Designable Al32‐Oxo Clusters with Hydrotalcite‐like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting
The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 60; no. 9; pp. 4849 - 4854 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
23.02.2021
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells are isolated. X‐ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32‐oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.
A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells were isolated, which are unique models of two‐dimensional or layered materials and may be used to study boundary activity and optical limiting properties. |
---|---|
AbstractList | The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells are isolated. X‐ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32‐oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.
A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells were isolated, which are unique models of two‐dimensional or layered materials and may be used to study boundary activity and optical limiting properties. The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π-conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32 -oxo clusters with hydrotalcite-like cores and π-conjugated shells are isolated. X-ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32 -oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π-conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32 -oxo clusters with hydrotalcite-like cores and π-conjugated shells are isolated. X-ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32 -oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners. The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells are isolated. X‐ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32‐oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners. |
Author | Zhang, Xue‐Zhen Liu, Ya‐Jie Li, Qiao‐Hong Li, De‐Jing Zhang, Jian Fang, Wei‐Hui |
Author_xml | – sequence: 1 givenname: Ya‐Jie surname: Liu fullname: Liu, Ya‐Jie organization: Chinese Academy of Sciences – sequence: 2 givenname: Qiao‐Hong surname: Li fullname: Li, Qiao‐Hong organization: Chinese Academy of Sciences – sequence: 3 givenname: De‐Jing surname: Li fullname: Li, De‐Jing organization: Chinese Academy of Sciences – sequence: 4 givenname: Xue‐Zhen surname: Zhang fullname: Zhang, Xue‐Zhen organization: Chinese Academy of Sciences – sequence: 5 givenname: Wei‐Hui surname: Fang fullname: Fang, Wei‐Hui email: fwh@fjirsm.ac.cn organization: Chinese Academy of Sciences – sequence: 6 givenname: Jian orcidid: 0000-0003-3373-9621 surname: Zhang fullname: Zhang, Jian email: zhj@fjirsm.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNpd0b1OwzAQB3ALFQlaWJktsbAE_FE7CVspX5UqOgBz5DiX1sW1S-wIsvEIPCNPQlARA5PP0u9Od_oP0cB5BwidUHJOCWEXyhk4Z4QRynKa76FDKhhNeJryQV-POU_STNADNAxh3fssI_IQddcQzNKp0gKeWM6-Pj4X7x5PbRsiNAG_mbjC913V-KisNhF6YM0L4MfYtDq2DYRL_OjUNqx8DNjX-Mq3rlJNt-uyXTABK1fhxTYarSyem42Jxi2P0H6tbIDj33eEnm9vnqb3yXxxN5tO5smSE54nopR6DKVkrISqzvKMUVFqWY41UUzXWkMtUkUzqUUKtUqrklMqlUppRXNdaj5CZ7u528a_thBisTFBg7XKgW9DwcZSEi6FID09_UfXvm1cv12vslzQNJdZr_KdejMWumLbmE1_bkFJ8RND8RND8RdDMXmY3fz9-DcSc4Q4 |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2021 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2021 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202012919 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 4854 |
ExternalDocumentID | ANIE202012919 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 92061104, 21771181, 21935010 and 21973096 – fundername: The Strategic Priority Research Pro-gram of the Chinese Academy of Sciences funderid: XDB20000000 – fundername: Youth Innovation Promotion Association CAS funderid: 2017345 – fundername: National Key Research and Development Program of China funderid: 2018YFA0208600 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-g3039-5b6c4eb622bedf898215bc6b4c0a2cfccef57a186c57efa7db3116aa71d19cbc3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:08:27 EDT 2025 Fri Jul 25 10:26:56 EDT 2025 Wed Jan 22 16:31:53 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3039-5b6c4eb622bedf898215bc6b4c0a2cfccef57a186c57efa7db3116aa71d19cbc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3373-9621 |
PQID | 2489517968 |
PQPubID | 946352 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_2466036550 proquest_journals_2489517968 wiley_primary_10_1002_anie_202012919_ANIE202012919 |
PublicationCentury | 2000 |
PublicationDate | February 23, 2021 |
PublicationDateYYYYMMDD | 2021-02-23 |
PublicationDate_xml | – month: 02 year: 2021 text: February 23, 2021 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 43 2007; 19 2001; 123 1994; 116 2019; 3 2013; 49 2010; 327 2000; 113 1995; 59 2020; 165 2011; 40 2019; 58 1991 1997 2020 2020; 59 132 2008; 14 2008 2011; 11 2006 2020; 11 2018; 61 2017 2017; 56 129 2009; 48 2018; 47 2012; 51 1996; 149 2016; 55 1976; 98 1997; 388 2016 2016; 55 128 1993; 17 2012; 112 2001 1990; 26 2006; 45 1993; 32 2005; 127 2013; 52 2002; 228 1997; 16 2016; 138 2014; 39 2003; 423 2001 2001; 40 113 2006; 106 1990; 92 1994; 98 1992; 4 |
References_xml | – volume: 138 start-page: 2556 year: 2016 end-page: 2559 publication-title: J. Am. Chem. Soc. – volume: 388 start-page: 735 year: 1997 end-page: 741 publication-title: Nature – volume: 59 start-page: 785 year: 1995 end-page: 794 publication-title: J. Inorg. Biochem. – volume: 123 start-page: 8608 year: 2001 end-page: 8609 publication-title: J. Am. Chem. Soc. – volume: 423 start-page: 705 year: 2003 end-page: 714 publication-title: Nature – year: 1991 1997 – volume: 112 start-page: 869 year: 2012 end-page: 932 publication-title: Chem. Rev. – volume: 59 132 start-page: 16735 16878 year: 2020 2020 end-page: 16740 16883 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 26 start-page: 760 year: 1990 end-page: 769 publication-title: IEEE J. Quantum Electron. – volume: 55 128 start-page: 5160 5246 year: 2016 2016 end-page: 5165 5251 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 98 start-page: 1031 year: 1976 end-page: 1032 publication-title: J. Am. Chem. Soc. – volume: 39 start-page: 4847 year: 2014 end-page: 4850 publication-title: Opt. Lett. – volume: 51 start-page: 737 year: 2012 end-page: 745 publication-title: Inorg. Chem. – volume: 17 start-page: 299 year: 1993 end-page: 338 publication-title: Prog. Quantum Electron. – volume: 112 start-page: 4124 year: 2012 end-page: 4155 publication-title: Chem. Rev. – volume: 40 start-page: 1006 year: 2011 end-page: 1030 publication-title: Chem. Soc. Rev. – volume: 92 start-page: 508 year: 1990 end-page: 517 publication-title: J. Chem. Phys. – volume: 4 start-page: 167 year: 1992 end-page: 182 publication-title: Chem. Mater. – volume: 14 start-page: 9223 year: 2008 end-page: 9239 publication-title: Chem. Eur. J. – volume: 138 start-page: 7480 year: 2016 end-page: 7483 publication-title: J. Am. Chem. Soc. – start-page: 1 year: 2006 end-page: 87 – volume: 47 start-page: 404 year: 2018 end-page: 421 publication-title: Chem. Soc. Rev. – volume: 56 129 start-page: 10161 10295 year: 2017 2017 end-page: 10164 10298 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 11352 year: 2013 end-page: 11354 publication-title: Chem. Commun. – volume: 52 start-page: 5991 year: 2013 end-page: 5999 publication-title: Inorg. Chem. – volume: 98 start-page: 3570 year: 1994 end-page: 3572 publication-title: J. Phys. Chem. – volume: 11 start-page: 1935 year: 2020 end-page: 1942 publication-title: Chem. Sci. – volume: 116 start-page: 3615 year: 1994 end-page: 3616 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 7006 year: 2009 end-page: 7008 publication-title: Inorg. Chem. – volume: 55 start-page: 12270 year: 2016 end-page: 12280 publication-title: Inorg. Chem. – start-page: 2016 year: 2001 end-page: 2017 publication-title: Chem. Commun. – volume: 327 start-page: 1485 year: 2010 end-page: 1488 publication-title: Science – volume: 43 start-page: 1323 year: 2004 end-page: 1327 publication-title: Inorg. Chem. – volume: 113 start-page: 7756 year: 2000 end-page: 7764 publication-title: J. Chem. Phys. – volume: 16 start-page: 3815 year: 1997 end-page: 3818 publication-title: Organometallics – volume: 19 start-page: 2737 year: 2007 end-page: 2774 publication-title: Adv. Mater. – volume: 40 113 start-page: 3577 3689 year: 2001 2001 end-page: 3581 3693 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 14 start-page: 3869 year: 2008 end-page: 3873 publication-title: Chem. Eur. J. – volume: 32 start-page: 4909 year: 1993 end-page: 4913 publication-title: Inorg. Chem. – volume: 11 start-page: 4674 year: 2011 end-page: 4678 publication-title: Nano Lett. – volume: 127 start-page: 4869 year: 2005 end-page: 4878 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 4792 year: 2019 end-page: 4801 publication-title: Inorg. Chem. – volume: 3 start-page: 1353 year: 2019 end-page: 1361 publication-title: ACS Earth Space Chem. – volume: 55 start-page: 1861 year: 2016 end-page: 1871 publication-title: Inorg. Chem. – volume: 165 start-page: 461 year: 2020 end-page: 467 publication-title: Carbon – volume: 45 start-page: 8638 year: 2006 end-page: 8647 publication-title: Inorg. Chem. – volume: 228 start-page: 115 year: 2002 end-page: 126 publication-title: Coord. Chem. Rev. – start-page: 444 year: 2008 end-page: 446 publication-title: Chem. Commun. – volume: 149 start-page: 281 year: 1996 end-page: 309 publication-title: Coord. Chem. Rev. – volume: 61 start-page: 1619 year: 2018 end-page: 1623 publication-title: Sci. China Chem. – volume: 106 start-page: 1 year: 2006 end-page: 16 publication-title: Chem. Rev. |
SSID | ssj0028806 |
Score | 2.537968 |
Snippet | The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO)... The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO)... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 4849 |
SubjectTerms | aluminum Charge distribution cluster science Clusters Constraining Environmental chemistry Geochemistry Hydrolysis hydrotalcite Ions Layered materials Mimicry optical limiting |
Title | Designable Al32‐Oxo Clusters with Hydrotalcite‐like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012919 https://www.proquest.com/docview/2489517968 https://www.proquest.com/docview/2466036550 |
Volume | 60 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDIAjxAUuvBHjpSBxLbRJm7bcxmAaSAyJgbRblVcBMbUT3STGiZ_Ab-SXEKdr2TjCsWoitbXT2I79GaHjUAIlTPgOCaXr-BEwIJUwXqurNPM05cyyO2-6rPPgX_eD_kwVf8mHqANusDLs_xoWOBfF6Q80FCqwjX9HIJJiuZ-QsAVW0V3NjyJGOcvyIkod6EJfURtdcjo_fc6-nLVS7TbTXkW8esAyu-TlZDwSJ_L9F7vxP2-whlamNihulkqzjhZ0toGWWlXrt000ubB5HVBVhZsDSr4-Pm_fctwajAGrUGAI3uLORL3mxnSXxmg1AwbPLxr3LI12bFz4M9zL-LB4ykcFzlN8brs3vU7KWRaDgnmm8O3QxtKxrbMyu-gWemhf3rc6zrRHg_NI4RA5EEz6WjBChFZpFEfGhBCSCV-6nMhUSp0GIfciJoNQpzxUgnoe4zz0lBdLIek2WszyTO8grGPFlJZK08j3hXSNpyNE6gc8SkNO4rSB9isZJdOFViTEqBdQxljUQEf1bfO54NyDZzofwxjGzEZtfLEGIlYgybBEeSQltJkkIIqkFkXS7F5d1le7f5m0h5YJZL9A8TvdR4vm8-sDY76MxKFV0W-9ze0D |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEEAtBIdyYUcUChiJayCxEyflVgqobK3EInGLvAVQq6TqIlFOfALfyJfgcZqwHOEYxZaSzDieGc-8QWg_lEAJE75DQuk6fgQMSCWM1-oqzTxNObPszus2a937Fw9BkU0ItTA5H6IMuMHKsP9rWOAQkD78ooZCCbZx8AiEUgD8OQdtva1XdVMSpIhRz7zAiFIH-tAX3EaXHP6c_8PC_G6n2o3mbBGJ4hHz_JLuwXgkDuTrL3rjv95hCS1MzVDcyPVmGc3odAVVmkX3t1U0ObGpHVBYhRs9Sj7e3jsvGW72xkBWGGKI3-LWRA0yY71LY7eaAb3nrsa3Fkg7Nl78Eb5NeX_4lI2GOEvwsW3gNJjksywJBfNU4U7fhtOxLbUyG-kauj87vWu2nGmbBueRwjlyIJj0tWCECK2SqB4ZK0JIJnzpciITKXUShNyLmAxCnfBQCep5jPPQU15dCknX0WyapXoDYV1XTGmpNI18X0jXODtCJH7AoyTkpJ5UUa0QUjxda8OYGA0D0BiLqmivvG0-Fxx98FRnYxjDmNmrjTtWRcRKJO7nNI845zaTGEQRl6KIG-3z0_Jq8y-TdlGldXd9FV-dty-30DyBZBiohac1NGtEobeNNTMSO1ZfPwGEefEe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEICtCqS2F-iDigXaulKvgcR2nITbsg8tfSxVKRK3yM8W7SpZsRuJ7ak_gd_IL8HjbNKlR3qMYktJZhzPjGe-QehjooASJllAEhUGLAUGpJbOaw214ZGhgnt259cxH12wT5fx5VoVf82HaANusDL8_xoW-Ezbo7_QUKjAdv4dgUgKcD83GQ9T0Ov-9xYgRZx21vVFlAbQhr7BNobk6OH8Bwbmupnq95nhNhLNE9bpJZPDaiEP1e9_4I3_8wov0NbKCMXdWmteoiemeIWe9Zreb6_Rsu8TO6CsCnenlNz9uT27KXFvWgFXYY4heotHS31dOttdOavVDZheTQw-9zjayvnwx_i8ELP5r3Ixx6XFJ7590_WynuU5KFgUGp_NfDAd-0Irt43uoIvh4EdvFKyaNAQ_KZwix5IrZiQnRBpt0yx1NoRUXDIVCqKsUsbGiYhSruLEWJFoSaOIC5FEOsqUVPQN2ijKwuwibDLNtVHa0JQxqULn6khpWSxSmwiS2Q46aGSUr1baPCdOvwAzxtMO-tDedp8LDj5EYcoKxnDudmrnjHUQ8QLJZzXLI6-pzSQHUeStKPLu-HTQXu09ZtJ79PRbf5h_OR1_3kfPCWTCQCE8PUAbThLmrTNlFvKd19Z74Z3v1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designable+Al32%E2%80%90Oxo+Clusters+with+Hydrotalcite%E2%80%90like+Structures%3A+Snapshots+of+Boundary+Hydrolysis+and+Optical+Limiting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Ya%E2%80%90Jie&rft.au=Li%2C+Qiao%E2%80%90Hong&rft.au=Li%2C+De%E2%80%90Jing&rft.au=Zhang%2C+Xue%E2%80%90Zhen&rft.date=2021-02-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=9&rft.spage=4849&rft.epage=4854&rft_id=info:doi/10.1002%2Fanie.202012919&rft.externalDBID=10.1002%252Fanie.202012919&rft.externalDocID=ANIE202012919 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |