Melt‐Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency

Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the forma...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 30; no. 34
Main Authors Pan, Yu, Aydemir, Umut, Grovogui, Jann A., Witting, Ian T., Hanus, Riley, Xu, Yaobin, Wu, Jinsong, Wu, Chao‐Feng, Sun, Fu‐Hua, Zhuang, Hua‐Lu, Dong, Jin‐Feng, Li, Jing‐Feng, Dravid, Vinayak P., Snyder, G. Jeffrey
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.08.2018
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique. The melt‐centrifugation technique is demonstrated to be able to decrease the thermal conductivity while preserving the good electrical properties. By introducing a unique porous structure with microscale dislocation, ≈60% reduction in lattice thermal conductivity compared to conventional zone melted ingots is achieved. Such a method paves a new way for top‐down introduction of large porosity and dense dislocations in bulk materials.
AbstractList Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique.
Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique. The melt‐centrifugation technique is demonstrated to be able to decrease the thermal conductivity while preserving the good electrical properties. By introducing a unique porous structure with microscale dislocation, ≈60% reduction in lattice thermal conductivity compared to conventional zone melted ingots is achieved. Such a method paves a new way for top‐down introduction of large porosity and dense dislocations in bulk materials.
Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (JG) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of JG compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid-fused grains. This porous mate­rial displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt-centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323-523 K and an efficiency up to 9%. Here, we demonstrate a method for synthe­sizing high-efficiency porous thermoelectric materials through an uncon­ventional melt-centrifugation technique.
Author Wu, Jinsong
Sun, Fu‐Hua
Witting, Ian T.
Wu, Chao‐Feng
Snyder, G. Jeffrey
Pan, Yu
Aydemir, Umut
Li, Jing‐Feng
Xu, Yaobin
Zhuang, Hua‐Lu
Dravid, Vinayak P.
Dong, Jin‐Feng
Grovogui, Jann A.
Hanus, Riley
Author_xml – sequence: 1
  givenname: Yu
  surname: Pan
  fullname: Pan, Yu
  organization: Northwestern University
– sequence: 2
  givenname: Umut
  surname: Aydemir
  fullname: Aydemir, Umut
  email: uaydemir@ku.edu.tr
  organization: Koc University
– sequence: 3
  givenname: Jann A.
  surname: Grovogui
  fullname: Grovogui, Jann A.
  organization: Northwestern University
– sequence: 4
  givenname: Ian T.
  surname: Witting
  fullname: Witting, Ian T.
  organization: Northwestern University
– sequence: 5
  givenname: Riley
  surname: Hanus
  fullname: Hanus, Riley
  organization: Northwestern University
– sequence: 6
  givenname: Yaobin
  surname: Xu
  fullname: Xu, Yaobin
  organization: Northwestern University
– sequence: 7
  givenname: Jinsong
  surname: Wu
  fullname: Wu, Jinsong
  organization: Northwestern University
– sequence: 8
  givenname: Chao‐Feng
  surname: Wu
  fullname: Wu, Chao‐Feng
  organization: Tsinghua University
– sequence: 9
  givenname: Fu‐Hua
  surname: Sun
  fullname: Sun, Fu‐Hua
  organization: Tsinghua University
– sequence: 10
  givenname: Hua‐Lu
  surname: Zhuang
  fullname: Zhuang, Hua‐Lu
  organization: Tsinghua University
– sequence: 11
  givenname: Jin‐Feng
  surname: Dong
  fullname: Dong, Jin‐Feng
  organization: Tsinghua University
– sequence: 12
  givenname: Jing‐Feng
  orcidid: 0000-0002-0185-0512
  surname: Li
  fullname: Li, Jing‐Feng
  email: jingfeng@mail.tsinghua.edu.cn
  organization: Tsinghua University
– sequence: 13
  givenname: Vinayak P.
  surname: Dravid
  fullname: Dravid, Vinayak P.
  organization: Northwestern University
– sequence: 14
  givenname: G. Jeffrey
  surname: Snyder
  fullname: Snyder, G. Jeffrey
  email: jeff.snyder@northwestern.edu
  organization: Northwestern University
BackLink https://www.osti.gov/servlets/purl/1775432$$D View this record in Osti.gov
BookMark eNo9kEtLw0AUhQdRsK1uXQfdKJg6j2Qe7mqtD7C4sK7HyeQ2HWkndZJQuvMn-Bv9JY5U3NzDhY_DOaeP9n3tAaETgocEY3plypUZUkwkjofvoR7JKUkzrPJ91MOK5animTxE_aZ5xxgrjnkPvU1h2X5_fo3Bt8HNuwrK5PzGXb4UF3QG7DqZ-Mp5gOB8lUydDXXThs62XYCkrTcmlMmDqxbJbAFhVcMSbLSxyWQ-d9aBt9sjdDA3ywaO_3SAXu8ms_FD-vR8_zgePaUVI5KnipWC5FIWyppcFpaKzJhYxIApGC9ojsFkwjIjhSq4wJIzUZYZZyoWoVKxATrd-caATjfWtWAXtvY-JtJEiDxjNEJnO2gd6o8Omla_113wMZemWCpJZSZkpNSO2rglbPU6uJUJW02w_t1Z_-6s_3fWo9vp6P9jP0zLdNo
ContentType Journal Article
Copyright 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
CorporateAuthor Northwestern Univ., Evanston, IL (United States)
CorporateAuthor_xml – name: Northwestern Univ., Evanston, IL (United States)
DBID 7SR
8BQ
8FD
JG9
OIOZB
OTOTI
DOI 10.1002/adma.201802016
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 1775432
ADMA201802016
Genre article
GrantInformation_xml – fundername: Basic Science Center Project of NSFC
  funderid: 51788104; 11474176
– fundername: National Science Foundation Graduate Research Fellowship
  funderid: DGE‐1324585
– fundername: MRSEC
  funderid: DMR‐1121262
– fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences
  funderid: DE‐SC0001299; DE‐SC0014520
– fundername: Soft and Hybrid Nanotechnology Experimental
  funderid: NSF ECCS‐1542205
– fundername: Solid‐State Solar‐Thermal Energy Conversion Center
– fundername: Chinese Scholarship Council
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
AAPBV
ABHUG
ACXME
ADAWD
ADDAD
AFVGU
AGJLS
OIOZB
OTOTI
ID FETCH-LOGICAL-g3186-93d71588b9ca58bc274aa020aeab36b250ea47c3a879b6708637dd46390962893
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri May 19 00:39:43 EDT 2023
Sun Jul 13 04:19:43 EDT 2025
Wed Jan 22 16:46:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 34
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3186-93d71588b9ca58bc274aa020aeab36b250ea47c3a879b6708637dd46390962893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
National Science Foundation (NSF)
SC0014520; SC0001299; 51788104; 11474176; ECCS-1542205; DMR-1121262; DGE-1324585; DE‐SC0001299; DE‐SC0014520
National Natural Science Foundation of China (NSFC)
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0002-0185-0512
0000000201850512
OpenAccessLink https://www.osti.gov/servlets/purl/1775432
PQID 2089828478
PQPubID 2045203
PageCount 7
ParticipantIDs osti_scitechconnect_1775432
proquest_journals_2089828478
wiley_primary_10_1002_adma_201802016_ADMA201802016
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: United States
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2017; 7
2017; 8
2013; 3
2017; 1
2013; 23
1975; 12
2008; 7
2014; 24
2015; 348
1961; 32
2012; 489
1959; 114
1959; 7
2009; 48
2011; 473
2017; 31
1992; 46
2010; 2
2007; 1
2012; 24
2014; 6
2012; 83
2017; 20
2015; 6
2015; 5
2004; 84
2015; 3
1989; 65
1973; 30
2012
2010; 39
2011; 82
2005
2017; 29
2008; 321
1955; 68
1938; 5
2018; 18
2014; 105
2016; 3
2006; 40
1978; 40
2017; 10
1991; 70
1956; 27
2017
2016
2009; 2
1935; 5
2016; 9
References_xml – volume: 473
  start-page: 66
  year: 2011
  publication-title: Nature
– volume: 48
  start-page: 8616
  year: 2009
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 530
  year: 2016
  publication-title: Energy Environ. Sci.
– year: 2005
– volume: 40
  start-page: 2
  year: 1978
  publication-title: AIP Conference Proc.
– volume: 1
  start-page: 232
  year: 2007
  publication-title: Phys. Stat. Sol.
– volume: 6
  start-page: e88
  year: 2014
  publication-title: NPG Asia Mater.
– volume: 30
  start-page: 696
  year: 1973
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 549
  year: 2013
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 495
  year: 1938
  publication-title: Physica
– volume: 8
  start-page: 13828
  year: 2017
  publication-title: Nat. Commun.
– volume: 32
  start-page: 2198
  year: 1961
  publication-title: J. Appl. Phys.
– volume: 9
  start-page: 3120
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 5
  start-page: 1500272
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 152
  year: 2010
  publication-title: NPG Asia Mater.
– volume: 20
  start-page: 452
  year: 2017
  publication-title: Mater. Today
– volume: 29
  start-page: 1606768
  year: 2017
  publication-title: Adv. Mater.
– volume: 39
  start-page: 2165
  year: 2010
  publication-title: J. Electron Mater.
– volume: 65
  start-page: 1578
  year: 1989
  publication-title: J. Appl. Phys.
– volume: 24
  start-page: 5065
  year: 2012
  publication-title: Adv. Mater.
– volume: 82
  start-page: 063905
  year: 2011
  publication-title: Rev. Sci. Instrum.
– volume: 24
  start-page: 5211
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 338
  year: 2006
  publication-title: Superlattices Microst.
– volume: 5
  start-page: 1401391
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 18
  start-page: 2557
  year: 2018
  publication-title: Nano Lett.
– volume: 46
  start-page: 6131
  year: 1992
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 123902
  year: 2012
  publication-title: Rev. Sci. Instrum.
– volume: 84
  start-page: 2436
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 52
  year: 1959
  publication-title: J. Electron. Control
– volume: 105
  start-page: 172103
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 8144
  year: 2015
  publication-title: Nat. Commun.
– volume: 489
  start-page: 414
  year: 2012
  publication-title: Nature
– volume: 31
  start-page: 152
  year: 2017
  publication-title: Nano Energy
– volume: 2
  start-page: 466
  year: 2009
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 1700446
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 636
  year: 1935
  publication-title: Annalen der Physik
– year: 2016
– volume: 1
  start-page: 7
  year: 2017
  publication-title: Mater. Today Phys.
– volume: 7
  start-page: 105
  year: 2008
  publication-title: Nat. Mater.
– year: 2012
– volume: 3
  start-page: 11653
  year: 2015
  publication-title: J. Mater. Chem. C
– volume: 70
  start-page: 6821
  year: 1991
  publication-title: J. Appl. Phys.
– volume: 348
  start-page: 109
  year: 2015
  publication-title: Science
– volume: 82
  start-page: 025104
  year: 2011
  publication-title: Rev. Sci. Instrum.
– volume: 23
  start-page: 1586
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 234
  year: 2016
  publication-title: Mater. Horiz.
– volume: 10
  start-page: 2280
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 68
  start-page: 1113
  year: 1955
  publication-title: Proc. Phys. Soc. A
– volume: 321
  start-page: 1457
  year: 2008
  publication-title: Science
– volume: 12
  start-page: 3368
  year: 1975
  publication-title: Phys. Rev. B
– volume: 114
  start-page: 995
  year: 1959
  publication-title: Phys. Rev.
– volume: 27
  start-page: 838
  year: 1956
  publication-title: J. Appl. Phys.
– year: 2017
SSID ssj0009606
Score 2.6167147
Snippet Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a...
Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (JG) and enhance the thermoelectric figure of merit (zT). Through a...
SourceID osti
proquest
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
SubjectTerms Antimony
Bismuth
Current carriers
dislocation
Dislocations
Efficiency
Figure of merit
Grain boundaries
Ingots
liquid phase sintering
MATERIALS SCIENCE
melt‐centrifugation
Microstructure
Porosity
Porous materials
p‐type bismuth‐antimony‐telluride
Thermal conductivity
thermoelectric
Thermoelectric materials
Title Melt‐Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802016
https://www.proquest.com/docview/2089828478
https://www.osti.gov/servlets/purl/1775432
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTwIxEMcbw0kPvo0Imh48aOLyaPfpDRVCTPCgkHCrfUGICgaWiyc_gp_RT-JMl6dHve0m7aY77Uz_baa_EnIOKlcGPQXRT6rQ8xMT4EaT8RLLuNRGMW3wcHLrIWx2_Ptu0F05xZ_xIRYbbugZLl6jg0s1KS-hodI4bhASzEC2QBDGhC1URY9LfhTKcwfb44GXhH48pzZWWHm9OgTkEbjUmsxcFatutmnsEDlvZ5Zk8lKapqqkP34hHP_zI7tkeyZFaS0bO3tkww73ydYKoPCAPLfsa_r9-eX2gAe9ad8aenEzuHpSl6xt-TVdKU1bmNuX8WinY0tTl5BLMZGEwmAcv42yK3cGmtYdtwIPfR6STqPevm16szsZvD54f-gl3ETVII5VomUQKw2LWimh4dJKxUMFgspKP9JcxlGiwggWTDwyxgcdBJ0Bizt-RHLD0dAeE2rCJICCGr5n_ainZM-oqMJkoAxEHh3lSQH7RIAUQJ6txsQfnYoqMvs4y5PivKvEzO0mglXiJMYJN84T5mwu3jNoh8jwzEygtcXC2qJ216ot3k7-UqlANvE5SwoskhyY2Z6CUEnVmRuMP-iC4M8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTxsxEMdHLT1QDhT6UAOU-tBDK3Uh2Ot99JaWoJRmc6CJ1Jvr16IISBBsLpz4CP2M_SSd8ebJsRx3Za-8Y8_4b2v8M8AHVLlalgajnzZJFOdO0kaTi3LPhbbOcOvocHLRSzqD-PSXnGUT0lmYmg8x33AjzwjxmhycNqQPF9RQ7QI4iBBmqFuewjO61pvw-cdnC4IUCfSA2xMyypM4m3Ebm_xwtT6G5DE61YrQXJarYb45eQFm1tI6zeTiYFKZA3v3AOL4qF_Zgs2pGmWtevhswxM_egkbS4zCV_C78JfV3_s_YRt4WE7OvWMfvw4__zSfeN-LL2ypNCsova9G0k5uPKtCTi6jXBKG4_HmalzfujO0rB3QFXTu8zUMTtr9b51oei1DdI4BIIly4dIjmWUmt1pmxuK6VmtsuPbaiMSgpvI6Tq3QWZqbJMU1k0idi1EKYW_g-k68gbXReOTfAnNJLrGgxe_5OC2NLp1Jm1xL4zD42LQBu9QpCtUAIW0t5f7YSh0Rtk_wBuzN-kpNPe9W8WaWZzTnZg3gwejquuZ2qJrQzBVZW82trVrHRWv-tPM_ld7DeqdfdFX3e-_HLjyn93WO4B6socn9O9QtldkPI_MfBn_k6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTxsxEMdHhUqIHijloQYo-NADSCwJ9r7cW9oQQUsQ4iFxM34tioAEwebCiY_Qz9hP0hlvEgJHOO7KXnnHnvHf1vhngO-ocnVSGIx-2qRRLF1CG00ukp4LbZ3h1tHh5M5Run8e_75ILiZO8Vd8iPGGG3lGiNfk4HeuqD9DQ7UL3CAimKFsmYKPcdqQdHlD6-QZIEX6PND2RBLJNM5H2MYGr7-sjxG5jz71QmdOqtUw3bQ_gx41tMoyud4ZlGbHPr5iOL7nT-ZhbqhFWbMaPF_gg-8twKcJQuEiXHb8Tfnv6W_YBO4Wgyvv2ObP7vap2eJnXvxgE6VZh5L7KiDt4N6zMmTkMsokYTga72_71Z07Xcv2AriCTn0uwXl77-zXfjS8lCG6QvdPIylctpvkuZFWJ7mxuKrVGhuuvTYiNaiovI4zK3SeSZNmuGISmXMxCiHsDFzdiWWY7vV7_iswl8oEC1r8no-zwujCmazBdWIchh6b1WCV-kShFiCgraXMH1uqXYL2CV6DtVFXqaHfPSjeyGVOM25eAx5sru4qaoeq-MxckbXV2Nqq2eo0x08rb6m0ATPHrbY6PDj6swqz9LpKEFyDabS4_4aipTTrYVz-B2vY45o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melt%E2%80%90Centrifuged+%28Bi%2CSb%292Te3%3A+Engineering+Microstructure+toward+High+Thermoelectric+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Pan%2C+Yu&rft.au=Aydemir%2C+Umut&rft.au=Grovogui%2C+Jann+A.&rft.au=Witting%2C+Ian+T.&rft.date=2018-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201802016&rft.externalDBID=10.1002%252Fadma.201802016&rft.externalDocID=ADMA201802016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon