Cu7S4 Nanosuperlattices with Greatly Enhanced Photothermal Efficiency

According to the simulation, the self‐assembly of Cu7S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized surface plasmon resonance effects, which is highly desirable for photothermal therapy (PTT). A new strategy to synthesize Cu7S4 nanosuperlattices w...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 11; no. 33; pp. 4183 - 4190
Main Authors Cui, Jiabin, Jiang, Rui, Xu, Suying, Hu, Gaofei, Wang, Leyu
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.09.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract According to the simulation, the self‐assembly of Cu7S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized surface plasmon resonance effects, which is highly desirable for photothermal therapy (PTT). A new strategy to synthesize Cu7S4 nanosuperlattices with greatly enhanced PCE up to 65.7% under irradiation of 808 nm near infrared light is reported here. By tuning the surface properties of Cu7S4 nanocrystals during the synthesis via thermolysis of a new single precursor, dispersed nanoparticles (NPs), rod‐like alignments, and nanosuperlattices are obtained, respectively. To explore their PTT applications, these hydrophobic nanostructures are transferred into water by coating with home‐made amphiphilic polymer while maintaining their original structures. Under identical conditions, the PCE are 48.62% and 56.32% for dispersed NPs and rod‐like alignments, respectively. As expected, when the nanoparticles are self‐assembled into nanosuperlattices, the PCE is greatly enhanced up to 65.7%. This strong PCE, along with their excellent photothermal stability and good biocompatibility, renders these nanosuperlattices good candidates as PTT agents. In vitro photothermal ablation performances have undoubtedly proved the excellent PCE of our Cu7S4 nanosuperlattices. This research offers a versatile and effective solution to get PTT agents with high photothermal efficiency. A new strategy to synthesize Cu7S4 nanocrystals and greatly enhance the photothermal conversion efficiency up to 65.7% under irradiation of 808 nm near‐infrared light by fabricating the Cu7S4 nanosuperlattices is reported.
AbstractList According to the simulation, the self‐assembly of Cu7S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized surface plasmon resonance effects, which is highly desirable for photothermal therapy (PTT). A new strategy to synthesize Cu7S4 nanosuperlattices with greatly enhanced PCE up to 65.7% under irradiation of 808 nm near infrared light is reported here. By tuning the surface properties of Cu7S4 nanocrystals during the synthesis via thermolysis of a new single precursor, dispersed nanoparticles (NPs), rod‐like alignments, and nanosuperlattices are obtained, respectively. To explore their PTT applications, these hydrophobic nanostructures are transferred into water by coating with home‐made amphiphilic polymer while maintaining their original structures. Under identical conditions, the PCE are 48.62% and 56.32% for dispersed NPs and rod‐like alignments, respectively. As expected, when the nanoparticles are self‐assembled into nanosuperlattices, the PCE is greatly enhanced up to 65.7%. This strong PCE, along with their excellent photothermal stability and good biocompatibility, renders these nanosuperlattices good candidates as PTT agents. In vitro photothermal ablation performances have undoubtedly proved the excellent PCE of our Cu7S4 nanosuperlattices. This research offers a versatile and effective solution to get PTT agents with high photothermal efficiency. A new strategy to synthesize Cu7S4 nanocrystals and greatly enhance the photothermal conversion efficiency up to 65.7% under irradiation of 808 nm near‐infrared light by fabricating the Cu7S4 nanosuperlattices is reported.
According to the simulation, the self-assembly of Cu7S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized surface plasmon resonance effects, which is highly desirable for photothermal therapy (PTT). A new strategy to synthesize Cu7S4 nanosuperlattices with greatly enhanced PCE up to 65.7% under irradiation of 808 nm near infrared light is reported here. By tuning the surface properties of Cu7S4 nanocrystals during the synthesis via thermolysis of a new single precursor, dispersed nanoparticles (NPs), rod-like alignments, and nanosuperlattices are obtained, respectively. To explore their PTT applications, these hydrophobic nanostructures are transferred into water by coating with home-made amphiphilic polymer while maintaining their original structures. Under identical conditions, the PCE are 48.62% and 56.32% for dispersed NPs and rod-like alignments, respectively. As expected, when the nanoparticles are self-assembled into nanosuperlattices, the PCE is greatly enhanced up to 65.7%. This strong PCE, along with their excellent photothermal stability and good biocompatibility, renders these nanosuperlattices good candidates as PTT agents. In vitro photothermal ablation performances have undoubtedly proved the excellent PCE of our Cu7S4 nanosuperlattices. This research offers a versatile and effective solution to get PTT agents with high photothermal efficiency.
Author Xu, Suying
Hu, Gaofei
Cui, Jiabin
Jiang, Rui
Wang, Leyu
Author_xml – sequence: 1
  givenname: Jiabin
  surname: Cui
  fullname: Cui, Jiabin
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
– sequence: 2
  givenname: Rui
  surname: Jiang
  fullname: Jiang, Rui
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
– sequence: 3
  givenname: Suying
  surname: Xu
  fullname: Xu, Suying
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
– sequence: 4
  givenname: Gaofei
  surname: Hu
  fullname: Hu, Gaofei
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
– sequence: 5
  givenname: Leyu
  surname: Wang
  fullname: Wang, Leyu
  email: lywang@mail.buct.edu.cn
  organization: State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, P. R. China
BookMark eNo9kNFPgzAQhxszE7fpq88kPjOvLdDyaBY2TXBqpvOx6UoRJoPZlkz-e1lmeLq73O-7S74JGtVNrRG6xTDDAOTe7qtqRgCHADwIL9AYR5j6ESfxaOgxXKGJtTsAiknAxiiZt2wdeCtZN7Y9aFNJ50qlrXcsXeEtjZau6rykLmStdOa9Fo1rXKHNXlZekuelKnWtumt0mcvK6pv_OkUfi-R9_uinL8un-UPqf1Hgoc-AcMYzDtuM0BhUTLHCmmwJlZIzklGSy4hzRqWKtkQSrgLIs4yyIFZh0O-n6O5892Can1ZbJ3ZNa-r-pcAMeMxISEmfis-pY1npThxMuZemExjEyZM4eRKDJ7F-TtNh6ln_zJbW6d-BleZbRIyyUHyulmK12ETR2yYVnP4Bbs9upA
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.201500845
DatabaseName Istex
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage 4190
ExternalDocumentID 3795387871
SMLL201500845
ark_67375_WNG_NFV66QVL_8
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21475007; 21275015
– fundername: State Key Project of Fundamental Research of China
  funderid: 2011CB932403
– fundername: Fundamental Research Funds for the Central Universities
  funderid: YS1406
GroupedDBID ---
05W
0R~
123
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAYOK
AAZKR
ABCUV
ABHUG
ABIJN
ABJNI
ABLJU
ABRTZ
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GNP
GODZA
HBH
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
AITYG
HGLYW
OIG
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-g3085-702878d80bd2390c931c1e2b23aa872d32fa68873ac6b2a28c40fdd3749c542d3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Thu Oct 10 18:49:58 EDT 2024
Sat Aug 24 01:04:32 EDT 2024
Wed Jan 17 05:02:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 33
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3085-702878d80bd2390c931c1e2b23aa872d32fa68873ac6b2a28c40fdd3749c542d3
Notes State Key Project of Fundamental Research of China - No. 2011CB932403
ark:/67375/WNG-NFV66QVL-8
National Natural Science Foundation of China - No. 21475007; No. 21275015
Fundamental Research Funds for the Central Universities - No. YS1406
istex:823F39E752D61C8EBD48FB9723C4F1304E673172
ArticleID:SMLL201500845
PQID 1708972532
PQPubID 1046358
PageCount 8
ParticipantIDs proquest_journals_1708972532
wiley_primary_10_1002_smll_201500845_SMLL201500845
istex_primary_ark_67375_WNG_NFV66QVL_8
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationTitleAlternate Small
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References N. Goubet, C. Yan, D. Polli, H. Portales, I. Arfaoui, G. Cerullo, M. P. Pileni, Nano Lett. 2013, 13, 504.
M. Zhou, R. Zhang, M. A. Huang, W. Lu, S. L. Song, M. P. Melancon, M. Tian, D. Liang, C. Li, J. Am. Chem. Soc. 2010, 132, 15351.
S. Huang, M. Bai, L. Y. Wang, Sci. Rep. 2013, 3, 2023.
Q. W. Tian, F. R. Jiang, R. J. Zou, Q. Liu, Z. G. Chen, M. F. Zhu, S. P. Yang, J. L. Wang, J. H. Wang, J. Q. Hu, ACS Nano 2011, 5, 9761.
b) H. Y. Liu, D. Chen, L. L. Li, T. L. Liu, L. F. Tan, X. L. Wu, F. Q. Tang, Angew. Chem. Int. Ed. 2011, 50, 891.
C. M. Hessel, V. P. Pattani, M. Rasch, M. G. Panthani, B. Koo, J. W. Tunnell, B. A. Korgel, Nano Lett. 2011, 11, 2560.
R. C. Lv, P. P. Yang, F. He, S. L. Gai, G. X. Yang, J. Lin, Chem. Mater. 2015, 27, 483.
b) Q. W. Tian, J. Q. Hu, Y. H. Zhu, R. J. Zou, Z. G. Chen, S. P. Yang, R. W. Li, Q. Q. Su, Y. Han, X. G. Liu, J. Am. Chem. Soc. 2013, 135, 8571.
P. Huang, J. Lin, W. W. Li, P. F. Rong, Z. Wang, S. J. Wang, X. P. Wang, X. L. Sun, M. Aronova, G. Niu, R. D. Leapman, Z. H. Nie, X. Y. Chen, Angew. Chem. Int. Ed. 2013, 52, 13958.
E. Y. Ye, K. Y. Win, H. R. Tan, M. Lin, C. P. Teng, A. Mlayah, M. Y. Han, J. Am. Chem. Soc. 2011, 133, 8506.
a) L. Y. Wang, J. W. Bai, Y. J. Li, Y. Huang, Angew. Chem. Int. Ed. 2008, 47, 2439
S. Ghosh, S. Dutta, E. Gomes, D. Carroll, R. D'Agostino, J. Olson, M. Guthold, W. H. Gmeiner, ACS Nano 2009, 3, 2667.
Y. X. Ma, H. Li, L. Y. Wang, J. Mater. Chem. 2012, 22, 18761.
M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, Y. N. Xia, Chem. Soc. Rev. 2006, 35, 1084.
R. Weissleder, Nat. Biotechnol. 2001, 19, 316.
a) N. Li, P. X. Zhao, D. Astruc, Angew. Chem. Int. Ed. 2014, 53, 1756
D. K. Roper, W. Ahn, M. Hoepfner, J. Phys. Chem. C 2007, 111, 3636.
b) S. Adams, D. Thai, X. Mascona, A. M. Schwartzberg, J. Z. Zhang, Chem. Mater. 2014, 26, 6805.
L. Cheng, J. J. Liu, X. Gu, H. Gong, X. Z. Shi, T. Liu, C. Wang, X. Y. Wang, G. Liu, H. Y. Xing, W. B. Bu, B. Q. Sun, Z. Liu, Adv. Mater. 2014, 26, 1886.
J. T. Robinson, K. Welsher, S. M. Tabakman, S. P. Sherlock, H. L. Wang, R. Luong, H. J. Dai, Nano Res. 2010, 3, 779.
B. Li, Q. Wang, R. J. Zou, X. J. Liu, K. B. Xu, W. Y. Li, J. Q. Hu, Nanoscale 2014, 6, 3274.
a) W. Y. Yin, L. Yan, J. Yu, G. Tian, L. J. Zhou, X. P. Zheng, X. Zhang, Y. Yong, J. Li, Z. J. Gu, Y. L. Zhao, ACS Nano 2014, 8, 6922
L. R. Guo, I. Panderi, D. D. Yan, K. Szulak, Y. J. Li, Y. T. Chen, H. Ma, D. B. Niesen, N. Seeram, A. Ahmed, B. F. Yan, D. Pantazatos, W. Lu, ACS Nano 2013, 7, 8780.
b) Z. B. Zhuang, Q. Peng, B. Zhang, Y. D. Li, J. Am. Chem. Soc. 2008, 130, 10482.
M. S. Yavuz, Y. Y. Cheng, J. Y. Chen, C. M. Cobley, Q. Zhang, M. Rycenga, J. W. Xie, C. Kim, K. H. Song, A. G. Schwartz, L. H. V. Wang, Y. N. Xia, Nat. Mater. 2009, 8, 935.
S. S. Chou, B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, V. P. Dravid, Angew. Chem. Int. Ed. 2013, 52, 4160.
H. J. Chen, L. Shao, T. A. Ming, Z. H. Sun, C. M. Zhao, B. C. Yang, J. F. Wang, Small 2010, 6, 2272.
X. J. Wang, C. Wang, L. Cheng, S. T. Lee, Z. Liu, J. Am. Chem. Soc. 2012, 134, 7414.
a) J. T. Robinson, S. M. Tabakman, Y. Y. Liang, H. L. Wang, H. S. Casalongue, D. Vinh, H. J. Dai, J. Am. Chem. Soc. 2011, 133, 6825
b) J. J. Shi, L. Wang, J. Zhang, R. Ma, J. Gao, Y. Liu, C. F. Zhang, Z. Z. Zhang, Biomaterials 2014, 35, 5847.
a) E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray, Nature 2006, 439, 55
b) S. G. Wang, K. Li, Y. Chen, H. R. Chen, M. Ma, J. W. Feng, Q. H. Zhao, J. L. Shi, Biomaterials 2015, 39, 206.
a) Z. B. Zha, X. L. Yue, Q. S. Ren, Z. F. Dai, Adv. Mater. 2013, 25, 777
2013; 3
2006; 35
2013 2013; 25 135
2014; 26
2011; 11
2013; 7
2011; 5
2011; 133
2008 2011; 47 50
2015; 27
2012; 134
2013; 13
2011 2014; 133 35
2007; 111
2013; 52
2010; 132
2001; 19
2009; 8
2006 2008; 439 130
2009; 3
2010; 3
2014 2015; 8 39
2014 2014; 53 26
2014; 6
2012; 22
2010; 6
References_xml – volume: 19
  start-page: 316
  year: 2001
  publication-title: Nat. Biotechnol.
– volume: 439 130
  start-page: 55 10482
  year: 2006 2008
  publication-title: Nature J. Am. Chem. Soc.
– volume: 52
  start-page: 13958
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 779
  year: 2010
  publication-title: Nano Res.
– volume: 5
  start-page: 9761
  year: 2011
  publication-title: ACS Nano
– volume: 13
  start-page: 504
  year: 2013
  publication-title: Nano Lett.
– volume: 47 50
  start-page: 2439 891
  year: 2008 2011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem. Int. Ed.
– volume: 35
  start-page: 1084
  year: 2006
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 2667
  year: 2009
  publication-title: ACS Nano
– volume: 22
  start-page: 18761
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 3
  start-page: 2023
  year: 2013
  publication-title: Sci. Rep.
– volume: 6
  start-page: 3274
  year: 2014
  publication-title: Nanoscale
– volume: 133 35
  start-page: 6825 5847
  year: 2011 2014
  publication-title: J. Am. Chem. Soc. Biomaterials
– volume: 26
  start-page: 1886
  year: 2014
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2272
  year: 2010
  publication-title: Small
– volume: 8
  start-page: 935
  year: 2009
  publication-title: Nat. Mater.
– volume: 52
  start-page: 4160
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 53 26
  start-page: 1756 6805
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Chem. Mater.
– volume: 11
  start-page: 2560
  year: 2011
  publication-title: Nano Lett.
– volume: 7
  start-page: 8780
  year: 2013
  publication-title: ACS Nano
– volume: 27
  start-page: 483
  year: 2015
  publication-title: Chem. Mater.
– volume: 133
  start-page: 8506
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 7414
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 15351
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 25 135
  start-page: 777 8571
  year: 2013 2013
  publication-title: Adv. Mater. J. Am. Chem. Soc.
– volume: 8 39
  start-page: 6922 206
  year: 2014 2015
  publication-title: ACS Nano Biomaterials
– volume: 111
  start-page: 3636
  year: 2007
  publication-title: J. Phys. Chem. C
SSID ssj0031247
Score 2.507445
Snippet According to the simulation, the self‐assembly of Cu7S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized...
According to the simulation, the self-assembly of Cu7S4 nanocrystals would enhance the photothermal conversion efficiency (PCE) because of the localized...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 4183
SubjectTerms copper chalcogenides
copper sulfides
copper sulfides, nanostructures
Efficiency
nanostructures
Nanotechnology
photothermal efficiency
photothermal therapy
Title Cu7S4 Nanosuperlattices with Greatly Enhanced Photothermal Efficiency
URI https://api.istex.fr/ark:/67375/WNG-NFV66QVL-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201500845
https://www.proquest.com/docview/1708972532
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4MJz3424ii2cF4G4y2W7ujISAxSFQEuTXtfkgCDMJGov719nUwwaPetizttte-vm9v7_uK0A1kGqn-ULZD6TKb-o60pceJHcUam4cazcUM2MiPXa_dpw9Dd7jB4s_1IYqEG3iGWa_BwaVKaz-ioel0Ar8ONKBxOAWWOajpASp6KfSjiA5eZncVHbNsEN5aqzY6uLbdXENTsOrHFs7cRKsm3LQOkFw_aF5lMq4uM1UNvn5pOP7nTQ7R_gqLWnf55DlCO1FyjPY2FApPULOxZD1q6TV4li7nkPvLoFoutSB_a5n8wuTTaiYjU0hgPY1mmaF0TXW_TaNOAdTOU9RvNV8bbXu184L9ToCNwDTqYDzkjgox8Z3AJ_WgHmGFiZSc4ZDgWI8oZ0QGnsIS84A6cRgSRv3Apfr6GSolsyQ6Rxbnksaecj0qAxrKSPlYgxIFsVnpW3hldGssL-a5uoaQizEUmzFXvHXvRbc18LznQUfwMqqsh0as_CwVdeZwn2GX4DLCxsZFP7keMxZgXVFYV_QeO53i7OIvjS7RLhznhWYVVMoWy-hKI5NMXZvZ9w3ha9rX
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsOSBugdR2YueIoKVAWrHDzbKzUAm6iKYS8PV4nDYsRzgmkZ1k7PG8vMw8A-wh08jMh7KbKJ-7LPSUqwJB3TQz2DwxaC7jWI3cbAWNO3b-6I-zCbEWptCHKAk39Ay7XqODIyF9-KUaOui84L8Dg2g8wfxJmDY-76NvnlyXClLUhC-7v4qJWi5Kb411Gz1y-LO9Aado17cfSPM7XrUBp74AevyoRZ7J88Ew1wfxxy8Vx3-9yyLMj-Coc1TMnyWYSLvLMPdNpHAFasdDfsMcswz3BsM-0n85JswNHKRwHUsxvLw7tW7b5hI4l-1ebqu6OqbfmhWowOrOVbir126PG-5o8wX3iWJBAjfAg4tEeDohNPTikFbjako0oUoJThJKMjOoglMVB5ooImLmZUlCOQtjn5nrazDV7XXTdXCEUCwLtB8wFbNEpTokBpdoDM_a3CKowL41vewXAhtSvT5jvhn35UPrVLbq90FwdR9JUYGt8djIkasNZJV7IuTEp6QCxBq57KeQZCYSrStL68qbZhSVRxt_abQLM43bZiSjs9bFJszi-SLvbAum8tdhum2ASq537FT8BK1E3vc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4tICH2wBtteSw5IG6B1HZs54igXRZKxRtulh0nVALaiqYS7K9fj9OGwhGOSeTX2OP5PJn5DLCDnkbmDsqh1bEIWRLpUHNJwyx32Nw6NJcLzEY-a_PjG3ZyH99PZPGX_BCVww01w-_XqOB9m--_k4YOnp_w14EDNJFk8RTMME4JHr-OLisCKeqsl79exRmtEJm3xrSNEdn_WN5hUxTr6wegOQlXvb1pLoAe97QMM3ncGxZmL_33icTxO0NZhPkRGA0OytWzBD-y7jL8nKAoXIHG4VBcscBtwr3BsI_OvwLD5QYBOnAD72B4egsa3Y6PJAjOO73C53Q9u3obnp4CcztX4abZuD48DkdXL4QPFNMRhIMdQloZGUtoEqUJraf1jBhCtZaCWEpyN6VSUJ1yQzSRKYtya6lgSRoz930Npru9bvYLAik1y7mJOdMpszozCXGoxKBxNq4JXoNdL3nVL-k1lH55xGgzEau79h_Vbt5yfnHbUrIGm-OpUSNFG6i6iGQiSExJDYiXcVVPSchMFEpXVdJVV2etVvW0_pVC2zB7ftRUrb_t0w2Yw9dl0NkmTBcvw2zLoZTC_PYL8T8o6N2m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cu7S4+Nanosuperlattices+with+Greatly+Enhanced+Photothermal+Efficiency&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Cui%2C+Jiabin&rft.au=Jiang%2C+Rui&rft.au=Xu%2C+Suying&rft.au=Hu%2C+Gaofei&rft.date=2015-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=11&rft.issue=33&rft.spage=4183&rft_id=info:doi/10.1002%2Fsmll.201500845&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3795387871
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon