High‐Curvature Transition‐Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO2 Electroreduction
A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strat...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 22; pp. 8706 - 8712 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
25.05.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency.
The needle has landed: CdS nanostructures with sharp tips can generate large electric fields that lead to increased CO2 concentrations for CO2‐to‐CO conversion. The localized electric fields are significantly enhanced when two nanoneedles are in close proximity. These advantages result in CO2 electrocatalytic reduction with a 95.5±4.0 % CO Faraday efficiency. |
---|---|
AbstractList | A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency.
The needle has landed: CdS nanostructures with sharp tips can generate large electric fields that lead to increased CO2 concentrations for CO2‐to‐CO conversion. The localized electric fields are significantly enhanced when two nanoneedles are in close proximity. These advantages result in CO2 electrocatalytic reduction with a 95.5±4.0 % CO Faraday efficiency. A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2 .- or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition-metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm-2 with 95.5±4.0 % CO Faraday efficiency at -1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high-curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali-metal cations resulting in the enhanced CO2 electroreduction efficiency.A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2 .- or other intermediates, which often requires precious-metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition-metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm-2 with 95.5±4.0 % CO Faraday efficiency at -1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high-curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali-metal cations resulting in the enhanced CO2 electroreduction efficiency. A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often requires precious‐metal catalysts, high overpotentials, and/or electrolyte additives (e.g., ionic liquids). We report a microwave heating strategy for synthesizing a transition‐metal chalcogenide nanostructure that efficiently catalyzes CO2 electroreduction to carbon monoxide (CO). We found that the cadmium sulfide (CdS) nanoneedle arrays exhibit an unprecedented current density of 212 mA cm−2 with 95.5±4.0 % CO Faraday efficiency at −1.2 V versus a reversible hydrogen electrode (RHE; without iR correction). Experimental and computational studies show that the high‐curvature CdS nanostructured catalyst has a pronounced proximity effect which gives rise to large electric field enhancement, which can concentrate alkali‐metal cations resulting in the enhanced CO2 electroreduction efficiency. |
Author | Dang, Zheng Zheng, Xiao Zheng, Xu‐Sheng Zhu, Jun‐Fa Gao, Min‐Rui Hu, Shao‐Jin Gao, Fei‐Yue Yang, Peng‐Peng Zheng, Ya‐Rong Bao, Rui‐Cheng Zhang, Xiao‐Long Guan, Yong Wang, Hui‐Juan Yu, Shu‐Hong Ma, Tao Niu, Zhuang‐Zhuang |
Author_xml | – sequence: 1 givenname: Fei‐Yue surname: Gao fullname: Gao, Fei‐Yue organization: University of Science and Technology of China – sequence: 2 givenname: Shao‐Jin surname: Hu fullname: Hu, Shao‐Jin organization: University of Science and Technology of China – sequence: 3 givenname: Xiao‐Long surname: Zhang fullname: Zhang, Xiao‐Long organization: University of Science and Technology of China – sequence: 4 givenname: Ya‐Rong surname: Zheng fullname: Zheng, Ya‐Rong organization: University of Science and Technology of China – sequence: 5 givenname: Hui‐Juan surname: Wang fullname: Wang, Hui‐Juan organization: University of Science and Technology of China – sequence: 6 givenname: Zhuang‐Zhuang surname: Niu fullname: Niu, Zhuang‐Zhuang organization: University of Science and Technology of China – sequence: 7 givenname: Peng‐Peng surname: Yang fullname: Yang, Peng‐Peng organization: University of Science and Technology of China – sequence: 8 givenname: Rui‐Cheng surname: Bao fullname: Bao, Rui‐Cheng organization: University of Science and Technology of China – sequence: 9 givenname: Tao surname: Ma fullname: Ma, Tao organization: University of Science and Technology of China – sequence: 10 givenname: Zheng surname: Dang fullname: Dang, Zheng organization: University of Science and Technology of China – sequence: 11 givenname: Yong surname: Guan fullname: Guan, Yong organization: University of Science and Technology of China – sequence: 12 givenname: Xu‐Sheng surname: Zheng fullname: Zheng, Xu‐Sheng organization: University of Science and Technology of China – sequence: 13 givenname: Xiao surname: Zheng fullname: Zheng, Xiao organization: University of Science and Technology of China – sequence: 14 givenname: Jun‐Fa surname: Zhu fullname: Zhu, Jun‐Fa organization: University of Science and Technology of China – sequence: 15 givenname: Min‐Rui orcidid: 0000-0002-7805-803X surname: Gao fullname: Gao, Min‐Rui email: mgao@ustc.edu.cn organization: University of Science and Technology of China – sequence: 16 givenname: Shu‐Hong orcidid: 0000-0003-3732-1011 surname: Yu fullname: Yu, Shu‐Hong email: shyu@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNpdkc1u1TAQhS1UJNrClrUlNmxS_JcbZ1lF6Y9UWiTK2po4c-91lWsX22m5Ox6hfUWeBEdFXbCaOaNPZ0ZzjsiBDx4J-cjZCWdMfAHv8EQw3nIhlX5DDnkteCWbRh6UXklZNbrm78hRSneF15qtDsnzhdts__x-6ub4AHmOSG8j-OSyC76Mv2KGiXZbmGzYoHcj0mvwIeU424VO9NHlLQX6LQYfZm9xXNpfbufynvbrNdpMew_DhPQMUqbgR_odpzJ2D0i7G0H7RcQQcSyWZet78nYNU8IP_-ox-XHW33YX1dXN-WV3elVtJJO64vUIupG1UgwHNeq11cNK2YYxQIus1U29soINNbSKKT0OStaAbVMQ1ABcHpPPL773MfycMWWzc8niNIHHMCcjpORKtKpRBf30H3oX5ujLdUao8knJlNKFal-oRzfh3txHt4O4N5yZJR6zxGNe4zGn15f9q5J_AWV7i9c |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.201912348 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 8712 |
ExternalDocumentID | ANIE201912348 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21431006 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-g3038-15da8735440eb4d8fc8b64c700aece098756c20b5a94048db435ae974c7e8aa13 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:19:33 EDT 2025 Fri Jul 25 10:34:49 EDT 2025 Wed Jan 22 16:33:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3038-15da8735440eb4d8fc8b64c700aece098756c20b5a94048db435ae974c7e8aa13 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3732-1011 0000-0002-7805-803X |
PQID | 2402830448 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2331429474 proquest_journals_2402830448 wiley_primary_10_1002_anie_201912348_ANIE201912348 |
PublicationCentury | 2000 |
PublicationDate | May 25, 2020 |
PublicationDateYYYYMMDD | 2020-05-25 |
PublicationDate_xml | – month: 05 year: 2020 text: May 25, 2020 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 219 2011; 334 2018; 122 2004; 61 2019; 3 2018; 360 2019; 31 2016; 529 2017 2017; 56 129 2016; 301 2020; 10 2016; 18 2017; 355 2017; 114 2017; 139 2016; 260 2018; 9 2016; 6 2016; 7 2012; 1476 2018; 8 2014; 5 2019; 60 2018; 2 2018; 4 2015; 137 2001 2018; 1 2016; 537 2017; 16 2018 2018; 57 130 2016; 353 2014; 13 2018; 30 2016; 138 2009; 3 2018; 12 |
References_xml | – volume: 1476 start-page: 351 year: 2012 end-page: 355 publication-title: AIP Conf. Proc. – volume: 60 start-page: 43 year: 2019 end-page: 51 publication-title: Nano Energy – volume: 8 start-page: 8121 year: 2018 end-page: 8129 publication-title: ACS Catal. – volume: 3 start-page: 1 year: 2019 end-page: 14 publication-title: Joule – volume: 9 start-page: 1320 year: 2018 publication-title: Nat. Commun. – volume: 360 start-page: 783 year: 2018 end-page: 787 publication-title: Science – volume: 219 start-page: 123 year: 2017 end-page: 131 publication-title: Appl. Catal. B – volume: 16 start-page: 16 year: 2017 end-page: 22 publication-title: Nat. Mater. – volume: 355 start-page: 126 year: 2017 end-page: 129 publication-title: Science – volume: 138 start-page: 13006 year: 2016 end-page: 13012 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8239 year: 2016 end-page: 8247 publication-title: ACS Catal. – volume: 5 start-page: 3242 year: 2014 publication-title: Nat. Commun. – volume: 56 129 start-page: 796 814 year: 2017 2017 end-page: 800 818 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 11544 11718 year: 2018 2018 end-page: 11548 11722 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 57 year: 2017 end-page: 69 publication-title: Nat. Mater. – volume: 18 start-page: 7075 year: 2016 end-page: 7084 publication-title: Phys. Chem. Chem. Phys. – year: 2001 – volume: 139 start-page: 2030 year: 2017 end-page: 2034 publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 10159 year: 2018 end-page: 10170 publication-title: ACS Nano – volume: 56 129 start-page: 15617 15823 year: 2017 2017 end-page: 15621 15827 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 2 start-page: 825 year: 2018 end-page: 832 publication-title: Joule – volume: 61 start-page: 85 year: 2004 end-page: 98 publication-title: J. Electrost. – volume: 1 start-page: 592 year: 2018 end-page: 600 publication-title: Nat. Catal. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 529 start-page: 68 year: 2016 end-page: 71 publication-title: Nature – volume: 10 start-page: 1152 year: 2020 end-page: 1160 publication-title: ACS Catal. – volume: 3 start-page: 152 year: 2009 end-page: 156 publication-title: Nat. Photonics – volume: 1 start-page: 421 year: 2018 end-page: 428 publication-title: Nat. Catal. – volume: 5 start-page: 11582 year: 2017 end-page: 11585 publication-title: J. Mater. Chem. A – volume: 260 start-page: 8 year: 2016 end-page: 13 publication-title: Catal. Today – volume: 301 start-page: 219 year: 2016 end-page: 228 publication-title: J. Power Sources – volume: 7 start-page: 12123 year: 2016 publication-title: Nat. Commun. – volume: 537 start-page: 382 year: 2016 end-page: 386 publication-title: Nature – volume: 334 start-page: 643 year: 2011 end-page: 644 publication-title: Science – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 13 start-page: 1013 year: 2014 end-page: 1018 publication-title: Nat. Mater. – volume: 355 year: 2017 publication-title: Science – volume: 7 start-page: 20 year: 2016 end-page: 24 publication-title: J. Phys. Chem. Lett. – volume: 56 129 start-page: 11326 11482 year: 2017 2017 end-page: 11353 11511 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 139 start-page: 2160 year: 2017 end-page: 2163 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 103 year: 2018 end-page: 110 publication-title: Nat. Catal. – volume: 122 start-page: 18012 year: 2018 end-page: 18020 publication-title: J. Phys. Chem. C – volume: 114 start-page: 10560 year: 2017 end-page: 10565 publication-title: Proc. Natl. Acad. Sci. USA – volume: 137 start-page: 13844 year: 2015 end-page: 13850 publication-title: J. Am. Chem. Soc. – volume: 56 129 start-page: 13135 13315 year: 2017 2017 end-page: 13139 13319 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 353 start-page: 467 year: 2016 end-page: 470 publication-title: Science – volume: 4 start-page: 162 year: 2018 end-page: 173 publication-title: Chem |
SSID | ssj0028806 |
Score | 2.657916 |
Snippet | A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2.− or other intermediates, which often... A considerable challenge in the conversion of carbon dioxide into useful fuels comes from the activation of CO2 to CO2 .- or other intermediates, which often... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 8706 |
SubjectTerms | Additives Alkali metals Cadmium Cadmium sulfide Carbon dioxide Carbon monoxide Catalysts Cations Chalcogenides CO2 electroreduction Computer applications Curvature Electric fields Electrowinning flow cells high-curvature structures Intermediates Ionic liquids Ions Metal ions Metals Nanostructure proximity effect Proximity effect (electricity) |
Title | High‐Curvature Transition‐Metal Chalcogenide Nanostructures with a Pronounced Proximity Effect Enable Fast and Selective CO2 Electroreduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201912348 https://www.proquest.com/docview/2402830448 https://www.proquest.com/docview/2331429474 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT9wwFLYqLvTSslVMGZArcQ04XibJEUUzAiQWsUjcIm-BqiipZpHanvoT4C_yS3jPngnLsb05ia04ec9vsd_7HiG7ZmAVqG6TFIVyiUxrAa28SEyW6pRbK02oEnFyOji8lsc36uZVFn_Eh-g23HBlBHmNC1ybyf4LaChmYGNoVgGyV2K2LwZsoVV00eFHcWDOmF4kRIJV6BeojYzvvx3-xr58baUGNTP6TPRigjG65MfebGr27J932I3_8wUr5NPcBqUHkWlWyQffrJHlclH6bZ08YvTH09-HcoY7trOxp0GlheguuH3iwWKn5Z2-ty3w33fnKQjpNkLRQu8Jxd1dqun5uG1AmljvsPkLc6l-04iXTIchaYuO9GRKdePoZSjIA7KXlmecDmN1njECy-JbN8j1aHhVHibz2g3JLShFcEyV03kmlJTMG-ny2uZmIG3GmPbWswLcpIHlzChdSBAiDlhCaQ_Ojc18rnUqvpClpm38JqFOOqGKGvyyjEmjRWHAZfKqzn2duozVPdJf0K6aL8BJhYdGuWDgfPbIt-4x_EY8D9GNb2fQR4gU1LHMZI_wQKjqZ4T4qCKYM6-QRFVHourg9GjYXX39l0Fb5CNHj52phKs-WQLK-G0wa6ZmJ7DuM4ay9Dw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FcAgXdsRAgEaCo5N2L2P7wCFyZjRDMgOCRMrN9GZAIBvNIggnPgE-hV_hE_gSquwZQzgi5cCtbbcXtWvvqlcAj2zfaVTdNsoy7SMVlxJHaRbZJDaxcE7ZpkvEZNofHaunJ_pkA76va2FafIgu4Eac0chrYnAKSO_-Rg2lEmzKzcpQ-Kp0lVd5EE4_otc2fzLex1_8WIjh4CgfRavGAtFrlNjoNWlv0kRqpXiwyqelS21fuYRzE1zg6IbrvhPcapMppHCP36tNQMvbJSE1Jpb43AtwkdqIE1z__osOsUogO7QFTVJG1Pd-jRPJxe7Z7z1j0f5pFzeKbXgFfqyXpM1nebezXNgd9_kvtMj_as2uwuWVmc32Wr64Bhuhug5b-bq73Q34RgkuP798zZcUlF7OAmu0dpPAhqcnAZ0Slr8x712NLPbWB4Z6qG7RdnH2nFEAmxn2fFZXKDBd8DT8ROVip6yFhGaDpi6NDc18wUzl2cum5xCqF5Y_E2zQNiCaEXYuvfUmHJ_LityCzaquwm1gXnmpsxJdz4Qra2Rm0SsMukxDGfuElz3YXhNLsZIx84L2xVLJ0b_uwcPuMi4jbfmYKtRLnCNljBaHSlQPREMZxYcWxaRo8apFQSRRdCRR7E3Hg-7ozr_c9AC2RkeTw-JwPD24C5cEBSi4joTehk38S-EeWnELe7_hGwavzpvofgFxUVGO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qRYJueCMGChgJlmkdP_JYsKgyM-pQOlRApe6CX4EKlFTzEJQVnwB_wq_wC3wJ184kUJZIXbBzEiex7Pu07z0X4LFOjETVraM8lzYSccWxleWRTmMVM2OEDlUi9qfJ7qF4diSP1uB7lwvT4kP0G26eM4K89gx-Yqvt36ChPgPbh2blKHtFtgqr3HOnH9Fpmz-dDHGFnzA2Hr0udqNVXYHoLQpsdJqkVVnKpRDUaWGzymQ6ESalVDnjKHrhMjGMaqlygQRucbhSOTS8TeoypWKO370AF0VCc18sYviyB6xiyA1tPhPnkS9738FEUrZ9drxnDNo_zeKg18ZX4Uc3I204y_ut5UJvmc9_gUX-T1N2Da6sjGyy03LFdVhz9Q24XHS17W7CNx_e8vPL12Lpt6SXM0eCzg7ha3h736FLQop36oNpkMGOrSOohZoWaxd7z4nfviaKHMyaGsWlcdY3P_lksVPSAkKTUchKI2M1XxBVW_IqVBxC5UKKF4yM2vJDM4-c6_96Cw7PZUZuw3rd1O4OECssl3mFjmdKhVY81-gTOlllroptSqsBbHa0Uq4kzLz0p2IZp-hdD-BR_xin0R_4qNo1S-zDeYz2hkjFAFggjPKkxTApW7RqVnqSKHuSKHemk1F_dfdfXnoIlw6G4_L5ZLp3DzaY352gMmJyE9Zxkdx9NOEW-kHgGgJvzpvmfgEUKVA9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-Curvature+Transition-Metal+Chalcogenide+Nanostructures+with+a+Pronounced+Proximity+Effect+Enable+Fast+and+Selective+CO2+Electroreduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gao%2C+Fei-Yue&rft.au=Hu%2C+Shao-Jin&rft.au=Zhang%2C+Xiao-Long&rft.au=Zheng%2C+Ya-Rong&rft.date=2020-05-25&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=22&rft.spage=8706&rft_id=info:doi/10.1002%2Fanie.201912348&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |