Melt‐Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency
Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the forma...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 30; no. 34 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.08.2018
Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique.
The melt‐centrifugation technique is demonstrated to be able to decrease the thermal conductivity while preserving the good electrical properties. By introducing a unique porous structure with microscale dislocation, ≈60% reduction in lattice thermal conductivity compared to conventional zone melted ingots is achieved. Such a method paves a new way for top‐down introduction of large porosity and dense dislocations in bulk materials. |
---|---|
AbstractList | Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique. Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt‐centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of κl compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid‐fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt‐centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323–523 K and an efficiency up to 9%. The present work demonstrates a method for synthesizing high‐efficiency porous thermoelectric materials through an unconventional melt‐centrifugation technique. The melt‐centrifugation technique is demonstrated to be able to decrease the thermal conductivity while preserving the good electrical properties. By introducing a unique porous structure with microscale dislocation, ≈60% reduction in lattice thermal conductivity compared to conventional zone melted ingots is achieved. Such a method paves a new way for top‐down introduction of large porosity and dense dislocations in bulk materials. Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (JG) and enhance the thermoelectric figure of merit (zT). Through a new process based on melt-centrifugation to squeeze out excess eutectic liquid, microstructure modulation is realized to manipulate the formation of dislocations and clean grain boundaries, resulting in a porous network with a platelet structure. In this way, phonon transport is strongly disrupted by a combination of porosity, pore surfaces/junctions, grain boundaries, and lattice dislocations. These collectively result in a ≈60% reduction of JG compared to zone melted ingot, while the charge carriers remain relatively mobile across the liquid-fused grains. This porous material displays a zT value of 1.2, which is higher than fully dense conventional zone melted ingots and hot pressed (Bi,Sb)2Te3 alloys. A segmented leg of melt-centrifuged Bi0.5Sb1.5Te3 and Bi0.3Sb1.7Te3 could produce a high device ZT exceeding 1.0 over the whole temperature range of 323-523 K and an efficiency up to 9%. Here, we demonstrate a method for synthesizing high-efficiency porous thermoelectric materials through an unconventional melt-centrifugation technique. |
Author | Wu, Jinsong Sun, Fu‐Hua Witting, Ian T. Wu, Chao‐Feng Snyder, G. Jeffrey Pan, Yu Aydemir, Umut Li, Jing‐Feng Xu, Yaobin Zhuang, Hua‐Lu Dravid, Vinayak P. Dong, Jin‐Feng Grovogui, Jann A. Hanus, Riley |
Author_xml | – sequence: 1 givenname: Yu surname: Pan fullname: Pan, Yu organization: Northwestern University – sequence: 2 givenname: Umut surname: Aydemir fullname: Aydemir, Umut email: uaydemir@ku.edu.tr organization: Koc University – sequence: 3 givenname: Jann A. surname: Grovogui fullname: Grovogui, Jann A. organization: Northwestern University – sequence: 4 givenname: Ian T. surname: Witting fullname: Witting, Ian T. organization: Northwestern University – sequence: 5 givenname: Riley surname: Hanus fullname: Hanus, Riley organization: Northwestern University – sequence: 6 givenname: Yaobin surname: Xu fullname: Xu, Yaobin organization: Northwestern University – sequence: 7 givenname: Jinsong surname: Wu fullname: Wu, Jinsong organization: Northwestern University – sequence: 8 givenname: Chao‐Feng surname: Wu fullname: Wu, Chao‐Feng organization: Tsinghua University – sequence: 9 givenname: Fu‐Hua surname: Sun fullname: Sun, Fu‐Hua organization: Tsinghua University – sequence: 10 givenname: Hua‐Lu surname: Zhuang fullname: Zhuang, Hua‐Lu organization: Tsinghua University – sequence: 11 givenname: Jin‐Feng surname: Dong fullname: Dong, Jin‐Feng organization: Tsinghua University – sequence: 12 givenname: Jing‐Feng orcidid: 0000-0002-0185-0512 surname: Li fullname: Li, Jing‐Feng email: jingfeng@mail.tsinghua.edu.cn organization: Tsinghua University – sequence: 13 givenname: Vinayak P. surname: Dravid fullname: Dravid, Vinayak P. organization: Northwestern University – sequence: 14 givenname: G. Jeffrey surname: Snyder fullname: Snyder, G. Jeffrey email: jeff.snyder@northwestern.edu organization: Northwestern University |
BackLink | https://www.osti.gov/servlets/purl/1775432$$D View this record in Osti.gov |
BookMark | eNo9kEtLw0AUhQdRsK1uXQfdKJg6j2Qe7mqtD7C4sK7HyeQ2HWkndZJQuvMn-Bv9JY5U3NzDhY_DOaeP9n3tAaETgocEY3plypUZUkwkjofvoR7JKUkzrPJ91MOK5animTxE_aZ5xxgrjnkPvU1h2X5_fo3Bt8HNuwrK5PzGXb4UF3QG7DqZ-Mp5gOB8lUydDXXThs62XYCkrTcmlMmDqxbJbAFhVcMSbLSxyWQ-d9aBt9sjdDA3ywaO_3SAXu8ms_FD-vR8_zgePaUVI5KnipWC5FIWyppcFpaKzJhYxIApGC9ojsFkwjIjhSq4wJIzUZYZZyoWoVKxATrd-caATjfWtWAXtvY-JtJEiDxjNEJnO2gd6o8Omla_113wMZemWCpJZSZkpNSO2rglbPU6uJUJW02w_t1Z_-6s_3fWo9vp6P9jP0zLdNo |
ContentType | Journal Article |
Copyright | 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
CorporateAuthor | Northwestern Univ., Evanston, IL (United States) |
CorporateAuthor_xml | – name: Northwestern Univ., Evanston, IL (United States) |
DBID | 7SR 8BQ 8FD JG9 OIOZB OTOTI |
DOI | 10.1002/adma.201802016 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 1775432 ADMA201802016 |
Genre | article |
GrantInformation_xml | – fundername: Basic Science Center Project of NSFC funderid: 51788104; 11474176 – fundername: National Science Foundation Graduate Research Fellowship funderid: DGE‐1324585 – fundername: MRSEC funderid: DMR‐1121262 – fundername: U.S. Department of Energy, Office of Science, Basic Energy Sciences funderid: DE‐SC0001299; DE‐SC0014520 – fundername: Soft and Hybrid Nanotechnology Experimental funderid: NSF ECCS‐1542205 – fundername: Solid‐State Solar‐Thermal Energy Conversion Center – fundername: Chinese Scholarship Council |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 AAPBV ABHUG ACXME ADAWD ADDAD AFVGU AGJLS OIOZB OTOTI |
ID | FETCH-LOGICAL-g3186-93d71588b9ca58bc274aa020aeab36b250ea47c3a879b6708637dd46390962893 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri May 19 00:39:43 EDT 2023 Sun Jul 13 04:19:43 EDT 2025 Wed Jan 22 16:46:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 34 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3186-93d71588b9ca58bc274aa020aeab36b250ea47c3a879b6708637dd46390962893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 National Science Foundation (NSF) SC0014520; SC0001299; 51788104; 11474176; ECCS-1542205; DMR-1121262; DGE-1324585; DE‐SC0001299; DE‐SC0014520 National Natural Science Foundation of China (NSFC) USDOE Office of Science (SC), Basic Energy Sciences (BES) |
ORCID | 0000-0002-0185-0512 0000000201850512 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1775432 |
PQID | 2089828478 |
PQPubID | 2045203 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_1775432 proquest_journals_2089828478 wiley_primary_10_1002_adma_201802016_ADMA201802016 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: United States |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc Wiley |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley |
References | 2017; 7 2017; 8 2013; 3 2017; 1 2013; 23 1975; 12 2008; 7 2014; 24 2015; 348 1961; 32 2012; 489 1959; 114 1959; 7 2009; 48 2011; 473 2017; 31 1992; 46 2010; 2 2007; 1 2012; 24 2014; 6 2012; 83 2017; 20 2015; 6 2015; 5 2004; 84 2015; 3 1989; 65 1973; 30 2012 2010; 39 2011; 82 2005 2017; 29 2008; 321 1955; 68 1938; 5 2018; 18 2014; 105 2016; 3 2006; 40 1978; 40 2017; 10 1991; 70 1956; 27 2017 2016 2009; 2 1935; 5 2016; 9 |
References_xml | – volume: 473 start-page: 66 year: 2011 publication-title: Nature – volume: 48 start-page: 8616 year: 2009 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 530 year: 2016 publication-title: Energy Environ. Sci. – year: 2005 – volume: 40 start-page: 2 year: 1978 publication-title: AIP Conference Proc. – volume: 1 start-page: 232 year: 2007 publication-title: Phys. Stat. Sol. – volume: 6 start-page: e88 year: 2014 publication-title: NPG Asia Mater. – volume: 30 start-page: 696 year: 1973 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 549 year: 2013 publication-title: Adv. Energy Mater. – volume: 5 start-page: 495 year: 1938 publication-title: Physica – volume: 8 start-page: 13828 year: 2017 publication-title: Nat. Commun. – volume: 32 start-page: 2198 year: 1961 publication-title: J. Appl. Phys. – volume: 9 start-page: 3120 year: 2016 publication-title: Energy Environ. Sci. – volume: 5 start-page: 1500272 year: 2015 publication-title: Adv. Energy Mater. – volume: 2 start-page: 152 year: 2010 publication-title: NPG Asia Mater. – volume: 20 start-page: 452 year: 2017 publication-title: Mater. Today – volume: 29 start-page: 1606768 year: 2017 publication-title: Adv. Mater. – volume: 39 start-page: 2165 year: 2010 publication-title: J. Electron Mater. – volume: 65 start-page: 1578 year: 1989 publication-title: J. Appl. Phys. – volume: 24 start-page: 5065 year: 2012 publication-title: Adv. Mater. – volume: 82 start-page: 063905 year: 2011 publication-title: Rev. Sci. Instrum. – volume: 24 start-page: 5211 year: 2014 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 338 year: 2006 publication-title: Superlattices Microst. – volume: 5 start-page: 1401391 year: 2015 publication-title: Adv. Energy Mater. – volume: 18 start-page: 2557 year: 2018 publication-title: Nano Lett. – volume: 46 start-page: 6131 year: 1992 publication-title: Phys. Rev. B – volume: 83 start-page: 123902 year: 2012 publication-title: Rev. Sci. Instrum. – volume: 84 start-page: 2436 year: 2004 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 52 year: 1959 publication-title: J. Electron. Control – volume: 105 start-page: 172103 year: 2014 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 8144 year: 2015 publication-title: Nat. Commun. – volume: 489 start-page: 414 year: 2012 publication-title: Nature – volume: 31 start-page: 152 year: 2017 publication-title: Nano Energy – volume: 2 start-page: 466 year: 2009 publication-title: Energy Environ. Sci. – volume: 7 start-page: 1700446 year: 2017 publication-title: Adv. Energy Mater. – volume: 5 start-page: 636 year: 1935 publication-title: Annalen der Physik – year: 2016 – volume: 1 start-page: 7 year: 2017 publication-title: Mater. Today Phys. – volume: 7 start-page: 105 year: 2008 publication-title: Nat. Mater. – year: 2012 – volume: 3 start-page: 11653 year: 2015 publication-title: J. Mater. Chem. C – volume: 70 start-page: 6821 year: 1991 publication-title: J. Appl. Phys. – volume: 348 start-page: 109 year: 2015 publication-title: Science – volume: 82 start-page: 025104 year: 2011 publication-title: Rev. Sci. Instrum. – volume: 23 start-page: 1586 year: 2013 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 234 year: 2016 publication-title: Mater. Horiz. – volume: 10 start-page: 2280 year: 2017 publication-title: Energy Environ. Sci. – volume: 68 start-page: 1113 year: 1955 publication-title: Proc. Phys. Soc. A – volume: 321 start-page: 1457 year: 2008 publication-title: Science – volume: 12 start-page: 3368 year: 1975 publication-title: Phys. Rev. B – volume: 114 start-page: 995 year: 1959 publication-title: Phys. Rev. – volume: 27 start-page: 838 year: 1956 publication-title: J. Appl. Phys. – year: 2017 |
SSID | ssj0009606 |
Score | 2.6167147 |
Snippet | Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (κl) and enhance the thermoelectric figure of merit (zT). Through a... Microstructure engineering is an effective strategy to reduce lattice thermal conductivity (JG) and enhance the thermoelectric figure of merit (zT). Through a... |
SourceID | osti proquest wiley |
SourceType | Open Access Repository Aggregation Database Publisher |
SubjectTerms | Antimony Bismuth Current carriers dislocation Dislocations Efficiency Figure of merit Grain boundaries Ingots liquid phase sintering MATERIALS SCIENCE melt‐centrifugation Microstructure Porosity Porous materials p‐type bismuth‐antimony‐telluride Thermal conductivity thermoelectric Thermoelectric materials |
Title | Melt‐Centrifuged (Bi,Sb)2Te3: Engineering Microstructure toward High Thermoelectric Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201802016 https://www.proquest.com/docview/2089828478 https://www.osti.gov/servlets/purl/1775432 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTwIxEMcbw0kPvo0Imh48aOLyaPfpDRVCTPCgkHCrfUGICgaWiyc_gp_RT-JMl6dHve0m7aY77Uz_baa_EnIOKlcGPQXRT6rQ8xMT4EaT8RLLuNRGMW3wcHLrIWx2_Ptu0F05xZ_xIRYbbugZLl6jg0s1KS-hodI4bhASzEC2QBDGhC1URY9LfhTKcwfb44GXhH48pzZWWHm9OgTkEbjUmsxcFatutmnsEDlvZ5Zk8lKapqqkP34hHP_zI7tkeyZFaS0bO3tkww73ydYKoPCAPLfsa_r9-eX2gAe9ad8aenEzuHpSl6xt-TVdKU1bmNuX8WinY0tTl5BLMZGEwmAcv42yK3cGmtYdtwIPfR6STqPevm16szsZvD54f-gl3ETVII5VomUQKw2LWimh4dJKxUMFgspKP9JcxlGiwggWTDwyxgcdBJ0Bizt-RHLD0dAeE2rCJICCGr5n_ainZM-oqMJkoAxEHh3lSQH7RIAUQJ6txsQfnYoqMvs4y5PivKvEzO0mglXiJMYJN84T5mwu3jNoh8jwzEygtcXC2qJ216ot3k7-UqlANvE5SwoskhyY2Z6CUEnVmRuMP-iC4M8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTxsxEMdHLT1QDhT6UAOU-tBDK3Uh2Ot99JaWoJRmc6CJ1Jvr16IISBBsLpz4CP2M_SSd8ebJsRx3Za-8Y8_4b2v8M8AHVLlalgajnzZJFOdO0kaTi3LPhbbOcOvocHLRSzqD-PSXnGUT0lmYmg8x33AjzwjxmhycNqQPF9RQ7QI4iBBmqFuewjO61pvw-cdnC4IUCfSA2xMyypM4m3Ebm_xwtT6G5DE61YrQXJarYb45eQFm1tI6zeTiYFKZA3v3AOL4qF_Zgs2pGmWtevhswxM_egkbS4zCV_C78JfV3_s_YRt4WE7OvWMfvw4__zSfeN-LL2ypNCsova9G0k5uPKtCTi6jXBKG4_HmalzfujO0rB3QFXTu8zUMTtr9b51oei1DdI4BIIly4dIjmWUmt1pmxuK6VmtsuPbaiMSgpvI6Tq3QWZqbJMU1k0idi1EKYW_g-k68gbXReOTfAnNJLrGgxe_5OC2NLp1Jm1xL4zD42LQBu9QpCtUAIW0t5f7YSh0Rtk_wBuzN-kpNPe9W8WaWZzTnZg3gwejquuZ2qJrQzBVZW82trVrHRWv-tPM_ld7DeqdfdFX3e-_HLjyn93WO4B6socn9O9QtldkPI_MfBn_k6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LTxsxEMdHhUqIHijloQYo-NADSCwJ9r7cW9oQQUsQ4iFxM34tioAEwebCiY_Qz9hP0hlvEgJHOO7KXnnHnvHf1vhngO-ocnVSGIx-2qRRLF1CG00ukp4LbZ3h1tHh5M5Run8e_75ILiZO8Vd8iPGGG3lGiNfk4HeuqD9DQ7UL3CAimKFsmYKPcdqQdHlD6-QZIEX6PND2RBLJNM5H2MYGr7-sjxG5jz71QmdOqtUw3bQ_gx41tMoyud4ZlGbHPr5iOL7nT-ZhbqhFWbMaPF_gg-8twKcJQuEiXHb8Tfnv6W_YBO4Wgyvv2ObP7vap2eJnXvxgE6VZh5L7KiDt4N6zMmTkMsokYTga72_71Z07Xcv2AriCTn0uwXl77-zXfjS8lCG6QvdPIylctpvkuZFWJ7mxuKrVGhuuvTYiNaiovI4zK3SeSZNmuGISmXMxCiHsDFzdiWWY7vV7_iswl8oEC1r8no-zwujCmazBdWIchh6b1WCV-kShFiCgraXMH1uqXYL2CV6DtVFXqaHfPSjeyGVOM25eAx5sru4qaoeq-MxckbXV2Nqq2eo0x08rb6m0ATPHrbY6PDj6swqz9LpKEFyDabS4_4aipTTrYVz-B2vY45o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Melt%E2%80%90Centrifuged+%28Bi%2CSb%292Te3%3A+Engineering+Microstructure+toward+High+Thermoelectric+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Pan%2C+Yu&rft.au=Aydemir%2C+Umut&rft.au=Grovogui%2C+Jann+A.&rft.au=Witting%2C+Ian+T.&rft.date=2018-08-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=30&rft.issue=34&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201802016&rft.externalDBID=10.1002%252Fadma.201802016&rft.externalDocID=ADMA201802016 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |