Comparison of Pine Bark, Biochar and Zeolite as Sorbents for NH4+-N Removal from Water
To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+‐N removal from wastewaters. Two batch...
Saved in:
Published in | Clean : soil, air, water Vol. 43; no. 1; pp. 86 - 91 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Blackwell Publishing Ltd
01.01.2015
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+‐N removal from wastewaters. Two batch studies were conducted to compare (i) sorption of NH4+‐N on pine biochars with different particle sizes and (ii) sorption of NH4+‐N on pine biochar in comparison to alternative sorbents, zeolite (clinoptilolite) and pine bark. Decreasing the particle size of the feedstock (pine chip), or the biochar by crushing after pyrolysis, did not affect its NH4+‐N sorption properties. Sorption of NH4+‐N on comparative sorbents, when added at a dose of 39 mg NH4+‐N L−1, followed the order zeolite > biochar > bark. Zeolite proved to be the most efficient sorbent for NH4+‐N g−1 removal followed by biochar and bark. Biochar has the potential to be used as a cost effective commercial sorbent for removing NH4+‐N from waste streams.
Pine biochar with a cation exchange capacity (CEC) of 17 cmolc kg−1, intermediate between pine bark (CEC 6.4 cmolc kg−1) and zeolite (clinoptilolite, CEC (27.5 cmolc kg−1) were capable removing NH4+ from NH4+‐rich water. Sorption of NH4+‐N from a solution of 39 mg NH4+‐N L−1 followed the same order as CEC: zeolite > biochar > bark. Biochar has potential to be used as an NH4+‐N adsorbent in wastewater treatment. |
---|---|
AbstractList | To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+‐N removal from wastewaters. Two batch studies were conducted to compare (i) sorption of NH4+‐N on pine biochars with different particle sizes and (ii) sorption of NH4+‐N on pine biochar in comparison to alternative sorbents, zeolite (clinoptilolite) and pine bark. Decreasing the particle size of the feedstock (pine chip), or the biochar by crushing after pyrolysis, did not affect its NH4+‐N sorption properties. Sorption of NH4+‐N on comparative sorbents, when added at a dose of 39 mg NH4+‐N L−1, followed the order zeolite > biochar > bark. Zeolite proved to be the most efficient sorbent for NH4+‐N g−1 removal followed by biochar and bark. Biochar has the potential to be used as a cost effective commercial sorbent for removing NH4+‐N from waste streams.
Pine biochar with a cation exchange capacity (CEC) of 17 cmolc kg−1, intermediate between pine bark (CEC 6.4 cmolc kg−1) and zeolite (clinoptilolite, CEC (27.5 cmolc kg−1) were capable removing NH4+ from NH4+‐rich water. Sorption of NH4+‐N from a solution of 39 mg NH4+‐N L−1 followed the same order as CEC: zeolite > biochar > bark. Biochar has potential to be used as an NH4+‐N adsorbent in wastewater treatment. To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic benefits covering its current cost of manufacture. Biochar has the potential to be used as sorbent for NH4+-N removal from wastewaters. Two batch studies were conducted to compare (i) sorption of NH4+-N on pine biochars with different particle sizes and (ii) sorption of NH4+-N on pine biochar in comparison to alternative sorbents, zeolite (clinoptilolite) and pine bark. Decreasing the particle size of the feedstock (pine chip), or the biochar by crushing after pyrolysis, did not affect its NH4+-N sorption properties. Sorption of NH4+-N on comparative sorbents, when added at a dose of 39mg NH4+-NL-1, followed the order zeolite>biochar>bark. Zeolite proved to be the most efficient sorbent for NH4+-Ng-1 removal followed by biochar and bark. Biochar has the potential to be used as a cost effective commercial sorbent for removing NH4+-N from waste streams. |
Author | Camps-Arbestain, Marta Hanly, James Hina, Kiran Hedley, Mike |
Author_xml | – sequence: 1 givenname: Kiran surname: Hina fullname: Hina, Kiran email: kiran_hina@rocketmail.com organization: Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan – sequence: 2 givenname: Mike surname: Hedley fullname: Hedley, Mike organization: Institute of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand – sequence: 3 givenname: Marta surname: Camps-Arbestain fullname: Camps-Arbestain, Marta organization: Institute of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand – sequence: 4 givenname: James surname: Hanly fullname: Hanly, James organization: Institute of Agriculture and Environmental Sciences, Massey University, Palmerston North, New Zealand |
BookMark | eNo9kNFLwzAQh4MouE1ffQ74qJ1Jkybto6tzE0YVNx34ErI00c42mWmn7r-3Y9KH4-7g-93B1wfH1lkNwAVGQ4xQeKNKbYchwgQhFodHoIdjRgLEWHLczRE6Bf26XrcIwgz3wGvqqo30Re0sdAY-FVbDkfSf13BUOPUhPZQ2h2_alUWjoazh3PmVtk0NjfMwm9KrIIPPunLfsoTGuwouZaP9GTgxsqz1-X8fgJf78SKdBrPHyUN6OwveCYrDII8QVW0lSK5ySlTOE8PVKqGG0JgZFUuqNVeR1pgnlFATI5XkhnGmEm5CQwbg8nB3493XVteNWLutt-1LgRmNYkwoYy2VHKifotQ7sfFFJf1OYCT24sRenOjEiXQ2zrqtzQaHbFE3-rfLtooE44RHYplNBEXx3XyxmApM_gCTnXNG |
ContentType | Journal Article |
Copyright | 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1002/clen.201300682 |
DatabaseName | Istex Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1863-0669 |
EndPage | 91 |
ExternalDocumentID | 3559113211 CLEN201300682 ark_67375_WNG_408DSTTH_1 |
Genre | article |
GrantInformation_xml | – fundername: Higher Education Commission |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HVGLF HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WUPDE WXSBR WYISQ XG1 XV2 ~02 ~IA ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ 7QH 7ST 7UA AEYWJ AGQPQ AGYGG C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-g3082-d504c50490abd43cd79f7cb94f3486fc8a4ee7c5ee179434f80c9df676c97f2f3 |
IEDL.DBID | DR2 |
ISSN | 1863-0650 |
IngestDate | Mon Jun 30 06:11:42 EDT 2025 Wed Jan 22 17:02:51 EST 2025 Wed Oct 30 09:53:04 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3082-d504c50490abd43cd79f7cb94f3486fc8a4ee7c5ee179434f80c9df676c97f2f3 |
Notes | ArticleID:CLEN201300682 Higher Education Commission ark:/67375/WNG-408DSTTH-1 istex:D9455024F59CD6673694FA2003F93EBC16954DDD ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1645813466 |
PQPubID | 1006521 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1645813466 wiley_primary_10_1002_clen_201300682_CLEN201300682 istex_primary_ark_67375_WNG_408DSTTH_1 |
PublicationCentury | 2000 |
PublicationDate | 2015-01 January 2015 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Clean : soil, air, water |
PublicationTitleAlternate | Clean Soil Air Water |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | A. Demir, E. Debik, A. Gunay, Ammonium Removal from Aqueous Solution by Ion Exchange Using Packed Bed Natural Zeolite, Water SA 1998, 28, 329-335. E. Cooney, N. Booker, D. Shallcross, G. Stevens, Ammonia Removal from Wastewaters Using Natural Australian Zeolite, II. Pilot-Scale Study Using Continuous Packed Column Process, Sep. Sci. Technol. 1999, 34 (14), 2741-2760. C. Petit, K. Kante, T. J. Bandosz, The Role of Sulphur Containing Groups in Ammonia Retention on Activated Carbons, Carbon 2010, 48, 654-667. B. Chen, D. Zhou, L. Zhu, Transitional Adsorption and Partition of Non-Polar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures, Environ. Sci. Technol. 2008, 42, 5137-5143. N. Bolan, L. Wong, D. Adriano, Nutrient Removal from Farm Effluents, Bioresour. Technol. 2004, 94 (3), 251-260. A. Hedström, Ion Exchange of Ammonium in Zeolites: A Literature Review, J. Environ. Eng. 2001, 127, 673-668. C. Hollister, J. Bisogni, J. Lehmann, Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover (Zea mays L.) and Oak Wood, J. Environ. Qual. 2013, 42 (1), 137-144. N. Matsue, K. Wada, New Equilibrium Method for Cation-Exchange Capacity Measurement, Soil Sci. Soc. Am. J. 1985, 49, 574-578. B. Chen, Z. Chen, S. Lv, A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate, Bioresour. Technol. 2011, 102, 716-723. D. W. Blowes, W. D. Robertson, C. J. Ptacek, C. Merkley, Removal of Agricultural Nitrate from Tile Drainage Effluent Water Using in Line Bioreactors, J. Contam. Hydrol. 1994, 15, 207-221. D. Sarkhot, T. Ghezzehei, A. Berhe, Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent, J. Environ. Qual. 2013, 42 (5), 1545-1554. T. Perrin, D. Drost, J. Boettinger, J. Norton, Ammonium-Loaded Clinoptilolite: A Slow-Release Nitrogen Fertilizer for Sweet Corn, J. Plant Nutr. 1998, 21 (3), 515-530. M. Ahmedna, W. E. Marsall, R. M. Rao, Production of Granular Activated Carbon from Select Agricultural By-Products and Evaluation of Their Physical, Chemical and Adsorption Properties, Bioresour. Technol. 1998, 71, 113-123. M. Kithome, J. W. Paul, L. M. Lavkulich, A. A. Bomke, Effect of pH on Ammonium Adsorption by Natural Zeolite Clinoptilolite, Commun. Soil Sci. Plant Anal. 1999, 30, 1417-1430. B. Chen, Z. Chen, Sorption of Naphthalene and 1-Naphthol by Biochars of Orange Peels with Different Pyrolytic Temperatures, Chemosphere 2009, 76, 127-133. S. Wieczorek, Assessing the Influence of Adsorbent Bed (Tree Bark) Parameters on the Reduction of Ammonia Emissions from Animal Husbandry, Pol. J. Environ. Stud. 2008, 17 (1), 147-154. L. A. Schipper, M. Vojvodic-Vukovic, Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust, Ecol. Eng. 2000, 14, 269-278. X. Cao, L. Ma, B. Gao, W. Harris, Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine, Environ. Sci. Technol. 2009, 43, 3285-3291. R. Calvelo-Pereira, J. Kaal, M. Camps-Arbestain, R. Pardo Lorenzo W. Aitkenhead, M. Hedley, F. Macias, et al., Contribution to the Chemical Characterisation of Biochars for the Prediction of Their Carbon Lability, Org. Geochem. 2011, 42, 1331-1342. M. Nguyen, C. Tanner, Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites, N. Z. J. Agric. Res. 1998, 41, 427-446. D. Wen, Y. Ho, X. Tang, Comparative Sorption Kinetic Studies of Ammonium onto Zeolite, J. Hazard. Mater. 2006, 133 (1-3), 252-256. K. Hina, P. Bishop, M. Camps Arbestain R. Calvelo-Pereira, J. A. Macia-Agullo, J. Hindmarsh, J. A. Hanly, et al., Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks, Aust. J. Soil Res. 2010, 48, 606-615. M. Sevilla, A. B. Fuertes, Graphitic Carbon Nanostructures from Cellulose, Chem. Phys. Lett. 2010, 490, 63-68. 2011; 102 1998; 28 2004; 94 2010; 48 2009; 76 2009; 43 2000; 14 2011 2013; 42 2008; 17 2009 2011; 42 1999; 34 1996 1999; 30 1994; 15 2008; 42 1998; 71 2010; 490 1998; 41 1998; 21 1985; 49 2006; 133 2001; 127 |
References_xml | – reference: C. Petit, K. Kante, T. J. Bandosz, The Role of Sulphur Containing Groups in Ammonia Retention on Activated Carbons, Carbon 2010, 48, 654-667. – reference: X. Cao, L. Ma, B. Gao, W. Harris, Dairy-Manure Derived Biochar Effectively Sorbs Lead and Atrazine, Environ. Sci. Technol. 2009, 43, 3285-3291. – reference: C. Hollister, J. Bisogni, J. Lehmann, Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover (Zea mays L.) and Oak Wood, J. Environ. Qual. 2013, 42 (1), 137-144. – reference: N. Bolan, L. Wong, D. Adriano, Nutrient Removal from Farm Effluents, Bioresour. Technol. 2004, 94 (3), 251-260. – reference: B. Chen, Z. Chen, Sorption of Naphthalene and 1-Naphthol by Biochars of Orange Peels with Different Pyrolytic Temperatures, Chemosphere 2009, 76, 127-133. – reference: K. Hina, P. Bishop, M. Camps Arbestain R. Calvelo-Pereira, J. A. Macia-Agullo, J. Hindmarsh, J. A. Hanly, et al., Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks, Aust. J. Soil Res. 2010, 48, 606-615. – reference: B. Chen, Z. Chen, S. Lv, A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate, Bioresour. Technol. 2011, 102, 716-723. – reference: B. Chen, D. Zhou, L. Zhu, Transitional Adsorption and Partition of Non-Polar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures, Environ. Sci. Technol. 2008, 42, 5137-5143. – reference: E. Cooney, N. Booker, D. Shallcross, G. Stevens, Ammonia Removal from Wastewaters Using Natural Australian Zeolite, II. Pilot-Scale Study Using Continuous Packed Column Process, Sep. Sci. Technol. 1999, 34 (14), 2741-2760. – reference: A. Demir, E. Debik, A. Gunay, Ammonium Removal from Aqueous Solution by Ion Exchange Using Packed Bed Natural Zeolite, Water SA 1998, 28, 329-335. – reference: M. Ahmedna, W. E. Marsall, R. M. Rao, Production of Granular Activated Carbon from Select Agricultural By-Products and Evaluation of Their Physical, Chemical and Adsorption Properties, Bioresour. Technol. 1998, 71, 113-123. – reference: S. Wieczorek, Assessing the Influence of Adsorbent Bed (Tree Bark) Parameters on the Reduction of Ammonia Emissions from Animal Husbandry, Pol. J. Environ. Stud. 2008, 17 (1), 147-154. – reference: M. Kithome, J. W. Paul, L. M. Lavkulich, A. A. Bomke, Effect of pH on Ammonium Adsorption by Natural Zeolite Clinoptilolite, Commun. Soil Sci. Plant Anal. 1999, 30, 1417-1430. – reference: D. Sarkhot, T. Ghezzehei, A. Berhe, Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent, J. Environ. Qual. 2013, 42 (5), 1545-1554. – reference: L. A. Schipper, M. Vojvodic-Vukovic, Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust, Ecol. Eng. 2000, 14, 269-278. – reference: D. Wen, Y. Ho, X. Tang, Comparative Sorption Kinetic Studies of Ammonium onto Zeolite, J. Hazard. Mater. 2006, 133 (1-3), 252-256. – reference: M. Sevilla, A. B. Fuertes, Graphitic Carbon Nanostructures from Cellulose, Chem. Phys. Lett. 2010, 490, 63-68. – reference: N. Matsue, K. Wada, New Equilibrium Method for Cation-Exchange Capacity Measurement, Soil Sci. Soc. Am. J. 1985, 49, 574-578. – reference: D. W. Blowes, W. D. Robertson, C. J. Ptacek, C. Merkley, Removal of Agricultural Nitrate from Tile Drainage Effluent Water Using in Line Bioreactors, J. Contam. Hydrol. 1994, 15, 207-221. – reference: M. Nguyen, C. Tanner, Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites, N. Z. J. Agric. Res. 1998, 41, 427-446. – reference: T. Perrin, D. Drost, J. Boettinger, J. Norton, Ammonium-Loaded Clinoptilolite: A Slow-Release Nitrogen Fertilizer for Sweet Corn, J. Plant Nutr. 1998, 21 (3), 515-530. – reference: R. Calvelo-Pereira, J. Kaal, M. Camps-Arbestain, R. Pardo Lorenzo W. Aitkenhead, M. Hedley, F. Macias, et al., Contribution to the Chemical Characterisation of Biochars for the Prediction of Their Carbon Lability, Org. Geochem. 2011, 42, 1331-1342. – reference: A. Hedström, Ion Exchange of Ammonium in Zeolites: A Literature Review, J. Environ. Eng. 2001, 127, 673-668. – volume: 28 start-page: 329 year: 1998 end-page: 335 article-title: Ammonium Removal from Aqueous Solution by Ion Exchange Using Packed Bed Natural Zeolite publication-title: Water SA – volume: 17 start-page: 147 issue: 1 year: 2008 end-page: 154 article-title: Assessing the Influence of Adsorbent Bed (Tree Bark) Parameters on the Reduction of Ammonia Emissions from Animal Husbandry publication-title: Pol. J. Environ. Stud. – volume: 94 start-page: 251 issue: 3 year: 2004 end-page: 260 article-title: Nutrient Removal from Farm Effluents publication-title: Bioresour. Technol. – volume: 30 start-page: 1417 year: 1999 end-page: 1430 article-title: Effect of pH on Ammonium Adsorption by Natural Zeolite Clinoptilolite publication-title: Commun. Soil Sci. Plant Anal. – volume: 48 start-page: 654 year: 2010 end-page: 667 article-title: The Role of Sulphur Containing Groups in Ammonia Retention on Activated Carbons publication-title: Carbon – volume: 127 start-page: 673 year: 2001 end-page: 668 article-title: Ion Exchange of Ammonium in Zeolites: A Literature Review publication-title: J. Environ. Eng. – volume: 490 start-page: 63 year: 2010 end-page: 68 article-title: Graphitic Carbon Nanostructures from Cellulose publication-title: Chem. Phys. Lett. – year: 1996 – volume: 42 start-page: 5137 year: 2008 end-page: 5143 article-title: Transitional Adsorption and Partition of Non‐Polar and Polar Aromatic Contaminants by Biochars of Pine Needles with Different Pyrolytic Temperatures publication-title: Environ. Sci. Technol. – volume: 76 start-page: 127 year: 2009 end-page: 133 article-title: Sorption of Naphthalene and 1‐Naphthol by Biochars of Orange Peels with Different Pyrolytic Temperatures publication-title: Chemosphere – volume: 42 start-page: 1331 year: 2011 end-page: 1342 article-title: Contribution to the Chemical Characterisation of Biochars for the Prediction of Their Carbon Lability publication-title: Org. Geochem. – volume: 34 start-page: 2741 issue: 14 year: 1999 end-page: 2760 article-title: Ammonia Removal from Wastewaters Using Natural Australian Zeolite, II. Pilot‐Scale Study Using Continuous Packed Column Process publication-title: Sep. Sci. Technol. – volume: 14 start-page: 269 year: 2000 end-page: 278 article-title: Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall Amended with Sawdust publication-title: Ecol. Eng. – volume: 133 start-page: 252 issue: 1–3 year: 2006 end-page: 256 article-title: Comparative Sorption Kinetic Studies of Ammonium onto Zeolite publication-title: J. Hazard. Mater. – start-page: 1 year: 2011 end-page: 86 – volume: 48 start-page: 606 year: 2010 end-page: 615 article-title: Producing Biochars with Enhanced Surface Activity through Alkaline Pretreatment of Feedstocks publication-title: Aust. J. Soil Res. – volume: 71 start-page: 113 year: 1998 end-page: 123 article-title: Production of Granular Activated Carbon from Select Agricultural By‐Products and Evaluation of Their Physical, Chemical and Adsorption Properties publication-title: Bioresour. Technol. – volume: 43 start-page: 3285 year: 2009 end-page: 3291 article-title: Dairy‐Manure Derived Biochar Effectively Sorbs Lead and Atrazine publication-title: Environ. Sci. Technol. – volume: 102 start-page: 716 year: 2011 end-page: 723 article-title: A Novel Magnetic Biochar Efficiently Sorbs Organic Pollutants and Phosphate publication-title: Bioresour. Technol. – volume: 21 start-page: 515 issue: 3 year: 1998 end-page: 530 article-title: Ammonium‐Loaded Clinoptilolite: A Slow‐Release Nitrogen Fertilizer for Sweet Corn publication-title: J. Plant Nutr. – volume: 42 start-page: 1545 issue: 5 year: 2013 end-page: 1554 article-title: Effectiveness of Biochar for Sorption of Ammonium and Phosphate from Dairy Effluent publication-title: J. Environ. Qual. – volume: 49 start-page: 574 year: 1985 end-page: 578 article-title: New Equilibrium Method for Cation‐Exchange Capacity Measurement publication-title: Soil Sci. Soc. Am. J. – volume: 42 start-page: 137 issue: 1 year: 2013 end-page: 144 article-title: Ammonium, Nitrate, and Phosphate Sorption to and Solute Leaching from Biochars Prepared from Corn Stover ( L.) and Oak Wood publication-title: J. Environ. Qual. – volume: 15 start-page: 207 year: 1994 end-page: 221 article-title: Removal of Agricultural Nitrate from Tile Drainage Effluent Water Using in Line Bioreactors publication-title: J. Contam. Hydrol. – start-page: 107 year: 2009 end-page: 117 – volume: 41 start-page: 427 year: 1998 end-page: 446 article-title: Ammonium Removal from Wastewaters Using Natural New Zealand Zeolites publication-title: N. Z. J. Agric. Res. |
SSID | ssj0060161 |
Score | 2.1964798 |
Snippet | To assist the adoption of biochar production as a greenhouse gas mitigation technology, evidence is required that biochar can provide additional economic... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 86 |
SubjectTerms | Ammonium sorption Biomass Clinoptilolite Sorbents Wastewater treatment Zeolites |
Title | Comparison of Pine Bark, Biochar and Zeolite as Sorbents for NH4+-N Removal from Water |
URI | https://api.istex.fr/ark:/67375/WNG-408DSTTH-1/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fclen.201300682 https://www.proquest.com/docview/1645813466 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ29TsMwEMctxAQD34jyJQ-IBQJpYjvJCKWlQhAhKKJisWzHhxCiQW2REBOPwDPyJPiSNhRG2BJFtpKzz_nbvvuZkB0B4AcAgWeY4B4DnXjKAvOccvCFFVbHRS7MRSraN-ysy7sTWfwlH6JacEPPKMZrdHClB4ff0FBnVeSX4naMiHEQxoAtVEVXFT8KUSPFjCvGzUqnRcbURj84_FncSVO06usPnTmpVovfTWueqPGLllEmjwcvQ31g3n4xHP_zJQtkbqRF6VHZeRbJlO0tkdkJQuEy6TaqcwppDvTSPaHHqv-4T48fcszYoqqX0TuLUXSWqgG9zvsaYzOoE8M0bbO9z_ePlF7Zp9x1aYrJLPTWydv-CrlpNTuNtjc6jMG7R6KNl3GfGY77hEpnLDRZlEBkdMIgZLEAEytmbWS4tSVzDmLfJBmISJgkggDCVTLdy3t2jVDgdXCOD1plTk8onRjObGBdLfUshDCrkd2iMeRzCdyQ7rMw_izi8jY9lcyPT647nbas18jmuLXkyPUG0s3_eFwPmRA1EhRmr-opEc2BRIPLyuCycd5Mq7v1vxTaIDPumpdLM5tketh_sVtOrAz1dtEhvwBy6-Ff |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQHIADO6KsPiAuEEgT20mOUJYAJUJQBOJixY4HoYoGlSIhTnwC38iX4EnasBzhGEe24rHHeTOeeUPIugBwPQDP0Uxwh4GKnNQAcyxycIURRoVFLsxZIuIrdnLDB9GEmAtT8kNUDjfUjOK8RgVHh_TOF2uoFSsSmOJ9jAjtKTyCZb0Lq-qiYpBCspHC5grxutKikQFvo-vt_OxvwSnK9eUH0vyOV4sfzuEkUYNPLeNM2tvPPbWtX3-xOP5rLlNkog9H6W65f6bJkOnMkPFvJIWz5KZRlSqkOdBz-4bupd32Ft27zzFpi6adjN4aDKQzNH2il3lXYXgGtXiYJjHb_Hh7T-iFecjtrqaYz0KvLcLtzpGrw4NWI3b69RicOyS1cTLuMs3xqjBVGfN1FkQQaBUx8FkoQIcpMybQ3JiSdg5CV0cZiEDoKAAP_Hky3Mk7ZoFQ4HWwug8qzSykSFWkOTOesaPUMx_8rEY2itWQjyXnhrTTwhC0gMvr5EgyN9y_bLViWa-R5cFyyb72PUlrAvKw7jMhasQr5F6NU7I0exIFLiuBy0bzIKmeFv_SaY2Mxq2zpmweJ6dLZMy289JTs0yGe91ns2KxS0-tFrvzE5le5Xo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELZQkVA58CpV0wbwAXGBbTe7ttd7JC_SUlZVHkrUi-XXIBSRjfKQECd-Ar-RX4K9myxJj-W4XtmyxzP2Z8_MZ4TeMoAwAogCTRgNCKg0kBZI4JBDyCyzihe5MF8y1huRqwmd7GTxl_wQ1YWbt4xivfYGPjdw8Y801EnV85d6dwzjbhF-SFjIvV63-xWBlOcaKY5c3HsrHRjZ0jaG0cV-fYdNvVh_7AHNXbha7Dfdp0hue1qGmUzP1yt1rn_eIXH8n6E8Q082YBR_LLXnOXpgZy_Q4x2KwiM0aVUPFeIc8I37g5tyMf2Am99yn7KF5czgW-vD6CyWSzzIF8oHZ2CHhnHWI-___Pqd4b79njudxj6bBY8dvl28RKNuZ9jqBZvXGIKvntImMDQkmnpHoVSGxNokKSRapQRiwhloLom1iabWlqRzwEOdGmAJ02kCEcTH6GCWz-wJwkAb4CwflDQOUEiVakpsZF0rDRNDbGroXTEZYl4ybgg3LB-AllAxzj4JEvL2YDjsiUYN1bezJTa2txTuAEh5IyaM1VBUiL1qp-RojoQXuKgELlrXnaz6Or1PpTfo0U27K64vs89n6NAV0_Kapo4OVou1feWAy0q9LnTzLxKr5DI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Pine+Bark%2C+Biochar+and+Zeolite+as+Sorbents+for+NH4%2B-N+Removal+from+Water&rft.jtitle=Clean+%3A+soil%2C+air%2C+water&rft.au=Hina%2C+Kiran&rft.au=Hedley%2C+Mike&rft.au=Camps-Arbestain%2C+Marta&rft.au=Hanly%2C+James&rft.date=2015-01-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1863-0650&rft.eissn=1863-0669&rft.volume=43&rft.issue=1&rft.spage=86&rft.epage=91&rft_id=info:doi/10.1002%2Fclen.201300682&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_408DSTTH_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-0650&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-0650&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-0650&client=summon |