Designable Al32‐Oxo Clusters with Hydrotalcite‐like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting

The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 9; pp. 4849 - 4854
Main Authors Liu, Ya‐Jie, Li, Qiao‐Hong, Li, De‐Jing, Zhang, Xue‐Zhen, Fang, Wei‐Hui, Zhang, Jian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 23.02.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells are isolated. X‐ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32‐oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells were isolated, which are unique models of two‐dimensional or layered materials and may be used to study boundary activity and optical limiting properties.
AbstractList The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells are isolated. X‐ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32‐oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells were isolated, which are unique models of two‐dimensional or layered materials and may be used to study boundary activity and optical limiting properties.
The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π-conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32 -oxo clusters with hydrotalcite-like cores and π-conjugated shells are isolated. X-ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32 -oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π-conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32 -oxo clusters with hydrotalcite-like cores and π-conjugated shells are isolated. X-ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32 -oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.
The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO) materials are important in modern chemistry due to their extensive optical applications. The assembly of AlIII ions with π‐conjugated carboxylate ligands is carried out and the hydrolysis and NLO properties of the resultant material are studied. A series of Al32‐oxo clusters with hydrotalcite‐like cores and π‐conjugated shells are isolated. X‐ray diffraction revealed boundary hydrolysis occurs at the equatorially unsaturated coordination sites of AlIII ions. Charge distribution analysis and DFT calculations support the proposed boundary substitution. The Al32‐oxo clusters possess a significant reverse saturable absorption (RSA) response with a minimal normalized transmittance up to 29 %, indicating they are suitable candidates for optical limiting (OL) materials. This work elucidates the hydrolysis of AlIII and provides insight into layered materials that also have strong boundary activity at the edges or corners.
Author Zhang, Xue‐Zhen
Liu, Ya‐Jie
Li, Qiao‐Hong
Li, De‐Jing
Zhang, Jian
Fang, Wei‐Hui
Author_xml – sequence: 1
  givenname: Ya‐Jie
  surname: Liu
  fullname: Liu, Ya‐Jie
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Qiao‐Hong
  surname: Li
  fullname: Li, Qiao‐Hong
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: De‐Jing
  surname: Li
  fullname: Li, De‐Jing
  organization: Chinese Academy of Sciences
– sequence: 4
  givenname: Xue‐Zhen
  surname: Zhang
  fullname: Zhang, Xue‐Zhen
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Wei‐Hui
  surname: Fang
  fullname: Fang, Wei‐Hui
  email: fwh@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
– sequence: 6
  givenname: Jian
  orcidid: 0000-0003-3373-9621
  surname: Zhang
  fullname: Zhang, Jian
  email: zhj@fjirsm.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNpd0b1OwzAQB3ALFQlaWJktsbAE_FE7CVspX5UqOgBz5DiX1sW1S-wIsvEIPCNPQlARA5PP0u9Od_oP0cB5BwidUHJOCWEXyhk4Z4QRynKa76FDKhhNeJryQV-POU_STNADNAxh3fssI_IQddcQzNKp0gKeWM6-Pj4X7x5PbRsiNAG_mbjC913V-KisNhF6YM0L4MfYtDq2DYRL_OjUNqx8DNjX-Mq3rlJNt-uyXTABK1fhxTYarSyem42Jxi2P0H6tbIDj33eEnm9vnqb3yXxxN5tO5smSE54nopR6DKVkrISqzvKMUVFqWY41UUzXWkMtUkUzqUUKtUqrklMqlUppRXNdaj5CZ7u528a_thBisTFBg7XKgW9DwcZSEi6FID09_UfXvm1cv12vslzQNJdZr_KdejMWumLbmE1_bkFJ8RND8RND8RdDMXmY3fz9-DcSc4Q4
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2021 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2021 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202012919
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4854
ExternalDocumentID ANIE202012919
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 92061104, 21771181, 21935010 and 21973096
– fundername: The Strategic Priority Research Pro-gram of the Chinese Academy of Sciences
  funderid: XDB20000000
– fundername: Youth Innovation Promotion Association CAS
  funderid: 2017345
– fundername: National Key Research and Development Program of China
  funderid: 2018YFA0208600
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g3039-5b6c4eb622bedf898215bc6b4c0a2cfccef57a186c57efa7db3116aa71d19cbc3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:08:27 EDT 2025
Fri Jul 25 10:26:56 EDT 2025
Wed Jan 22 16:31:53 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3039-5b6c4eb622bedf898215bc6b4c0a2cfccef57a186c57efa7db3116aa71d19cbc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3373-9621
PQID 2489517968
PQPubID 946352
PageCount 6
ParticipantIDs proquest_miscellaneous_2466036550
proquest_journals_2489517968
wiley_primary_10_1002_anie_202012919_ANIE202012919
PublicationCentury 2000
PublicationDate February 23, 2021
PublicationDateYYYYMMDD 2021-02-23
PublicationDate_xml – month: 02
  year: 2021
  text: February 23, 2021
  day: 23
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2007; 19
2001; 123
1994; 116
2019; 3
2013; 49
2010; 327
2000; 113
1995; 59
2020; 165
2011; 40
2019; 58
1991 1997
2020 2020; 59 132
2008; 14
2008
2011; 11
2006
2020; 11
2018; 61
2017 2017; 56 129
2009; 48
2018; 47
2012; 51
1996; 149
2016; 55
1976; 98
1997; 388
2016 2016; 55 128
1993; 17
2012; 112
2001
1990; 26
2006; 45
1993; 32
2005; 127
2013; 52
2002; 228
1997; 16
2016; 138
2014; 39
2003; 423
2001 2001; 40 113
2006; 106
1990; 92
1994; 98
1992; 4
References_xml – volume: 138
  start-page: 2556
  year: 2016
  end-page: 2559
  publication-title: J. Am. Chem. Soc.
– volume: 388
  start-page: 735
  year: 1997
  end-page: 741
  publication-title: Nature
– volume: 59
  start-page: 785
  year: 1995
  end-page: 794
  publication-title: J. Inorg. Biochem.
– volume: 123
  start-page: 8608
  year: 2001
  end-page: 8609
  publication-title: J. Am. Chem. Soc.
– volume: 423
  start-page: 705
  year: 2003
  end-page: 714
  publication-title: Nature
– year: 1991 1997
– volume: 112
  start-page: 869
  year: 2012
  end-page: 932
  publication-title: Chem. Rev.
– volume: 59 132
  start-page: 16735 16878
  year: 2020 2020
  end-page: 16740 16883
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 26
  start-page: 760
  year: 1990
  end-page: 769
  publication-title: IEEE J. Quantum Electron.
– volume: 55 128
  start-page: 5160 5246
  year: 2016 2016
  end-page: 5165 5251
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 98
  start-page: 1031
  year: 1976
  end-page: 1032
  publication-title: J. Am. Chem. Soc.
– volume: 39
  start-page: 4847
  year: 2014
  end-page: 4850
  publication-title: Opt. Lett.
– volume: 51
  start-page: 737
  year: 2012
  end-page: 745
  publication-title: Inorg. Chem.
– volume: 17
  start-page: 299
  year: 1993
  end-page: 338
  publication-title: Prog. Quantum Electron.
– volume: 112
  start-page: 4124
  year: 2012
  end-page: 4155
  publication-title: Chem. Rev.
– volume: 40
  start-page: 1006
  year: 2011
  end-page: 1030
  publication-title: Chem. Soc. Rev.
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  publication-title: J. Chem. Phys.
– volume: 4
  start-page: 167
  year: 1992
  end-page: 182
  publication-title: Chem. Mater.
– volume: 14
  start-page: 9223
  year: 2008
  end-page: 9239
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 7480
  year: 2016
  end-page: 7483
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2006
  end-page: 87
– volume: 47
  start-page: 404
  year: 2018
  end-page: 421
  publication-title: Chem. Soc. Rev.
– volume: 56 129
  start-page: 10161 10295
  year: 2017 2017
  end-page: 10164 10298
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 11352
  year: 2013
  end-page: 11354
  publication-title: Chem. Commun.
– volume: 52
  start-page: 5991
  year: 2013
  end-page: 5999
  publication-title: Inorg. Chem.
– volume: 98
  start-page: 3570
  year: 1994
  end-page: 3572
  publication-title: J. Phys. Chem.
– volume: 11
  start-page: 1935
  year: 2020
  end-page: 1942
  publication-title: Chem. Sci.
– volume: 116
  start-page: 3615
  year: 1994
  end-page: 3616
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 7006
  year: 2009
  end-page: 7008
  publication-title: Inorg. Chem.
– volume: 55
  start-page: 12270
  year: 2016
  end-page: 12280
  publication-title: Inorg. Chem.
– start-page: 2016
  year: 2001
  end-page: 2017
  publication-title: Chem. Commun.
– volume: 327
  start-page: 1485
  year: 2010
  end-page: 1488
  publication-title: Science
– volume: 43
  start-page: 1323
  year: 2004
  end-page: 1327
  publication-title: Inorg. Chem.
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  publication-title: J. Chem. Phys.
– volume: 16
  start-page: 3815
  year: 1997
  end-page: 3818
  publication-title: Organometallics
– volume: 19
  start-page: 2737
  year: 2007
  end-page: 2774
  publication-title: Adv. Mater.
– volume: 40 113
  start-page: 3577 3689
  year: 2001 2001
  end-page: 3581 3693
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 3869
  year: 2008
  end-page: 3873
  publication-title: Chem. Eur. J.
– volume: 32
  start-page: 4909
  year: 1993
  end-page: 4913
  publication-title: Inorg. Chem.
– volume: 11
  start-page: 4674
  year: 2011
  end-page: 4678
  publication-title: Nano Lett.
– volume: 127
  start-page: 4869
  year: 2005
  end-page: 4878
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 4792
  year: 2019
  end-page: 4801
  publication-title: Inorg. Chem.
– volume: 3
  start-page: 1353
  year: 2019
  end-page: 1361
  publication-title: ACS Earth Space Chem.
– volume: 55
  start-page: 1861
  year: 2016
  end-page: 1871
  publication-title: Inorg. Chem.
– volume: 165
  start-page: 461
  year: 2020
  end-page: 467
  publication-title: Carbon
– volume: 45
  start-page: 8638
  year: 2006
  end-page: 8647
  publication-title: Inorg. Chem.
– volume: 228
  start-page: 115
  year: 2002
  end-page: 126
  publication-title: Coord. Chem. Rev.
– start-page: 444
  year: 2008
  end-page: 446
  publication-title: Chem. Commun.
– volume: 149
  start-page: 281
  year: 1996
  end-page: 309
  publication-title: Coord. Chem. Rev.
– volume: 61
  start-page: 1619
  year: 2018
  end-page: 1623
  publication-title: Sci. China Chem.
– volume: 106
  start-page: 1
  year: 2006
  end-page: 16
  publication-title: Chem. Rev.
SSID ssj0028806
Score 2.537968
Snippet The hydrolysis of earth‐abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third‐order nonlinear optical (NLO)...
The hydrolysis of earth-abundant AlIII has implications in mineral mimicry, geochemistry and environmental chemistry. Third-order nonlinear optical (NLO)...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 4849
SubjectTerms aluminum
Charge distribution
cluster science
Clusters
Constraining
Environmental chemistry
Geochemistry
Hydrolysis
hydrotalcite
Ions
Layered materials
Mimicry
optical limiting
Title Designable Al32‐Oxo Clusters with Hydrotalcite‐like Structures: Snapshots of Boundary Hydrolysis and Optical Limiting
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202012919
https://www.proquest.com/docview/2489517968
https://www.proquest.com/docview/2466036550
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDIAjxAUuvBHjpSBxLbRJm7bcxmAaSAyJgbRblVcBMbUT3STGiZ_Ab-SXEKdr2TjCsWoitbXT2I79GaHjUAIlTPgOCaXr-BEwIJUwXqurNPM05cyyO2-6rPPgX_eD_kwVf8mHqANusDLs_xoWOBfF6Q80FCqwjX9HIJJiuZ-QsAVW0V3NjyJGOcvyIkod6EJfURtdcjo_fc6-nLVS7TbTXkW8esAyu-TlZDwSJ_L9F7vxP2-whlamNihulkqzjhZ0toGWWlXrt000ubB5HVBVhZsDSr4-Pm_fctwajAGrUGAI3uLORL3mxnSXxmg1AwbPLxr3LI12bFz4M9zL-LB4ykcFzlN8brs3vU7KWRaDgnmm8O3QxtKxrbMyu-gWemhf3rc6zrRHg_NI4RA5EEz6WjBChFZpFEfGhBCSCV-6nMhUSp0GIfciJoNQpzxUgnoe4zz0lBdLIek2WszyTO8grGPFlJZK08j3hXSNpyNE6gc8SkNO4rSB9isZJdOFViTEqBdQxljUQEf1bfO54NyDZzofwxjGzEZtfLEGIlYgybBEeSQltJkkIIqkFkXS7F5d1le7f5m0h5YJZL9A8TvdR4vm8-sDY76MxKFV0W-9ze0D
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEEAtBIdyYUcUChiJayCxEyflVgqobK3EInGLvAVQq6TqIlFOfALfyJfgcZqwHOEYxZaSzDieGc-8QWg_lEAJE75DQuk6fgQMSCWM1-oqzTxNObPszus2a937Fw9BkU0ItTA5H6IMuMHKsP9rWOAQkD78ooZCCbZx8AiEUgD8OQdtva1XdVMSpIhRz7zAiFIH-tAX3EaXHP6c_8PC_G6n2o3mbBGJ4hHz_JLuwXgkDuTrL3rjv95hCS1MzVDcyPVmGc3odAVVmkX3t1U0ObGpHVBYhRs9Sj7e3jsvGW72xkBWGGKI3-LWRA0yY71LY7eaAb3nrsa3Fkg7Nl78Eb5NeX_4lI2GOEvwsW3gNJjksywJBfNU4U7fhtOxLbUyG-kauj87vWu2nGmbBueRwjlyIJj0tWCECK2SqB4ZK0JIJnzpciITKXUShNyLmAxCnfBQCep5jPPQU15dCknX0WyapXoDYV1XTGmpNI18X0jXODtCJH7AoyTkpJ5UUa0QUjxda8OYGA0D0BiLqmivvG0-Fxx98FRnYxjDmNmrjTtWRcRKJO7nNI845zaTGEQRl6KIG-3z0_Jq8y-TdlGldXd9FV-dty-30DyBZBiohac1NGtEobeNNTMSO1ZfPwGEefEe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT9wwEICtCqS2F-iDigXaulKvgcR2nITbsg8tfSxVKRK3yM8W7SpZsRuJ7ak_gd_IL8HjbNKlR3qMYktJZhzPjGe-QehjooASJllAEhUGLAUGpJbOaw214ZGhgnt259cxH12wT5fx5VoVf82HaANusDL8_xoW-Ezbo7_QUKjAdv4dgUgKcD83GQ9T0Ov-9xYgRZx21vVFlAbQhr7BNobk6OH8Bwbmupnq95nhNhLNE9bpJZPDaiEP1e9_4I3_8wov0NbKCMXdWmteoiemeIWe9Zreb6_Rsu8TO6CsCnenlNz9uT27KXFvWgFXYY4heotHS31dOttdOavVDZheTQw-9zjayvnwx_i8ELP5r3Ixx6XFJ7590_WynuU5KFgUGp_NfDAd-0Irt43uoIvh4EdvFKyaNAQ_KZwix5IrZiQnRBpt0yx1NoRUXDIVCqKsUsbGiYhSruLEWJFoSaOIC5FEOsqUVPQN2ijKwuwibDLNtVHa0JQxqULn6khpWSxSmwiS2Q46aGSUr1baPCdOvwAzxtMO-tDedp8LDj5EYcoKxnDudmrnjHUQ8QLJZzXLI6-pzSQHUeStKPLu-HTQXu09ZtJ79PRbf5h_OR1_3kfPCWTCQCE8PUAbThLmrTNlFvKd19Z74Z3v1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designable+Al32%E2%80%90Oxo+Clusters+with+Hydrotalcite%E2%80%90like+Structures%3A+Snapshots+of+Boundary+Hydrolysis+and+Optical+Limiting&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Liu%2C+Ya%E2%80%90Jie&rft.au=Li%2C+Qiao%E2%80%90Hong&rft.au=Li%2C+De%E2%80%90Jing&rft.au=Zhang%2C+Xue%E2%80%90Zhen&rft.date=2021-02-23&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=9&rft.spage=4849&rft.epage=4854&rft_id=info:doi/10.1002%2Fanie.202012919&rft.externalDBID=10.1002%252Fanie.202012919&rft.externalDocID=ANIE202012919
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon