Comparison of Pine Bark, Biochar and Zeolite as Sorbents for NH4+-N Removal from Water

To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+‐N removal from wastewaters. Two batch...

Full description

Saved in:
Bibliographic Details
Published inClean : soil, air, water Vol. 43; no. 1; pp. 86 - 91
Main Authors Hina, Kiran, Hedley, Mike, Camps-Arbestain, Marta, Hanly, James
Format Journal Article
LanguageEnglish
Published Weinheim Blackwell Publishing Ltd 01.01.2015
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+‐N removal from wastewaters. Two batch studies were conducted to compare (i) sorption of NH4+‐N on pine biochars with different particle sizes and (ii) sorption of NH4+‐N on pine biochar in comparison to alternative sorbents, zeolite (clinoptilolite) and pine bark. Decreasing the particle size of the feedstock (pine chip), or the biochar by crushing after pyrolysis, did not affect its NH4+‐N sorption properties. Sorption of NH4+‐N on comparative sorbents, when added at a dose of 39 mg NH4+‐N L−1, followed the order zeolite > biochar > bark. Zeolite proved to be the most efficient sorbent for NH4+‐N g−1 removal followed by biochar and bark. Biochar has the potential to be used as a cost effective commercial sorbent for removing NH4+‐N from waste streams. Pine biochar with a cation exchange capacity (CEC) of 17 cmolc kg−1, intermediate between pine bark (CEC 6.4 cmolc kg−1) and zeolite (clinoptilolite, CEC (27.5 cmolc kg−1) were capable removing NH4+ from NH4+‐rich water. Sorption of NH4+‐N from a solution of 39 mg NH4+‐N L−1 followed the same order as CEC: zeolite > biochar > bark. Biochar has potential to be used as an NH4+‐N adsorbent in wastewater treatment.
AbstractList To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+‐N removal from wastewaters. Two batch studies were conducted to compare (i) sorption of NH4+‐N on pine biochars with different particle sizes and (ii) sorption of NH4+‐N on pine biochar in comparison to alternative sorbents, zeolite (clinoptilolite) and pine bark. Decreasing the particle size of the feedstock (pine chip), or the biochar by crushing after pyrolysis, did not affect its NH4+‐N sorption properties. Sorption of NH4+‐N on comparative sorbents, when added at a dose of 39 mg NH4+‐N L−1, followed the order zeolite > biochar > bark. Zeolite proved to be the most efficient sorbent for NH4+‐N g−1 removal followed by biochar and bark. Biochar has the potential to be used as a cost effective commercial sorbent for removing NH4+‐N from waste streams. Pine biochar with a cation exchange capacity (CEC) of 17 cmolc kg−1, intermediate between pine bark (CEC 6.4 cmolc kg−1) and zeolite (clinoptilolite, CEC (27.5 cmolc kg−1) were capable removing NH4+ from NH4+‐rich water. Sorption of NH4+‐N from a solution of 39 mg NH4+‐N L−1 followed the same order as CEC: zeolite > biochar > bark. Biochar has potential to be used as an NH4+‐N adsorbent in wastewater treatment.
To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+-N removal from wastewaters. Two batch studies were conducted to compare (i) sorption of NH4+-N on pine biochars with different particle sizes and (ii) sorption of NH4+-N on pine biochar in comparison to alternative sorbents, zeolite (clinoptilolite) and pine bark. Decreasing the particle size of the feedstock (pine chip), or the biochar by crushing after pyrolysis, did not affect its NH4+-N sorption properties. Sorption of NH4+-N on comparative sorbents, when added at a dose of 39mg NH4+-NL-1, followed the order zeolite>biochar>bark. Zeolite proved to be the most efficient sorbent for NH4+-Ng-1 removal followed by biochar and bark. Biochar has the potential to be used as a cost effective commercial sorbent for removing NH4+-N from waste streams.
Author Camps-Arbestain, Marta
Hanly, James
Hina, Kiran
Hedley, Mike
Author_xml – sequence: 1
  givenname: Kiran
  surname: Hina
  fullname: Hina, Kiran
  email: kiran_hina@rocketmail.com
  organization: Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
– sequence: 2
  givenname: Mike
  surname: Hedley
  fullname: Hedley, Mike
  organization: Institute of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand
– sequence: 3
  givenname: Marta
  surname: Camps-Arbestain
  fullname: Camps-Arbestain, Marta
  organization: Institute of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand
– sequence: 4
  givenname: James
  surname: Hanly
  fullname: Hanly, James
  organization: Institute of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand
BookMark eNo9kNFLwzAQh4MouE1ffQ74qJ1Jkybto6tzE0YVNx34ErI00c42mWmn7r-3Y9KH4-7g-93B1wfH1lkNwAVGQ4xQeKNKbYchwgQhFodHoIdjRgLEWHLczRE6Bf26XrcIwgz3wGvqqo30Re0sdAY-FVbDkfSf13BUOPUhPZQ2h2_alUWjoazh3PmVtk0NjfMwm9KrIIPPunLfsoTGuwouZaP9GTgxsqz1-X8fgJf78SKdBrPHyUN6OwveCYrDII8QVW0lSK5ySlTOE8PVKqGG0JgZFUuqNVeR1pgnlFATI5XkhnGmEm5CQwbg8nB3493XVteNWLutt-1LgRmNYkwoYy2VHKifotQ7sfFFJf1OYCT24sRenOjEiXQ2zrqtzQaHbFE3-rfLtooE44RHYplNBEXx3XyxmApM_gCTnXNG
ContentType Journal Article
Copyright 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1002/clen.201300682
DatabaseName Istex
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1863-0669
EndPage 91
ExternalDocumentID 3559113211
CLEN201300682
ark_67375_WNG_408DSTTH_1
Genre article
GrantInformation_xml – fundername: Higher Education Commission
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WUPDE
WXSBR
WYISQ
XG1
XV2
~02
~IA
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
7QH
7ST
7UA
AEYWJ
AGQPQ
AGYGG
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-g3082-d504c50490abd43cd79f7cb94f3486fc8a4ee7c5ee179434f80c9df676c97f2f3
IEDL.DBID DR2
ISSN 1863-0650
IngestDate Mon Jun 30 06:11:42 EDT 2025
Wed Jan 22 17:02:51 EST 2025
Wed Oct 30 09:53:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3082-d504c50490abd43cd79f7cb94f3486fc8a4ee7c5ee179434f80c9df676c97f2f3
Notes ArticleID:CLEN201300682
Higher Education Commission
ark:/67375/WNG-408DSTTH-1
istex:D9455024F59CD6673694FA2003F93EBC16954DDD
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1645813466
PQPubID 1006521
PageCount 6
ParticipantIDs proquest_journals_1645813466
wiley_primary_10_1002_clen_201300682_CLEN201300682
istex_primary_ark_67375_WNG_408DSTTH_1
PublicationCentury 2000
PublicationDate 2015-01
January 2015
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Clean : soil, air, water
PublicationTitleAlternate Clean Soil Air Water
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References A. Demir, E. Debik, A. Gunay, Ammonium Removal from Aqueous Solution by Ion Exchange Using Packed Bed Natural Zeolite, Water SA 1998, 28, 329-335.
E. Cooney, N. Booker, D. Shallcross, G. Stevens, Ammonia Removal from Wastewaters Using Natural Australian Zeolite, II. Pilot-Scale Study Using Continuous Packed Column Process, Sep. Sci. Technol. 1999, 34 (14), 2741-2760.
C. Petit, K. Kante, T. J. Bandosz, The Role of Sulphur Containing Groups in Ammonia Retention on Activated Carbons, Carbon 2010, 48, 654-667.
B. Chen, D. Zhou, L. Zhu, Transitional Adsorption and Partition of Non-Polar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures, Environ. Sci. Technol. 2008, 42, 5137-5143.
N. Bolan, L. Wong, D. Adriano, Nutrient Removal from Farm Effluents, Bioresour. Technol. 2004, 94 (3), 251-260.
A. Hedström, Ion Exchange of Ammonium in Zeolites: A Literature Review, J. Environ. Eng. 2001, 127, 673-668.
C. Hollister, J. Bisogni, J. Lehmann, Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover (Zea mays L.) and Oak Wood, J. Environ. Qual. 2013, 42 (1), 137-144.
N. Matsue, K. Wada, New Equilibrium Method for Cation-Exchange Capacity Measurement, Soil Sci. Soc. Am. J. 1985, 49, 574-578.
B. Chen, Z. Chen, S. Lv, A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate, Bioresour. Technol. 2011, 102, 716-723.
D. W. Blowes, W. D. Robertson, C. J. Ptacek, C. Merkley, Removal of Agricultural Nitrate from Tile Drainage Effluent Water Using in Line Bioreactors, J. Contam. Hydrol. 1994, 15, 207-221.
D. Sarkhot, T. Ghezzehei, A. Berhe, Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent, J. Environ. Qual. 2013, 42 (5), 1545-1554.
T. Perrin, D. Drost, J. Boettinger, J. Norton, Ammonium-Loaded Clinoptilolite: A Slow-Release Nitrogen Fertilizer for Sweet Corn, J. Plant Nutr. 1998, 21 (3), 515-530.
M. Ahmedna, W. E. Marsall, R. M. Rao, Production of Granular Activated Carbon from Select Agricultural By-Products and Evaluation of Their Physical, Chemical and Adsorption Properties, Bioresour. Technol. 1998, 71, 113-123.
M. Kithome, J. W. Paul, L. M. Lavkulich, A. A. Bomke, Effect of pH on Ammonium Adsorption by Natural Zeolite Clinoptilolite, Commun. Soil Sci. Plant Anal. 1999, 30, 1417-1430.
B. Chen, Z. Chen, Sorption of Naphthalene and 1-Naphthol by Biochars of Orange Peels with Different Pyrolytic Temperatures, Chemosphere 2009, 76, 127-133.
S. Wieczorek, Assessing the Influence of Adsorbent Bed (Tree Bark) Parameters on the Reduction of Ammonia Emissions from Animal Husbandry, Pol. J. Environ. Stud. 2008, 17 (1), 147-154.
L. A. Schipper, M. Vojvodic-Vukovic, Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust, Ecol. Eng. 2000, 14, 269-278.
X. Cao, L. Ma, B. Gao, W. Harris, Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine, Environ. Sci. Technol. 2009, 43, 3285-3291.
R. Calvelo-Pereira, J. Kaal, M. Camps-Arbestain, R. Pardo Lorenzo W. Aitkenhead, M. Hedley, F. Macias, et al., Contribution to the Chemical Characterisation of Biochars for the Prediction of Their Carbon Lability, Org. Geochem. 2011, 42, 1331-1342.
M. Nguyen, C. Tanner, Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites, N. Z. J. Agric. Res. 1998, 41, 427-446.
D. Wen, Y. Ho, X. Tang, Comparative Sorption Kinetic Studies of Ammonium onto Zeolite, J. Hazard. Mater. 2006, 133 (1-3), 252-256.
K. Hina, P. Bishop, M. Camps Arbestain R. Calvelo-Pereira, J. A. Macia-Agullo, J. Hindmarsh, J. A. Hanly, et al., Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks, Aust. J. Soil Res. 2010, 48, 606-615.
M. Sevilla, A. B. Fuertes, Graphitic Carbon Nanostructures from Cellulose, Chem. Phys. Lett. 2010, 490, 63-68.
2011; 102
1998; 28
2004; 94
2010; 48
2009; 76
2009; 43
2000; 14
2011
2013; 42
2008; 17
2009
2011; 42
1999; 34
1996
1999; 30
1994; 15
2008; 42
1998; 71
2010; 490
1998; 41
1998; 21
1985; 49
2006; 133
2001; 127
References_xml – reference: C. Petit, K. Kante, T. J. Bandosz, The Role of Sulphur Containing Groups in Ammonia Retention on Activated Carbons, Carbon 2010, 48, 654-667.
– reference: X. Cao, L. Ma, B. Gao, W. Harris, Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine, Environ. Sci. Technol. 2009, 43, 3285-3291.
– reference: C. Hollister, J. Bisogni, J. Lehmann, Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover (Zea mays L.) and Oak Wood, J. Environ. Qual. 2013, 42 (1), 137-144.
– reference: N. Bolan, L. Wong, D. Adriano, Nutrient Removal from Farm Effluents, Bioresour. Technol. 2004, 94 (3), 251-260.
– reference: B. Chen, Z. Chen, Sorption of Naphthalene and 1-Naphthol by Biochars of Orange Peels with Different Pyrolytic Temperatures, Chemosphere 2009, 76, 127-133.
– reference: K. Hina, P. Bishop, M. Camps Arbestain R. Calvelo-Pereira, J. A. Macia-Agullo, J. Hindmarsh, J. A. Hanly, et al., Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks, Aust. J. Soil Res. 2010, 48, 606-615.
– reference: B. Chen, Z. Chen, S. Lv, A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate, Bioresour. Technol. 2011, 102, 716-723.
– reference: B. Chen, D. Zhou, L. Zhu, Transitional Adsorption and Partition of Non-Polar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures, Environ. Sci. Technol. 2008, 42, 5137-5143.
– reference: E. Cooney, N. Booker, D. Shallcross, G. Stevens, Ammonia Removal from Wastewaters Using Natural Australian Zeolite, II. Pilot-Scale Study Using Continuous Packed Column Process, Sep. Sci. Technol. 1999, 34 (14), 2741-2760.
– reference: A. Demir, E. Debik, A. Gunay, Ammonium Removal from Aqueous Solution by Ion Exchange Using Packed Bed Natural Zeolite, Water SA 1998, 28, 329-335.
– reference: M. Ahmedna, W. E. Marsall, R. M. Rao, Production of Granular Activated Carbon from Select Agricultural By-Products and Evaluation of Their Physical, Chemical and Adsorption Properties, Bioresour. Technol. 1998, 71, 113-123.
– reference: S. Wieczorek, Assessing the Influence of Adsorbent Bed (Tree Bark) Parameters on the Reduction of Ammonia Emissions from Animal Husbandry, Pol. J. Environ. Stud. 2008, 17 (1), 147-154.
– reference: M. Kithome, J. W. Paul, L. M. Lavkulich, A. A. Bomke, Effect of pH on Ammonium Adsorption by Natural Zeolite Clinoptilolite, Commun. Soil Sci. Plant Anal. 1999, 30, 1417-1430.
– reference: D. Sarkhot, T. Ghezzehei, A. Berhe, Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent, J. Environ. Qual. 2013, 42 (5), 1545-1554.
– reference: L. A. Schipper, M. Vojvodic-Vukovic, Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust, Ecol. Eng. 2000, 14, 269-278.
– reference: D. Wen, Y. Ho, X. Tang, Comparative Sorption Kinetic Studies of Ammonium onto Zeolite, J. Hazard. Mater. 2006, 133 (1-3), 252-256.
– reference: M. Sevilla, A. B. Fuertes, Graphitic Carbon Nanostructures from Cellulose, Chem. Phys. Lett. 2010, 490, 63-68.
– reference: N. Matsue, K. Wada, New Equilibrium Method for Cation-Exchange Capacity Measurement, Soil Sci. Soc. Am. J. 1985, 49, 574-578.
– reference: D. W. Blowes, W. D. Robertson, C. J. Ptacek, C. Merkley, Removal of Agricultural Nitrate from Tile Drainage Effluent Water Using in Line Bioreactors, J. Contam. Hydrol. 1994, 15, 207-221.
– reference: M. Nguyen, C. Tanner, Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites, N. Z. J. Agric. Res. 1998, 41, 427-446.
– reference: T. Perrin, D. Drost, J. Boettinger, J. Norton, Ammonium-Loaded Clinoptilolite: A Slow-Release Nitrogen Fertilizer for Sweet Corn, J. Plant Nutr. 1998, 21 (3), 515-530.
– reference: R. Calvelo-Pereira, J. Kaal, M. Camps-Arbestain, R. Pardo Lorenzo W. Aitkenhead, M. Hedley, F. Macias, et al., Contribution to the Chemical Characterisation of Biochars for the Prediction of Their Carbon Lability, Org. Geochem. 2011, 42, 1331-1342.
– reference: A. Hedström, Ion Exchange of Ammonium in Zeolites: A Literature Review, J. Environ. Eng. 2001, 127, 673-668.
– volume: 28
  start-page: 329
  year: 1998
  end-page: 335
  article-title: Ammonium Removal from Aqueous Solution by Ion Exchange Using Packed Bed Natural Zeolite
  publication-title: Water SA
– volume: 17
  start-page: 147
  issue: 1
  year: 2008
  end-page: 154
  article-title: Assessing the Influence of Adsorbent Bed (Tree Bark) Parameters on the Reduction of Ammonia Emissions from Animal Husbandry
  publication-title: Pol. J. Environ. Stud.
– volume: 94
  start-page: 251
  issue: 3
  year: 2004
  end-page: 260
  article-title: Nutrient Removal from Farm Effluents
  publication-title: Bioresour. Technol.
– volume: 30
  start-page: 1417
  year: 1999
  end-page: 1430
  article-title: Effect of pH on Ammonium Adsorption by Natural Zeolite Clinoptilolite
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 48
  start-page: 654
  year: 2010
  end-page: 667
  article-title: The Role of Sulphur Containing Groups in Ammonia Retention on Activated Carbons
  publication-title: Carbon
– volume: 127
  start-page: 673
  year: 2001
  end-page: 668
  article-title: Ion Exchange of Ammonium in Zeolites: A Literature Review
  publication-title: J. Environ. Eng.
– volume: 490
  start-page: 63
  year: 2010
  end-page: 68
  article-title: Graphitic Carbon Nanostructures from Cellulose
  publication-title: Chem. Phys. Lett.
– year: 1996
– volume: 42
  start-page: 5137
  year: 2008
  end-page: 5143
  article-title: Transitional Adsorption and Partition of Non‐Polar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures
  publication-title: Environ. Sci. Technol.
– volume: 76
  start-page: 127
  year: 2009
  end-page: 133
  article-title: Sorption of Naphthalene and 1‐Naphthol by Biochars of Orange Peels with Different Pyrolytic Temperatures
  publication-title: Chemosphere
– volume: 42
  start-page: 1331
  year: 2011
  end-page: 1342
  article-title: Contribution to the Chemical Characterisation of Biochars for the Prediction of Their Carbon Lability
  publication-title: Org. Geochem.
– volume: 34
  start-page: 2741
  issue: 14
  year: 1999
  end-page: 2760
  article-title: Ammonia Removal from Wastewaters Using Natural Australian Zeolite, II. Pilot‐Scale Study Using Continuous Packed Column Process
  publication-title: Sep. Sci. Technol.
– volume: 14
  start-page: 269
  year: 2000
  end-page: 278
  article-title: Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust
  publication-title: Ecol. Eng.
– volume: 133
  start-page: 252
  issue: 1–3
  year: 2006
  end-page: 256
  article-title: Comparative Sorption Kinetic Studies of Ammonium onto Zeolite
  publication-title: J. Hazard. Mater.
– start-page: 1
  year: 2011
  end-page: 86
– volume: 48
  start-page: 606
  year: 2010
  end-page: 615
  article-title: Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks
  publication-title: Aust. J. Soil Res.
– volume: 71
  start-page: 113
  year: 1998
  end-page: 123
  article-title: Production of Granular Activated Carbon from Select Agricultural By‐Products and Evaluation of Their Physical, Chemical and Adsorption Properties
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 3285
  year: 2009
  end-page: 3291
  article-title: Dairy‐Manure Derived Biochar Effectively Sorbs Lead and Atrazine
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 716
  year: 2011
  end-page: 723
  article-title: A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate
  publication-title: Bioresour. Technol.
– volume: 21
  start-page: 515
  issue: 3
  year: 1998
  end-page: 530
  article-title: Ammonium‐Loaded Clinoptilolite: A Slow‐Release Nitrogen Fertilizer for Sweet Corn
  publication-title: J. Plant Nutr.
– volume: 42
  start-page: 1545
  issue: 5
  year: 2013
  end-page: 1554
  article-title: Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent
  publication-title: J. Environ. Qual.
– volume: 49
  start-page: 574
  year: 1985
  end-page: 578
  article-title: New Equilibrium Method for Cation‐Exchange Capacity Measurement
  publication-title: Soil Sci. Soc. Am. J.
– volume: 42
  start-page: 137
  issue: 1
  year: 2013
  end-page: 144
  article-title: Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover ( L.) and Oak Wood
  publication-title: J. Environ. Qual.
– volume: 15
  start-page: 207
  year: 1994
  end-page: 221
  article-title: Removal of Agricultural Nitrate from Tile Drainage Effluent Water Using in Line Bioreactors
  publication-title: J. Contam. Hydrol.
– start-page: 107
  year: 2009
  end-page: 117
– volume: 41
  start-page: 427
  year: 1998
  end-page: 446
  article-title: Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites
  publication-title: N. Z. J. Agric. Res.
SSID ssj0060161
Score 2.1964798
Snippet To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic...
SourceID proquest
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 86
SubjectTerms Ammonium sorption
Biomass
Clinoptilolite
Sorbents
Wastewater treatment
Zeolites
Title Comparison of Pine Bark, Biochar and Zeolite as Sorbents for NH4+-N Removal from Water
URI https://api.istex.fr/ark:/67375/WNG-408DSTTH-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fclen.201300682
https://www.proquest.com/docview/1645813466
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMctxAQD34jyJQ-IBQJpYjvJCKWlQhAhKKJisWzHhxCiQW2REBOPwDPyJPiSNhRG2BJFtpKzz_nbvvuZkB0B4AcAgWeY4B4DnXjKAvOccvCFFVbHRS7MRSraN-ysy7sTWfwlH6JacEPPKMZrdHClB4ff0FBnVeSX4naMiHEQxoAtVEVXFT8KUSPFjCvGzUqnRcbURj84_FncSVO06usPnTmpVovfTWueqPGLllEmjwcvQ31g3n4xHP_zJQtkbqRF6VHZeRbJlO0tkdkJQuEy6TaqcwppDvTSPaHHqv-4T48fcszYoqqX0TuLUXSWqgG9zvsaYzOoE8M0bbO9z_ePlF7Zp9x1aYrJLPTWydv-CrlpNTuNtjc6jMG7R6KNl3GfGY77hEpnLDRZlEBkdMIgZLEAEytmbWS4tSVzDmLfJBmISJgkggDCVTLdy3t2jVDgdXCOD1plTk8onRjObGBdLfUshDCrkd2iMeRzCdyQ7rMw_izi8jY9lcyPT647nbas18jmuLXkyPUG0s3_eFwPmRA1EhRmr-opEc2BRIPLyuCycd5Mq7v1vxTaIDPumpdLM5tketh_sVtOrAz1dtEhvwBy6-Ff
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6KsPiAuEEgT20mOUJYAJUJQBOJixY4HoYoGlSIhTnwC38iX4EnasBzhGEe24rHHeTOeeUPIugBwPQDP0Uxwh4GKnNQAcyxycIURRoVFLsxZIuIrdnLDB9GEmAtT8kNUDjfUjOK8RgVHh_TOF2uoFSsSmOJ9jAjtKTyCZb0Lq-qiYpBCspHC5grxutKikQFvo-vt_OxvwSnK9eUH0vyOV4sfzuEkUYNPLeNM2tvPPbWtX3-xOP5rLlNkog9H6W65f6bJkOnMkPFvJIWz5KZRlSqkOdBz-4bupd32Ft27zzFpi6adjN4aDKQzNH2il3lXYXgGtXiYJjHb_Hh7T-iFecjtrqaYz0KvLcLtzpGrw4NWI3b69RicOyS1cTLuMs3xqjBVGfN1FkQQaBUx8FkoQIcpMybQ3JiSdg5CV0cZiEDoKAAP_Hky3Mk7ZoFQ4HWwug8qzSykSFWkOTOesaPUMx_8rEY2itWQjyXnhrTTwhC0gMvr5EgyN9y_bLViWa-R5cFyyb72PUlrAvKw7jMhasQr5F6NU7I0exIFLiuBy0bzIKmeFv_SaY2Mxq2zpmweJ6dLZMy289JTs0yGe91ns2KxS0-tFrvzE5le5Xo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQkVA58CpV0wbwAXGBbTe7ttd7JC_SUlZVHkrUi-XXIBSRjfKQECd-Ar-RX4K9myxJj-W4XtmyxzP2Z8_MZ4TeMoAwAogCTRgNCKg0kBZI4JBDyCyzihe5MF8y1huRqwmd7GTxl_wQ1YWbt4xivfYGPjdw8Y801EnV85d6dwzjbhF-SFjIvV63-xWBlOcaKY5c3HsrHRjZ0jaG0cV-fYdNvVh_7AHNXbha7Dfdp0hue1qGmUzP1yt1rn_eIXH8n6E8Q082YBR_LLXnOXpgZy_Q4x2KwiM0aVUPFeIc8I37g5tyMf2Am99yn7KF5czgW-vD6CyWSzzIF8oHZ2CHhnHWI-___Pqd4b79njudxj6bBY8dvl28RKNuZ9jqBZvXGIKvntImMDQkmnpHoVSGxNokKSRapQRiwhloLom1iabWlqRzwEOdGmAJ02kCEcTH6GCWz-wJwkAb4CwflDQOUEiVakpsZF0rDRNDbGroXTEZYl4ybgg3LB-AllAxzj4JEvL2YDjsiUYN1bezJTa2txTuAEh5IyaM1VBUiL1qp-RojoQXuKgELlrXnaz6Or1PpTfo0U27K64vs89n6NAV0_Kapo4OVou1feWAy0q9LnTzLxKr5DI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Pine+Bark%2C+Biochar+and+Zeolite+as+Sorbents+for+NH4%2B-N+Removal+from+Water&rft.jtitle=Clean+%3A+soil%2C+air%2C+water&rft.au=Hina%2C+Kiran&rft.au=Hedley%2C+Mike&rft.au=Camps-Arbestain%2C+Marta&rft.au=Hanly%2C+James&rft.date=2015-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1863-0650&rft.eissn=1863-0669&rft.volume=43&rft.issue=1&rft.spage=86&rft.epage=91&rft_id=info:doi/10.1002%2Fclen.201300682&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_408DSTTH_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-0650&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-0650&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-0650&client=summon