-7a6Waje9-Ist8r-aswewVcFs9r7Ui4ewYbJHcO8K-eJj-NnNvhLZSHbKumUtoAXR2JKgss5HzpZz1l9r9O9yoVA12fepZBNacp_V7YulL2J0YWrNBkQIel4pFOus2PhTzqYZ2yeKCDaYTbW8mJ8hsme9Oh8ufwJHNzIJT2Ezm2fmGbAotlL6vm57HC_Wj4UXmDjGeJKHRgduC3Zq-Ugqs5InnOA4IvgwaMHr5jUaBNrlkZmZr7ANWmCMoYUft4AXwpCcl8QlSUlRzROSgqSRguTLaDhs7p7_S6dXcKc_GQ2T4WB8uA138blfZrbvwOZysTIvELgt1ctCVRic3LSc_QbNbE19
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE4UJ5ioYCR4Jg2cZzHHjiUfWiXbpcKWqm3YMd2WdHNrja7oO2xv6h_hX_ETF60HJF64BQlsSPLmfF84xl_A_A2iCTF_0LHKuM7Qsepo7hqO-gPGeEqNJgRHRQ-GIeDY_HxJDjZgMv6LEzJD9FsuJFmFOs1Kfhc290_pKH59IxCBwihEYS0q7TKfbP-iU5b_n7YxT_8jvN-76gzcKq6As6pzynULwPpx66vTBQrlXJtUy-QKQ5LRQrtndaeRVjErRfoyI1tYCWRlFvlh9LTUvn43VtwW4Rum4pFdD83hFU-9i7KuaCRdIjpq6aJdPnu9fFeA7RXYXFh1_pb8KuekTKd5fvOaql20vO_yCL_pyl7APcrkM32Sq14CBsmewT3rlAvPoaLXvaNqEayU9YrKwEtiMSWxJR1PnG2nLHBWqN1lwuFisl-TCQ7og33ad2-2PgiPhem1mxIdKDzSp1YZ8XGhzmbZOwDEUSw4XSi5fnsDHE969fZcPkTOL6RSXgKm9ksM8-ARbGVUgjd9jherIh9LzBxjN4kD40O3BZs1-KRVItKnnAC44jfw6AFb5rXuBxQjEdmZrbCNrj-ogfti7gFvJCFZF7SliQlQTVPSAqSRgqSLwejUXP3_F86vYY7h91-MhqO91_AXXwsyrT2bdhcLlbmJaK2pXpVKAqDrzctZr8BgEBMLA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Electroreduction+CO2+to+Hydrocarbons+via+Tandem+Electrocatalysis+by+Incorporation+Cu+NPs+in+Boron+Imidazolate+Frameworks&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Shao%2C+Ping&rft.au=Wan%2C+Yu%E2%80%90Mei&rft.au=Yi%2C+Luocai&rft.au=Chen%2C+Shumei&rft.date=2024-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202305199&rft.externalDBID=10.1002%252Fsmll.202305199&rft.externalDocID=SMLL202305199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon