High‐Curvature Transition‐Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO2 Electroreduction

A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strat...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 22; pp. 8706 - 8712
Main Authors Gao, Fei‐Yue, Hu, Shao‐Jin, Zhang, Xiao‐Long, Zheng, Ya‐Rong, Wang, Hui‐Juan, Niu, Zhuang‐Zhuang, Yang, Peng‐Peng, Bao, Rui‐Cheng, Ma, Tao, Dang, Zheng, Guan, Yong, Zheng, Xu‐Sheng, Zheng, Xiao, Zhu, Jun‐Fa, Gao, Min‐Rui, Yu, Shu‐Hong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 25.05.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency. The needle has landed: CdS nanostructures with sharp tips can generate large electric fields that lead to increased CO2 concentrations for CO2‐to‐CO conversion. The localized electric fields are significantly enhanced when two nanoneedles are in close proximity. These advantages result in CO2 electrocatalytic reduction with a 95.5±4.0 % CO Faraday efficiency.
AbstractList A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency. The needle has landed: CdS nanostructures with sharp tips can generate large electric fields that lead to increased CO2 concentrations for CO2‐to‐CO conversion. The localized electric fields are significantly enhanced when two nanoneedles are in close proximity. These advantages result in CO2 electrocatalytic reduction with a 95.5±4.0 % CO Faraday efficiency.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2 .- or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition-metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm-2 with 95.5±4.0 % CO Faraday efficiency at -1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high-curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali-metal cations resulting in the enhanced CO2 electroreduction efficiency.A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2 .- or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition-metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm-2 with 95.5±4.0 % CO Faraday efficiency at -1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high-curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali-metal cations resulting in the enhanced CO2 electroreduction efficiency.
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency.
Author Dang, Zheng
Zheng, Xiao
Zheng, Xu‐Sheng
Zhu, Jun‐Fa
Gao, Min‐Rui
Hu, Shao‐Jin
Gao, Fei‐Yue
Yang, Peng‐Peng
Zheng, Ya‐Rong
Bao, Rui‐Cheng
Zhang, Xiao‐Long
Guan, Yong
Wang, Hui‐Juan
Yu, Shu‐Hong
Ma, Tao
Niu, Zhuang‐Zhuang
Author_xml – sequence: 1
  givenname: Fei‐Yue
  surname: Gao
  fullname: Gao, Fei‐Yue
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Shao‐Jin
  surname: Hu
  fullname: Hu, Shao‐Jin
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Xiao‐Long
  surname: Zhang
  fullname: Zhang, Xiao‐Long
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Ya‐Rong
  surname: Zheng
  fullname: Zheng, Ya‐Rong
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Hui‐Juan
  surname: Wang
  fullname: Wang, Hui‐Juan
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Zhuang‐Zhuang
  surname: Niu
  fullname: Niu, Zhuang‐Zhuang
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Peng‐Peng
  surname: Yang
  fullname: Yang, Peng‐Peng
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Rui‐Cheng
  surname: Bao
  fullname: Bao, Rui‐Cheng
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Tao
  surname: Ma
  fullname: Ma, Tao
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Zheng
  surname: Dang
  fullname: Dang, Zheng
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Yong
  surname: Guan
  fullname: Guan, Yong
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Xu‐Sheng
  surname: Zheng
  fullname: Zheng, Xu‐Sheng
  organization: University of Science and Technology of China
– sequence: 13
  givenname: Xiao
  surname: Zheng
  fullname: Zheng, Xiao
  organization: University of Science and Technology of China
– sequence: 14
  givenname: Jun‐Fa
  surname: Zhu
  fullname: Zhu, Jun‐Fa
  organization: University of Science and Technology of China
– sequence: 15
  givenname: Min‐Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min‐Rui
  email: mgao@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 16
  givenname: Shu‐Hong
  orcidid: 0000-0003-3732-1011
  surname: Yu
  fullname: Yu, Shu‐Hong
  email: shyu@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNpdkc1u1TAQhS1UJNrClrUlNmxS_JcbZ1lF6Y9UWiTK2po4c-91lWsX22m5Ox6hfUWeBEdFXbCaOaNPZ0ZzjsiBDx4J-cjZCWdMfAHv8EQw3nIhlX5DDnkteCWbRh6UXklZNbrm78hRSneF15qtDsnzhdts__x-6ub4AHmOSG8j-OSyC76Mv2KGiXZbmGzYoHcj0mvwIeU424VO9NHlLQX6LQYfZm9xXNpfbufynvbrNdpMew_DhPQMUqbgR_odpzJ2D0i7G0H7RcQQcSyWZet78nYNU8IP_-ox-XHW33YX1dXN-WV3elVtJJO64vUIupG1UgwHNeq11cNK2YYxQIus1U29soINNbSKKT0OStaAbVMQ1ABcHpPPL773MfycMWWzc8niNIHHMCcjpORKtKpRBf30H3oX5ujLdUao8knJlNKFal-oRzfh3txHt4O4N5yZJR6zxGNe4zGn15f9q5J_AWV7i9c
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.201912348
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 8712
ExternalDocumentID ANIE201912348
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21431006
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g3038-15da8735440eb4d8fc8b64c700aece098756c20b5a94048db435ae974c7e8aa13
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:19:33 EDT 2025
Fri Jul 25 10:34:49 EDT 2025
Wed Jan 22 16:33:49 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3038-15da8735440eb4d8fc8b64c700aece098756c20b5a94048db435ae974c7e8aa13
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3732-1011
0000-0002-7805-803X
PQID 2402830448
PQPubID 946352
PageCount 7
ParticipantIDs proquest_miscellaneous_2331429474
proquest_journals_2402830448
wiley_primary_10_1002_anie_201912348_ANIE201912348
PublicationCentury 2000
PublicationDate May 25, 2020
PublicationDateYYYYMMDD 2020-05-25
PublicationDate_xml – month: 05
  year: 2020
  text: May 25, 2020
  day: 25
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 219
2011; 334
2018; 122
2004; 61
2019; 3
2018; 360
2019; 31
2016; 529
2017 2017; 56 129
2016; 301
2020; 10
2016; 18
2017; 355
2017; 114
2017; 139
2016; 260
2018; 9
2016; 6
2016; 7
2012; 1476
2018; 8
2014; 5
2019; 60
2018; 2
2018; 4
2015; 137
2001
2018; 1
2016; 537
2017; 16
2018 2018; 57 130
2016; 353
2014; 13
2018; 30
2016; 138
2009; 3
2018; 12
References_xml – volume: 1476
  start-page: 351
  year: 2012
  end-page: 355
  publication-title: AIP Conf. Proc.
– volume: 60
  start-page: 43
  year: 2019
  end-page: 51
  publication-title: Nano Energy
– volume: 8
  start-page: 8121
  year: 2018
  end-page: 8129
  publication-title: ACS Catal.
– volume: 3
  start-page: 1
  year: 2019
  end-page: 14
  publication-title: Joule
– volume: 9
  start-page: 1320
  year: 2018
  publication-title: Nat. Commun.
– volume: 360
  start-page: 783
  year: 2018
  end-page: 787
  publication-title: Science
– volume: 219
  start-page: 123
  year: 2017
  end-page: 131
  publication-title: Appl. Catal. B
– volume: 16
  start-page: 16
  year: 2017
  end-page: 22
  publication-title: Nat. Mater.
– volume: 355
  start-page: 126
  year: 2017
  end-page: 129
  publication-title: Science
– volume: 138
  start-page: 13006
  year: 2016
  end-page: 13012
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8239
  year: 2016
  end-page: 8247
  publication-title: ACS Catal.
– volume: 5
  start-page: 3242
  year: 2014
  publication-title: Nat. Commun.
– volume: 56 129
  start-page: 796 814
  year: 2017 2017
  end-page: 800 818
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 11544 11718
  year: 2018 2018
  end-page: 11548 11722
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 57
  year: 2017
  end-page: 69
  publication-title: Nat. Mater.
– volume: 18
  start-page: 7075
  year: 2016
  end-page: 7084
  publication-title: Phys. Chem. Chem. Phys.
– year: 2001
– volume: 139
  start-page: 2030
  year: 2017
  end-page: 2034
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 10159
  year: 2018
  end-page: 10170
  publication-title: ACS Nano
– volume: 56 129
  start-page: 15617 15823
  year: 2017 2017
  end-page: 15621 15827
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 825
  year: 2018
  end-page: 832
  publication-title: Joule
– volume: 61
  start-page: 85
  year: 2004
  end-page: 98
  publication-title: J. Electrost.
– volume: 1
  start-page: 592
  year: 2018
  end-page: 600
  publication-title: Nat. Catal.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 529
  start-page: 68
  year: 2016
  end-page: 71
  publication-title: Nature
– volume: 10
  start-page: 1152
  year: 2020
  end-page: 1160
  publication-title: ACS Catal.
– volume: 3
  start-page: 152
  year: 2009
  end-page: 156
  publication-title: Nat. Photonics
– volume: 1
  start-page: 421
  year: 2018
  end-page: 428
  publication-title: Nat. Catal.
– volume: 5
  start-page: 11582
  year: 2017
  end-page: 11585
  publication-title: J. Mater. Chem. A
– volume: 260
  start-page: 8
  year: 2016
  end-page: 13
  publication-title: Catal. Today
– volume: 301
  start-page: 219
  year: 2016
  end-page: 228
  publication-title: J. Power Sources
– volume: 7
  start-page: 12123
  year: 2016
  publication-title: Nat. Commun.
– volume: 537
  start-page: 382
  year: 2016
  end-page: 386
  publication-title: Nature
– volume: 334
  start-page: 643
  year: 2011
  end-page: 644
  publication-title: Science
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 1013
  year: 2014
  end-page: 1018
  publication-title: Nat. Mater.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 20
  year: 2016
  end-page: 24
  publication-title: J. Phys. Chem. Lett.
– volume: 56 129
  start-page: 11326 11482
  year: 2017 2017
  end-page: 11353 11511
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 139
  start-page: 2160
  year: 2017
  end-page: 2163
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 103
  year: 2018
  end-page: 110
  publication-title: Nat. Catal.
– volume: 122
  start-page: 18012
  year: 2018
  end-page: 18020
  publication-title: J. Phys. Chem. C
– volume: 114
  start-page: 10560
  year: 2017
  end-page: 10565
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 137
  start-page: 13844
  year: 2015
  end-page: 13850
  publication-title: J. Am. Chem. Soc.
– volume: 56 129
  start-page: 13135 13315
  year: 2017 2017
  end-page: 13139 13319
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 353
  start-page: 467
  year: 2016
  end-page: 470
  publication-title: Science
– volume: 4
  start-page: 162
  year: 2018
  end-page: 173
  publication-title: Chem
SSID ssj0028806
Score 2.657916
Snippet A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often...
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2 .- or other intermediates, which often...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 8706
SubjectTerms Additives
Alkali metals
Cadmium
Cadmium sulfide
Carbon dioxide
Carbon monoxide
Catalysts
Cations
Chalcogenides
CO2 electroreduction
Computer applications
Curvature
Electric fields
Electrowinning
flow cells
high-curvature structures
Intermediates
Ionic liquids
Ions
Metal ions
Metals
Nanostructure
proximity effect
Proximity effect (electricity)
Title High‐Curvature Transition‐Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO2 Electroreduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201912348
https://www.proquest.com/docview/2402830448
https://www.proquest.com/docview/2331429474
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFLYqLvTSslVMGZArcQ04XibJEUUzAiQWsUjcIm-BqiipZpHanvoT4C_yS3jPngnLsb05ia04ec9vsd_7HiG7ZmAVqG6TFIVyiUxrAa28SEyW6pRbK02oEnFyOji8lsc36uZVFn_Eh-g23HBlBHmNC1ybyf4LaChmYGNoVgGyV2K2LwZsoVV00eFHcWDOmF4kRIJV6BeojYzvvx3-xr58baUGNTP6TPRigjG65MfebGr27J932I3_8wUr5NPcBqUHkWlWyQffrJHlclH6bZ08YvTH09-HcoY7trOxp0GlheguuH3iwWKn5Z2-ty3w33fnKQjpNkLRQu8Jxd1dqun5uG1AmljvsPkLc6l-04iXTIchaYuO9GRKdePoZSjIA7KXlmecDmN1njECy-JbN8j1aHhVHibz2g3JLShFcEyV03kmlJTMG-ny2uZmIG3GmPbWswLcpIHlzChdSBAiDlhCaQ_Ojc18rnUqvpClpm38JqFOOqGKGvyyjEmjRWHAZfKqzn2duozVPdJf0K6aL8BJhYdGuWDgfPbIt-4x_EY8D9GNb2fQR4gU1LHMZI_wQKjqZ4T4qCKYM6-QRFVHourg9GjYXX39l0Fb5CNHj52phKs-WQLK-G0wa6ZmJ7DuM4ay9Dw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcAgXdsRAgEaCo5N2L2P7wCFyZjRDMgOCRMrN9GZAIBvNIggnPgE-hV_hE_gSquwZQzgi5cCtbbcXtWvvqlcAj2zfaVTdNsoy7SMVlxJHaRbZJDaxcE7ZpkvEZNofHaunJ_pkA76va2FafIgu4Eac0chrYnAKSO_-Rg2lEmzKzcpQ-Kp0lVd5EE4_otc2fzLex1_8WIjh4CgfRavGAtFrlNjoNWlv0kRqpXiwyqelS21fuYRzE1zg6IbrvhPcapMppHCP36tNQMvbJSE1Jpb43AtwkdqIE1z__osOsUogO7QFTVJG1Pd-jRPJxe7Z7z1j0f5pFzeKbXgFfqyXpM1nebezXNgd9_kvtMj_as2uwuWVmc32Wr64Bhuhug5b-bq73Q34RgkuP798zZcUlF7OAmu0dpPAhqcnAZ0Slr8x712NLPbWB4Z6qG7RdnH2nFEAmxn2fFZXKDBd8DT8ROVip6yFhGaDpi6NDc18wUzl2cum5xCqF5Y_E2zQNiCaEXYuvfUmHJ_LityCzaquwm1gXnmpsxJdz4Qra2Rm0SsMukxDGfuElz3YXhNLsZIx84L2xVLJ0b_uwcPuMi4jbfmYKtRLnCNljBaHSlQPREMZxYcWxaRo8apFQSRRdCRR7E3Hg-7ozr_c9AC2RkeTw-JwPD24C5cEBSi4joTehk38S-EeWnELe7_hGwavzpvofgFxUVGO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRYJueCMGChgJlmkdP_JYsKgyM-pQOlRApe6CX4EKlFTzEJQVnwB_wq_wC3wJ184kUJZIXbBzEiex7Pu07z0X4LFOjETVraM8lzYSccWxleWRTmMVM2OEDlUi9qfJ7qF4diSP1uB7lwvT4kP0G26eM4K89gx-Yqvt36ChPgPbh2blKHtFtgqr3HOnH9Fpmz-dDHGFnzA2Hr0udqNVXYHoLQpsdJqkVVnKpRDUaWGzymQ6ESalVDnjKHrhMjGMaqlygQRucbhSOTS8TeoypWKO370AF0VCc18sYviyB6xiyA1tPhPnkS9738FEUrZ9drxnDNo_zeKg18ZX4Uc3I204y_ut5UJvmc9_gUX-T1N2Da6sjGyy03LFdVhz9Q24XHS17W7CNx_e8vPL12Lpt6SXM0eCzg7ha3h736FLQop36oNpkMGOrSOohZoWaxd7z4nfviaKHMyaGsWlcdY3P_lksVPSAkKTUchKI2M1XxBVW_IqVBxC5UKKF4yM2vJDM4-c6_96Cw7PZUZuw3rd1O4OECssl3mFjmdKhVY81-gTOlllroptSqsBbHa0Uq4kzLz0p2IZp-hdD-BR_xin0R_4qNo1S-zDeYz2hkjFAFggjPKkxTApW7RqVnqSKHuSKHemk1F_dfdfXnoIlw6G4_L5ZLp3DzaY352gMmJyE9Zxkdx9NOEW-kHgGgJvzpvmfgEUKVA9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Curvature+Transition-Metal+Chalcogenide+Nanostructures+with+a+Pronounced+Proximity+Effect+Enable+Fast+and+Selective+CO2+Electroreduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Fei-Yue&rft.au=Hu%2C+Shao-Jin&rft.au=Zhang%2C+Xiao-Long&rft.au=Zheng%2C+Ya-Rong&rft.date=2020-05-25&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=22&rft.spage=8706&rft_id=info:doi/10.1002%2Fanie.201912348&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon