Enhancing Electroreduction CO2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks
Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the conc...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 20; no. 6; pp. e2305199 - n/a |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.02.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF‐144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF‐144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3− on the pore surfaces, the Cu@BIF‐144(Zn) catalyst exhibits a perfect synergetic effect between the BIF‐144(Zn) host and the Cu NP guest during CO2RR. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products, with the maximum FECH4 value of 41.8% at −1.6 V and FEC2H4 value of 12.9% at −1.5 V versus RHE. The Cu@BIF‐144(Zn) tandem catalyst with CO‐rich microenvironment generated by the Zn catalytic center in the BIF‐144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2RR to multi‐electron‐transfer products.
A tandem catalyst of Cu@BIF‐144(Zn) is successfully synthesized with uniformly ultrasmall Cu NPs located near the Zn sites according to the BH(im)3− bridge, by a solution impregnation and in situ electrochemical transformation. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts highly improve the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products compared to commercial Cu NPs and BIF‐144(Zn) alone. |
---|---|
AbstractList | Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF‐144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF‐144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3− on the pore surfaces, the Cu@BIF‐144(Zn) catalyst exhibits a perfect synergetic effect between the BIF‐144(Zn) host and the Cu NP guest during CO2RR. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products, with the maximum FECH4 value of 41.8% at −1.6 V and FEC2H4 value of 12.9% at −1.5 V versus RHE. The Cu@BIF‐144(Zn) tandem catalyst with CO‐rich microenvironment generated by the Zn catalytic center in the BIF‐144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2RR to multi‐electron‐transfer products.
A tandem catalyst of Cu@BIF‐144(Zn) is successfully synthesized with uniformly ultrasmall Cu NPs located near the Zn sites according to the BH(im)3− bridge, by a solution impregnation and in situ electrochemical transformation. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts highly improve the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products compared to commercial Cu NPs and BIF‐144(Zn) alone. Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products. Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi‐component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF‐144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF‐144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3− on the pore surfaces, the Cu@BIF‐144(Zn) catalyst exhibits a perfect synergetic effect between the BIF‐144(Zn) host and the Cu NP guest during CO2RR. Electrochemistry results show that Cu@BIF‐144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi‐electron‐transfer products, with the maximum FECH4 value of 41.8% at −1.6 V and FEC2H4 value of 12.9% at −1.5 V versus RHE. The Cu@BIF‐144(Zn) tandem catalyst with CO‐rich microenvironment generated by the Zn catalytic center in the BIF‐144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2RR to multi‐electron‐transfer products. |
Author | Yi, Luocai Zhang, Hai‐Xia Shao, Ping Zhang, Jian Wan, Yu‐Mei Chen, Shumei |
Author_xml | – sequence: 1 givenname: Ping surname: Shao fullname: Shao, Ping organization: Chinese Academy of Sciences – sequence: 2 givenname: Yu‐Mei surname: Wan fullname: Wan, Yu‐Mei organization: Chinese Academy of Sciences – sequence: 3 givenname: Luocai surname: Yi fullname: Yi, Luocai organization: Chinese Academy of Sciences – sequence: 4 givenname: Shumei surname: Chen fullname: Chen, Shumei email: csm@fzu.edu.cn organization: Chinese Academy of Sciences – sequence: 5 givenname: Hai‐Xia orcidid: 0000-0002-1521-4250 surname: Zhang fullname: Zhang, Hai‐Xia email: zhanghaixia@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 6 givenname: Jian surname: Zhang fullname: Zhang, Jian organization: Chinese Academy of Sciences |
BookMark | eNpdkUtrGzEURkVxoE6abdaCbrqxq4fHGi1bYzcG5wFJ1uLqMYkSjeRKMwnTZX95J7j1oqt7Pzh83Ms5RZOYokPogpI5JYR9LW0Ic0YYJxWV8gOa0iXls2XN5OS4U_IRnZbyTAinbCGm6Pc6PkE0Pj7idXCmyyk725vOp4hXNwx3CV8ONicDWadY8KsHfA_RuvYfb6CDMBRfsB7wNpqU9ynDoaDH17cF-4i_pzzmbest_EoBOoc3GVr3lvJL-YROGgjFnf-dZ-hhs75fXc52Nz-2q2-72SNnRM44VMBrwrUTtdaG2cbQCozgQgs9PmMtbaQQrKGVFaRuqgbkgpNG8yVQC5qfoS-H3n1OP3tXOtX6YlwIEF3qi2K1IFLWfFGP6Of_0OfU5zhep5hknFZELKuRkgfqzQc3qH32LeRBUaLefah3H-roQ91d7XbHxP8AfNmFEg |
ContentType | Journal Article |
Copyright | 2023 Wiley‐VCH GmbH 2024 Wiley‐VCH GmbH 2023 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2023 Wiley‐VCH GmbH – notice: 2024 Wiley‐VCH GmbH – notice: 2023 Wiley-VCH GmbH. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.202305199 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL202305199 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22275192; 21935010; 21773242 – fundername: National Key Research and Development Program of China funderid: 2021YFA1501500; 2018YFA0208600 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY EBD EMOBN JG9 L7M SV3 7X8 |
ID | FETCH-LOGICAL-g3209-3a5a3803be78bbc2dfc15ac737b7b124dd1f9772f15d708f5fa9430fb36a1dab3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Fri Jul 11 07:16:48 EDT 2025 Tue Aug 12 12:11:06 EDT 2025 Wed Jan 22 16:16:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3209-3a5a3803be78bbc2dfc15ac737b7b124dd1f9772f15d708f5fa9430fb36a1dab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1521-4250 |
PQID | 2923150765 |
PQPubID | 1046358 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2870998348 proquest_journals_2923150765 wiley_primary_10_1002_smll_202305199_SMLL202305199 |
PublicationCentury | 2000 |
PublicationDate | 2024-02-01 |
PublicationDateYYYYMMDD | 2024-02-01 |
PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2023 2022 2022; 3 2 14 2020; 4 2020 2020 2015 2021 2020 2021; 11 142 5 143 142 11 2020 2022 2016 2022 2021; 59 15 16 61 143 2022 2021 2021; 61 11 57 2021 2019; 143 3 2017 2021 2018 2022 2018 2022 2019; 46 2 30 144 57 61 58 2020; 120 2019 2020; 10 32 2020 2022 2020 2018 2021 2017 2016 2020; 49 8 40 9 11 7 6 59 2022; 13 2021 2021 2019 2020; 13 60 58 59 2023; 614 2015 2018 2022 2021; 137 18 32 4 2021 2023 2022 2020; 60 13 61 59 2019; 141 |
References_xml | – volume: 59 15 16 61 143 start-page: 1925 7861 7194 7242 year: 2020 2022 2016 2022 2021 publication-title: Angew. Chem., Int. Ed. Nano Res. Cryst. Growth Des. Angew. Chem., Int. Ed. J. Am. Chem. Soc. – volume: 11 142 5 143 142 11 start-page: 1409 6302 8679 690 7350 year: 2020 2020 2015 2021 2020 2021 publication-title: Nat. Commun. J. Am. Chem. Soc. ACS Catal. J. Am. Chem. Soc. J. Am. Chem. Soc. ACS Catal. – volume: 141 start-page: 2490 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 120 start-page: 8536 year: 2020 publication-title: Chem. Rev. – volume: 614 start-page: 262 year: 2023 publication-title: Nature – volume: 61 11 57 year: 2022 2021 2021 publication-title: Angew. Chem., Int. Ed. ACS Catal Chem. Commun. – volume: 49 8 40 9 11 7 6 59 start-page: 6632 1506 156 year: 2020 2022 2020 2018 2021 2017 2016 2020 publication-title: Chem. Soc. Rev. ACS Cent. Sci. J Energy Chem Adv. Energy Mater. Adv. Energy Mater. Adv. Energy Mater. Adv. Energy Mater. Angew. Chem., Int. Ed. – volume: 3 2 14 start-page: 235 504 8896 year: 2023 2022 2022 publication-title: SusMat SusMat ACS Appl. Mater. Interfaces – volume: 137 18 32 4 start-page: 2189 1034 year: 2015 2018 2022 2021 publication-title: J. Am. Chem. Soc. Nano Lett. Adv. Funct. Mater. ACS Appl. Energy Mater. – volume: 60 13 61 59 year: 2021 2023 2022 2020 publication-title: Angew. Chem., Int. Ed. Adv. Energy Mater. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 13 start-page: 2591 year: 2022 publication-title: Nat. Commun. – volume: 143 3 start-page: 8829 75 year: 2021 2019 publication-title: J. Am. Chem. Soc. Nat. Catal. – volume: 10 32 start-page: 3462 year: 2019 2020 publication-title: Nat. Commun. Adv. Mater. – volume: 4 start-page: 1688 year: 2020 publication-title: Joule – volume: 13 60 58 59 year: 2021 2021 2019 2020 publication-title: ACS Appl. Mater. Interfaces Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. – volume: 46 2 30 144 57 61 58 start-page: 4774 327 1103 4041 year: 2017 2021 2018 2022 2018 2022 2019 publication-title: Chem. Soc. Rev. Acc Mater Res Adv. Mater. J. Am. Chem. Soc. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. Angew. Chem., Int. Ed. |
SSID | ssj0031247 |
Score | 2.513765 |
Snippet | Due to the higher value of deeply‐reduced products, electrocatalytic CO2 reduction reaction (CO2RR) to multi‐electron‐transfer products has received more... Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2305199 |
SubjectTerms | Boron boron imidazolate frameworks Carbon dioxide Catalysts Chemical reduction Copper Cu nanoparticles electrocatalytic CO2 reduction reaction Electrochemistry multi‐electron‐transfer products Nanoparticles tandem catalysts Zinc |
Title | Enhancing Electroreduction CO2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202305199 https://www.proquest.com/docview/2923150765 https://www.proquest.com/docview/2870998348 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MJz34Nq6v1MQrCi2FetTNblbjKz4Sb6SlrW50WbOwJnr0lzsDC64e9QSENoF8M51v2ulXQvZFrHD9L_KcttwLjUw9zfSRB_mQDX0NATPGjcIXl1HvPjx7EA9Tu_grfYhmwg09oxyv0cGVzg-_RUPzwQsuHQCFBhKCO_iwYAtZ0U2jH8UheJWnq0DM8lB4q1Zt9Nnhz-4_-OU0Sy3DTHeRqPoDq-qS54NxoQ_Sj1_ajf_5gyWyMOGg9LgymmUyY7MVMj-lTLhKPjvZEypxZI-0Ux2UM0KNV0SRtq8YLYa0924g-KmRBrulb31F73A-elC3L-eFUO6E6nd6imqZrxNro-0xvbzOaT-jJ6ifQE8HfaM-IMcuLO3WxWL5Grnvdu7aPW9yXIP3yBlWUCihuPS5trHUOmXGpYFQKaCtYw1IGBM4YJvMBcLEvnTCKdR-d5pHKjBK83Uymw0zu0FoLJ1SYWiOAgYXF0oeCCslJFssskb4LbJdw5VMfC5PGHJVoLeRaJG95jV4Cy6BqMwOx9AGhidIMHkoW4SV2CSvlapHUuk3swRRSRpUktuL8_PmafMvnbbIHNyHVan3NpktRmO7A0ym0LultX4BEyHuHg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VcgAO5S1CCywSHN3au37lwIGmiRKaBASp1Ju7690tEY1TxQkoPfKP-lf4Rcz4RcsRqQdOlu1da7Wexze7s98AvAkiSft_oWOVEY6v49RRXLUdjIeM7yp0mBEdFB6Nw_6R_-E4ON6Ay_osTMkP0Sy4kWYU9poUnBak9_6whuazM9o7QAyNKKRd5VUemvUPjNryd4MD_MVvOe91J52-UxUWcE4Fp71-GUgRu0KZKFYq5dqmXiBTHJeKFDo8rT2LuIhbL9CRG9vASmIpt0qE0tNSCfzuLbhNZcSJrv_gc8NYJbB3Uc8FvaRDVF81T6TL966P9xqivYqLC8fWuw-_6ikp81m-7a6Waje9-Ist8r-aswewVcFs9r7Ui4ewYbJHcO8K-eJj-NnNvhLZSHbKumUtoAXR2JKgss5HzpZz1l9r9O9yoVA12fepZBNacp_V7YulL2J0YWrNBkQIel4pFOus2PhTzqYZ2yeKCDaYTbW8mJ8hsme9Oh8ufwJHNzIJT2Ezm2fmGbAotlL6vm57HC_Wj4UXmDjGeJKHRgduC3Zq-Ugqs5InnOA4IvgwaMHr5jUaBNrlkZmZr7ANWmCMoYUft4AXwpCcl8QlSUlRzROSgqSRguTLaDhs7p7_S6dXcKc_GQ2T4WB8uA138blfZrbvwOZysTIvELgt1ctCVRic3LSc_QbNbE19 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VIiE4UJ5ioYCR4Jg2cZzHHjiUfWiXbpcKWqm3YMd2WdHNrja7oO2xv6h_hX_ETF60HJF64BQlsSPLmfF84xl_A_A2iCTF_0LHKuM7Qsepo7hqO-gPGeEqNJgRHRQ-GIeDY_HxJDjZgMv6LEzJD9FsuJFmFOs1Kfhc290_pKH59IxCBwihEYS0q7TKfbP-iU5b_n7YxT_8jvN-76gzcKq6As6pzynULwPpx66vTBQrlXJtUy-QKQ5LRQrtndaeRVjErRfoyI1tYCWRlFvlh9LTUvn43VtwW4Rum4pFdD83hFU-9i7KuaCRdIjpq6aJdPnu9fFeA7RXYXFh1_pb8KuekTKd5fvOaql20vO_yCL_pyl7APcrkM32Sq14CBsmewT3rlAvPoaLXvaNqEayU9YrKwEtiMSWxJR1PnG2nLHBWqN1lwuFisl-TCQ7og33ad2-2PgiPhem1mxIdKDzSp1YZ8XGhzmbZOwDEUSw4XSi5fnsDHE969fZcPkTOL6RSXgKm9ksM8-ARbGVUgjd9jherIh9LzBxjN4kD40O3BZs1-KRVItKnnAC44jfw6AFb5rXuBxQjEdmZrbCNrj-ogfti7gFvJCFZF7SliQlQTVPSAqSRgqSLwejUXP3_F86vYY7h91-MhqO91_AXXwsyrT2bdhcLlbmJaK2pXpVKAqDrzctZr8BgEBMLA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Electroreduction+CO2+to+Hydrocarbons+via+Tandem+Electrocatalysis+by+Incorporation+Cu+NPs+in+Boron+Imidazolate+Frameworks&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Shao%2C+Ping&rft.au=Wan%2C+Yu%E2%80%90Mei&rft.au=Yi%2C+Luocai&rft.au=Chen%2C+Shumei&rft.date=2024-02-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=20&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202305199&rft.externalDBID=10.1002%252Fsmll.202305199&rft.externalDocID=SMLL202305199 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |