Advances in Post‐Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice

The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stabil...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 14; no. 6; pp. 1428 - 1471
Main Authors Liu, Ru‐Shuai, Shi, Xiao‐Dong, Wang, Cheng‐Tong, Gao, Yu‐Zhou, Xu, Shuang, Hao, Guang‐Ping, Chen, Shaoyun, Lu, An‐Hui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal‐organic frameworks (MOFs) and covalent‐organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot‐scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption‐based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes. Divide and conquer: This Review discusses the recent advances in adsorption‐based CO2 separation technology, from porous materials synthesis, adsorbents’ intrinsic property evaluation to performance assessments not only in view of the ideal equilibrium conditions but also in critically practical perspective.
AbstractList The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal‐organic frameworks (MOFs) and covalent‐organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot‐scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption‐based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal‐organic frameworks (MOFs) and covalent‐organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot‐scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption‐based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes. Divide and conquer: This Review discusses the recent advances in adsorption‐based CO2 separation technology, from porous materials synthesis, adsorbents’ intrinsic property evaluation to performance assessments not only in view of the ideal equilibrium conditions but also in critically practical perspective.
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Author Liu, Ru‐Shuai
Gao, Yu‐Zhou
Xu, Shuang
Lu, An‐Hui
Shi, Xiao‐Dong
Wang, Cheng‐Tong
Hao, Guang‐Ping
Chen, Shaoyun
Author_xml – sequence: 1
  givenname: Ru‐Shuai
  surname: Liu
  fullname: Liu, Ru‐Shuai
  organization: Dalian University of Technology
– sequence: 2
  givenname: Xiao‐Dong
  surname: Shi
  fullname: Shi, Xiao‐Dong
  organization: Dalian University of Technology
– sequence: 3
  givenname: Cheng‐Tong
  surname: Wang
  fullname: Wang, Cheng‐Tong
  organization: Dalian University of Technology
– sequence: 4
  givenname: Yu‐Zhou
  surname: Gao
  fullname: Gao, Yu‐Zhou
  organization: Dalian University of Technology
– sequence: 5
  givenname: Shuang
  surname: Xu
  fullname: Xu, Shuang
  organization: Dalian University of Technology
– sequence: 6
  givenname: Guang‐Ping
  surname: Hao
  fullname: Hao, Guang‐Ping
  email: guangpinghao@dlut.edu.cn
  organization: Dalian University of Technology
– sequence: 7
  givenname: Shaoyun
  surname: Chen
  fullname: Chen, Shaoyun
  organization: Dalian University of Technology
– sequence: 8
  givenname: An‐Hui
  orcidid: 0000-0003-1294-5928
  surname: Lu
  fullname: Lu, An‐Hui
  email: anhuilu@dlut.edu.cn
  organization: Dalian University of Technology
BookMark eNpdkEFLwzAYhoNMcJtePQe8eNlMkzZpvI3idDDZYAreQpqm2tEmNWknvfkT_I3-ElcnO3j63hee7-PjGYGBsUYDcBmgaYAQvlHeqylGeJ8pYydgGMQ0nEQ0fBkcMwnOwMj7LUIUcUqHwM2ynTRKe1gYuLa--f78SmyVtr4prIHJCsNE1k3rNEw7uH7rfKFkCWeZt67ukVs4d7aCj7LRrpClhwtj7E7-bjcWbnQt3aGtnVRNofQ5OM33oL74m2PwPL97Sh4my9X9IpktJ68EETbJsziKQ021JCzMMc9ImuogC1OeyZRxmnMlsYzylHJJeE5jRVIUc4pZIAPFIzIG14e7tbPvrfaNqAqvdFlKo23rBQ5ZFGGO4h69-odubevM_juBI8QxZoz2FD9QH0WpO1G7opKuEwESvX_R-xdH_yLZbJJjIz_9E3-d
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.202002677
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 1471
ExternalDocumentID CSSC202002677
Genre reviewArticle
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  funderid: DUT20GJ215
– fundername: Cheung Kong Scholars Programme of China
  funderid: T2015036
– fundername: National Natural Science Foundation of China
  funderid: 21975037
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
7SR
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-g3037-fd8584e6ea374f29d3bbe1d4b9dab796f9ca2a5fb69a39f68c3b0896271a1c953
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Fri Jul 11 03:27:39 EDT 2025
Fri Jul 25 12:06:20 EDT 2025
Wed Jan 22 16:31:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3037-fd8584e6ea374f29d3bbe1d4b9dab796f9ca2a5fb69a39f68c3b0896271a1c953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1294-5928
PQID 2509227765
PQPubID 986333
PageCount 44
ParticipantIDs proquest_miscellaneous_2475529085
proquest_journals_2509227765
wiley_primary_10_1002_cssc_202002677_CSSC202002677
PublicationCentury 2000
PublicationDate March 22, 2021
PublicationDateYYYYMMDD 2021-03-22
PublicationDate_xml – month: 03
  year: 2021
  text: March 22, 2021
  day: 22
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemSusChem
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 140
2009 2009; 48 121
2019; 11
2020; 160
2020; 161
2020; 13
2012; 18
2020; 12
2020; 10
2012; 11
2018; 337
2015; 137
2020; 294
2018; 336
2013; 53
2013; 117
2019; 25
2013; 52
1992; 359
2016; 41
2019; 29
2008; 24
2008; 113
2013; 230
2010; 3
2012; 24
1944; 40
2012; 22
2010; 4
2009; 67
2019 2019; 59 132
2011; 137
2020; 383
2020; 42
2018; 348
2019; 31
2019; 33
2015; 245
2013; 89
2018; 223
2019; 35
2013; 225
2018; 345
2005; 84
2010; 161
2020; 32
2011; 4
2020; 707
2007; 13
2011; 133
2019; 186
2017; 139
2016; 11
2016; 4
2015; 350
2017; 50
2016; 6
2017; 53
2018; 353
2009; 70
2020; 30
2019; 48
2020; 159
2008; 47
2018; 57, 14
1999; 34
2020; 26
2015; 119
2012; 48
2008; 254
2019; 171
2008; 130
2016; 8
2016; 9
2012; 41
2006; 103
2013; 25
2019; 55
2020; 120
2019; 58
2020 2020; 59 132
2020; 59
2008; 8
2002; 119
2017; 113
2017; 355
2017; 114
2017; 116
2004; 76
2020; 8
2013; 19
2020; 7
2020; 2
2020; 53
2018 2018; 57 130
2003; 7
2010; 156
2008; 319
2020; 49
2020; 139
2017; 121
2014; 7
2014; 50
2014; 6
2016; 230
1947
2009; 325
2014; 53
2015; 5
2015; 3
2020; 85
2006; 16
2013; 42
2017; 23
2006; 152
2020; 588
2019; 542
2007
2006
2014; 194
2017; 29
2017; 332
2008; 92
2019 2019; 58 131
2020; 1908371
2020
2017; 10
2010; 132
2019
2009; 9
2017
2014; 184
2016; 138
2020; 66
2008; 453
2007; 46
2018; 57
2016 2016; 55 27
2013; 3
1965; 11
2013; 1
2014; 26
1999; 283
2011; 57
2016; 148
2016; 147
2014; 253
2018; 44
2013; 5
2018; 42
2013; 6
2014; 136
2010; 22
2018; 6
2018; 8
2018; 3
2012; 134
2014; 14
2005; 109
2018; 30
2015; 91
2014; 17
2012; 258
2018; 32
2009; 15
2014; 123
2019; 7
2019; 9
2019; 3
2010; 329
1963; 67
2019; 5
2015; 51
2019; 2
2010; 39
2019; 1
2016; 168
2020; 303
2014; 2014
1995; 4
2003 2003; 42 155
2018; 20
2014; 45
2018; 26
2018; 25
2018; 24
2018; 18
2017; 308
2018; 17
2010; 48
2010; 46
2000; 227
2002; 124
2005; 127
2011; 94
2015; 519
2020; 558
2018; 11
2018; 10
1993; 7
2017; 5
2014; 218
2021; 406
1989; 85
2009; 47
2018; 122
2017; 7
2017; 8
2004; 126
2017; 2
2000; 45
2015; 31
2019; 368
2019; 800
2019; 481
2019; 361
2012; 57
1998; 43
2017; 9
2015; 45
2015; 48
2015; 214
2015; 44
2018; 257
2019; 358
2019; 355
2011; 21
2011; 23
2019; 359
2011; 27
2011; 166
1998; 120
2014; 118
2006; 90
2009; 24
2018; 140
2015; 202
2018; 267
2018; 268
2019; 148
2016; 52
2008; 10
2015; 206
2009; 131
2019; 141
2019; 143
2016; 55
2017; 505
2015; 23
2012; 2
2015; 27
2016 2016; 55 128
2012; 156
2018 2020; 57 132
2011; 46
2011; 47
2019; 372
2011; 49
2012; 4
1998; 102
2012; 5
2009; 38
References_xml – volume: 588
  year: 2020
  publication-title: Colloids Surf. A
– volume: 4
  start-page: 3059
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 6
  start-page: 6370
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 50
  year: 2017
  publication-title: Carbon
– volume: 9
  start-page: 1880
  year: 2016
  publication-title: ChemSusChem
– volume: 10
  start-page: 1204
  year: 2008
  publication-title: Green Chem.
– volume: 94
  start-page: 92
  year: 2011
  publication-title: J. Am. Ceram. Soc.
– volume: 9
  start-page: 1803
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 138
  start-page: 10100
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3723
  year: 2011
  publication-title: Adv. Mater.
– volume: 58
  start-page: 18241
  year: 2019
  publication-title: Ind. Eng. Chem. Res.
– start-page: 1315
  year: 1947
  publication-title: J. Chem. Soc.
– volume: 53
  start-page: 12970
  year: 2017
  publication-title: Chem. Commun.
– volume: 9
  start-page: 2614
  year: 2019
  publication-title: Appl. Sci.
– volume: 29
  start-page: 2724
  year: 2017
  publication-title: Chem. Mater.
– volume: 48
  start-page: 3320
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 353
  start-page: 584
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 407
  year: 1995
  publication-title: Microporous Mater.
– volume: 6
  start-page: 21237
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 1717
  year: 2006
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 6600 6672
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 22310
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 97728
  year: 2016
  publication-title: RSC Adv.
– volume: 171
  start-page: 581
  year: 2019
  publication-title: Energy
– volume: 225
  start-page: 350
  year: 2013
  publication-title: Chem. Eng. J.
– volume: 47
  start-page: 209
  year: 2008
  publication-title: Ind. Eng. Chem. Res.
– volume: 124
  start-page: 13519
  year: 2002
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 1093
  year: 2000
  publication-title: J. Chem. Eng. Data.
– volume: 8
  start-page: 6135
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 55 27
  start-page: 7857 128
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 9301
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 691
  year: 2019
  publication-title: Chem. Commun.
– volume: 5
  start-page: 7664
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 103
  start-page: 10186
  year: 2006
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 46
  start-page: 434
  year: 2011
  publication-title: Sep. Sci. Technol.
– volume: 52
  start-page: 7947
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 55
  start-page: 4734
  year: 2016
  publication-title: Ind. Eng. Chem. Res.
– volume: 102
  start-page: 9297
  year: 1998
  publication-title: J. Phys. Chem. B
– volume: 114
  start-page: 473
  year: 2017
  publication-title: Carbon
– volume: 268
  start-page: 50
  year: 2018
  publication-title: Microporous Mesoporous Mater.
– volume: 123
  start-page: 66
  year: 2014
  publication-title: Fuel
– volume: 85
  start-page: 538
  year: 2020
  publication-title: ChemPlusChem
– volume: 9
  start-page: 455
  year: 2016
  publication-title: ChemSusChem
– volume: 359
  start-page: 344
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 134
  start-page: 17628
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 428
  year: 2019
  publication-title: Matter
– volume: 11
  start-page: 40424
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 138
  start-page: 920
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 451
  year: 1999
  publication-title: Process Biochem.
– volume: 57, 14
  start-page: 5106
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 21680
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 131
  start-page: 8784
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 3030
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 148
  start-page: 164
  year: 2019
  publication-title: Carbon
– volume: 21
  start-page: 2781
  year: 2011
  publication-title: Adv. Funct. Mater.
– volume: 218
  start-page: 90
  year: 2014
  publication-title: J. Solid State Chem.
– volume: 41
  start-page: 3679
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 130
  start-page: 5390
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 325
  start-page: 1652
  year: 2009
  publication-title: Science
– volume: 11
  start-page: 710
  year: 2012
  publication-title: Nat. Mater.
– volume: 10
  start-page: 24642
  year: 2020
  publication-title: RSC Adv.
– volume: 24
  start-page: 7245
  year: 2008
  publication-title: Langmuir
– volume: 7
  start-page: 3478
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 16875
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 57
  start-page: 93
  year: 2012
  publication-title: J. Chem. Eng. Data
– volume: 7
  start-page: 335
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 406
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 127
  start-page: 13519
  year: 2005
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 239
  year: 2007
  publication-title: Adsorption
– volume: 45
  start-page: 359
  year: 2015
  publication-title: Renewable Sustainable Energy Rev.
– volume: 5
  start-page: 18801
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 383
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 12125
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 16628
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 4689
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 355
  start-page: 963
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 133
  start-page: 11378
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 332
  start-page: 48
  year: 2017
  publication-title: Coord. Chem. Rev.
– volume: 3
  year: 2019
  publication-title: Adv. Sustainable Syst.
– volume: 57
  start-page: 3042
  year: 2011
  publication-title: AIChE J.
– volume: 22
  start-page: 813
  year: 2010
  publication-title: Adv. Mater.
– volume: 130
  start-page: 2902
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 53
  start-page: 1206
  year: 2020
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 128
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 139
  start-page: 13541
  year: 2017
  publication-title: J. Am. Chem. Soc.
– start-page: 100
  year: 2017
  publication-title: Microporous Mesoporous Mater.
– volume: 140
  start-page: 18016
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 48
  start-page: 215
  year: 2012
  publication-title: Chem. Commun.
– volume: 32
  start-page: 4502
  year: 2018
  publication-title: Energy Fuels
– volume: 159
  start-page: 625
  year: 2020
  publication-title: Carbon
– volume: 542
  start-page: 91
  year: 2019
  publication-title: J. Colloid Interface Sci.
– volume: 2
  start-page: 17045
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 32
  start-page: 5985
  year: 2020
  publication-title: Chem. Mater.
– volume: 6
  start-page: 19570
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 468
  year: 2003
  publication-title: Energy Fuels
– volume: 44
  start-page: 1244
  year: 2018
  publication-title: Mol. Simul.
– volume: 46
  start-page: 446
  year: 2007
  publication-title: Ind. Eng. Chem. Res.
– volume: 143
  start-page: 531
  year: 2019
  publication-title: Carbon
– volume: 114
  start-page: 496
  year: 2017
  publication-title: Carbon
– volume: 283
  start-page: 1148
  year: 1999
  publication-title: Science
– volume: 48
  start-page: 456
  year: 2010
  publication-title: Carbon
– volume: 138
  start-page: 1001
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 58
  start-page: 3349
  year: 2019
  publication-title: Ind. Eng. Chem. Res.
– volume: 134
  start-page: 7056
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 12792
  year: 2012
  publication-title: RSC Adv.
– volume: 52
  start-page: 11704
  year: 2016
  publication-title: Chem. Commun.
– volume: 156
  start-page: 2
  year: 2010
  publication-title: Chem. Eng. J.
– volume: 160
  start-page: 113
  year: 2020
  publication-title: Carbon
– volume: 168
  start-page: 282
  year: 2016
  publication-title: Appl. Energy
– volume: 47
  start-page: 6840
  year: 2011
  publication-title: Chem. Commun.
– volume: 24
  start-page: 5982
  year: 2018
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 19076
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 137
  start-page: 4787
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 15325 19636
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 25
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 23990
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1604
  year: 2019
  publication-title: ACS Appl. Nano Mater
– volume: 90
  start-page: 299
  year: 2006
  publication-title: Microporous Mesoporous Mater.
– volume: 92
  start-page: 601
  year: 2008
  publication-title: J. Therm. Anal. Calorim.
– volume: 26
  start-page: 2052
  year: 2014
  publication-title: Chem. Mater.
– volume: 134
  start-page: 13834
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 147
  start-page: 109
  year: 2016
  publication-title: Chem. Eng. Sci.
– volume: 18
  start-page: 16649
  year: 2012
  publication-title: Chem. Eur. J.
– volume: 134
  start-page: 10757
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1439
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 35908
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 55
  start-page: 19
  year: 2016
  publication-title: Ind. Eng. Chem. Res.
– volume: 161
  start-page: 46
  year: 2010
  publication-title: Chem. Eng. J.
– volume: 130
  start-page: 10870
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 55325
  year: 2018
  publication-title: AIP Adv.
– volume: 120
  start-page: 8571
  year: 1998
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 18
  year: 2012
  publication-title: Chem. Mater.
– volume: 46
  start-page: 8490
  year: 2007
  publication-title: Inorg. Chem.
– volume: 59
  start-page: 13724
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 3
  start-page: 632
  year: 2010
  publication-title: Nano Res.
– volume: 202
  start-page: 259
  year: 2015
  publication-title: Microporous Mesoporous Mater.
– volume: 76
  start-page: 185
  year: 2004
  publication-title: Microporous Mesoporous Mater.
– volume: 55
  start-page: 3266
  year: 2019
  publication-title: Chem. Commun.
– volume: 85
  start-page: 4201
  year: 1989
  publication-title: J. Chem. Soc. Faraday Trans. 1
– volume: 148
  start-page: 53
  year: 2016
  publication-title: Procedia Eng.
– volume: 113
  start-page: 31
  year: 2008
  publication-title: Microporous Mesoporous Mater.
– volume: 53
  start-page: 15398
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 26
  start-page: 36
  year: 2018
  publication-title: J. CO2 Util.
– volume: 55 128
  start-page: 10268 10424
  year: 2016 2016
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 38
  start-page: 1477
  year: 2009
  publication-title: Chem
– volume: 245
  start-page: 147
  year: 2015
  publication-title: Catal. Today
– volume: 17
  start-page: 1128
  year: 2018
  publication-title: Nat. Mater.
– volume: 258
  start-page: 4301
  year: 2012
  publication-title: Appl. Surf. Sci.
– volume: 57
  start-page: 7244
  year: 2018
  publication-title: Inorg. Chem.
– volume: 1908371
  year: 2020
  publication-title: Adv. Funct. Mater.
– start-page: 3909
  year: 2006
  publication-title: Chem. Commun.
– volume: 25
  start-page: 89
  year: 2018
  publication-title: J. CO2 Util.
– volume: 214
  start-page: 149
  year: 2015
  publication-title: Microporous Mesoporous Mater.
– volume: 4
  start-page: 143
  year: 2010
  publication-title: ACS Nano
– volume: 4
  start-page: 6125
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 1245
  year: 2018
  publication-title: Ind. Eng. Chem. Res.
– volume: 355
  start-page: 716
  year: 2019
  publication-title: Powder Technol.
– volume: 30
  start-page: 4102
  year: 2018
  publication-title: Chem. Mater
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 156
  start-page: 90
  year: 2012
  publication-title: Microporous Mesoporous Mater.
– volume: 21
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 91
  start-page: 142
  year: 2015
  publication-title: Energy
– volume: 57
  start-page: 5267
  year: 2018
  publication-title: Inorg. Chem.
– volume: 358
  start-page: 331
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 227
  start-page: 247
  year: 2000
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 3031
  year: 2014
  publication-title: ChemSusChem
– volume: 70
  start-page: 87
  year: 2009
  publication-title: Sep. Purif. Technol.
– volume: 59 132
  start-page: 19468 19636
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 18940
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 11123 11216
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 3
  start-page: 10284
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 3160
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 11299
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 258
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 51
  start-page: 4591
  year: 2015
  publication-title: Chem. Commun.
– volume: 223
  start-page: 99
  year: 2018
  publication-title: Fuel
– volume: 49
  start-page: 3762
  year: 2011
  publication-title: Carbon
– volume: 358
  start-page: 1507
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 358
  start-page: 707
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 225
  year: 2010
  publication-title: ACS Nano
– volume: 66
  start-page: 16297
  year: 2020
  publication-title: AIChE J.
– volume: 53
  start-page: 250
  year: 2013
  publication-title: J. Hazard. Mater.
– volume: 8
  start-page: 3498
  year: 2008
  publication-title: Nano Lett.
– volume: 186
  start-page: 35
  year: 2019
  publication-title: Fuel Process. Technol.
– start-page: 360
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 131
  start-page: 17490
  year: 2009
  publication-title: J. Am. Chem. Soc.
– start-page: 3470
  year: 2007
  publication-title: Chem. Commun.
– volume: 14
  start-page: 2092
  year: 2014
  publication-title: Cryst. Growth Des.
– volume: 10
  start-page: 118
  year: 2018
  publication-title: Pharmaceuticals
– volume: 7
  start-page: 291
  year: 2014
  publication-title: ChemSusChem
– volume: 139
  start-page: 3627
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 14751
  year: 2019
  publication-title: Langmuir
– volume: 707
  year: 2020
  publication-title: Sci. Total Environ.
– volume: 294
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– volume: 8
  start-page: 27753
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  start-page: 124
  year: 2013
  publication-title: J. Environ. Sci.
– volume: 19
  start-page: 835
  year: 2013
  publication-title: Adsorption
– volume: 254
  start-page: 7165
  year: 2008
  publication-title: Appl. Surf. Sci.
– volume: 11
  start-page: 1756
  year: 2018
  publication-title: ChemSusChem
– volume: 27
  start-page: 5432
  year: 2015
  publication-title: Adv. Mater.
– volume: 253
  start-page: 46
  year: 2014
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 42
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 49
  start-page: 708
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 91
  year: 2011
  publication-title: ChemSusChem
– volume: 230
  start-page: 100
  year: 2016
  publication-title: Microporous Mesoporous Mater.
– volume: 12
  start-page: 42711
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 885
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 49
  start-page: 4360
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 7323
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 43
  start-page: 994
  year: 1998
  publication-title: J. Chem. Eng. Data.
– volume: 18
  start-page: 5449
  year: 2018
  publication-title: Cryst. Growth Des.
– volume: 5
  start-page: 950
  year: 2019
  publication-title: Chem
– volume: 308
  start-page: 1065
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 166
  start-page: 646
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 26
  start-page: 4679
  year: 2014
  publication-title: Chem. Mater.
– volume: 3
  start-page: 30
  year: 2013
  publication-title: Greenhouse Gases-Science and Technology
– volume: 25
  start-page: 5105
  year: 2019
  publication-title: Chem. Eur. J.
– volume: 11
  start-page: 121
  year: 1965
  publication-title: AIChE J.
– volume: 23
  start-page: 1
  year: 2015
  publication-title: J. Ind. Eng. Chem.
– volume: 7
  start-page: 20985
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 8369
  year: 2018
  publication-title: Chem. Eur. J.
– year: 2020
  publication-title: Catal. Today
– volume: 303
  year: 2020
  publication-title: Microporous Mesoporous Mater.
– volume: 67
  start-page: 336
  year: 2009
  publication-title: Sep. Purif. Technol.
– volume: 6
  start-page: 26673
  year: 2016
  publication-title: Sci. Rep.
– volume: 353
  start-page: 1
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 57
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 134
  start-page: 13950
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 134
  start-page: 19246
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 372
  start-page: 65
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 345
  start-page: 631
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 6
  start-page: 15550
  year: 2018
  publication-title: ACS Sustainable Chem. Eng.
– volume: 184
  start-page: 61
  year: 2014
  publication-title: Microporous Mesoporous Mater.
– volume: 27
  start-page: 12411
  year: 2011
  publication-title: Langmuir
– volume: 267
  start-page: 53
  year: 2018
  publication-title: Microporous Mesoporous Mater.
– volume: 121
  start-page: 3404
  year: 2017
  publication-title: J. Phys. Chem. C
– volume: 122
  start-page: 17211
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 40
  start-page: 195
  year: 1944
  publication-title: Trans. Faraday Soc.
– volume: 42
  start-page: 2610
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 50
  start-page: 13825
  year: 2014
  publication-title: Chem. Commun.
– volume: 59
  start-page: 7109
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 57 132
  start-page: 5156 5250
  year: 2018 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 350
  start-page: 302
  year: 2015
  publication-title: Science
– volume: 24
  start-page: 73
  year: 2018
  publication-title: J. CO2 Util.
– volume: 453
  start-page: 207
  year: 2008
  publication-title: Nature
– volume: 136
  start-page: 8863
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 67
  start-page: 1621
  year: 1963
  publication-title: J. Phys. Chem.
– volume: 152
  year: 2006
  publication-title: Fifth Annual Conference on Carbon Capture & Sequestration
– volume: 3
  start-page: 1658
  year: 2015
  publication-title: ACS Sustainable Chem. Eng.
– volume: 84
  start-page: 357
  year: 2005
  publication-title: Microporous Mesoporous Mater.
– volume: 59
  start-page: 10093
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 257
  start-page: 193
  year: 2018
  publication-title: Microporous Mesoporous Mater.
– volume: 121
  start-page: 257
  year: 2017
  publication-title: Carbon
– volume: 59 132
  start-page: 23491 19636
  year: 2020 2020
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 137
  start-page: 2641
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 10113
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 113
  start-page: 283
  year: 2017
  publication-title: Carbon
– volume: 361
  start-page: 278
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 4
  start-page: 3805
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 127
  year: 2016
  publication-title: Nanoscale Res. Lett.
– volume: 355
  start-page: 923
  year: 2017
  publication-title: Science
– volume: 119
  start-page: 16115
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 368
  start-page: 618
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 7
  start-page: 40207
  year: 2017
  publication-title: Sci. Rep.
– volume: 52
  start-page: 11378
  year: 2016
  publication-title: Chem. Commun.
– volume: 20
  start-page: 6487
  year: 2018
  publication-title: Phys. Chem. Chem. Phys.
– volume: 22
  start-page: 1558
  year: 2010
  publication-title: J Environ Sci (China)
– volume: 359
  start-page: 710
  year: 1992
  publication-title: Nature
– volume: 59
  start-page: 9207
  year: 2020
  publication-title: Ind. Eng. Chem. Res.
– volume: 230
  start-page: 380
  year: 2013
  publication-title: Chem. Eng. J.
– volume: 57 130
  start-page: 14281 14477
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 9544
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 58
  start-page: 21679
  year: 2019
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 405
  year: 2019
  publication-title: J. CO2 Util.
– volume: 122
  start-page: 28815
  year: 2018
  publication-title: J. Phys. Chem. C.
– volume: 141
  start-page: 12744
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 155
  year: 2020
  publication-title: Carbon Lett.
– volume: 2
  start-page: 161
  year: 2012
  publication-title: RSC Adv.
– volume: 24
  start-page: 4725
  year: 2012
  publication-title: Chem. Mater.
– volume: 481
  start-page: 1139
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 39
  start-page: 103
  year: 2010
  publication-title: Chem. Soc. Rev.
– volume: 52
  start-page: 9757
  year: 2016
  publication-title: Chem. Commun.
– volume: 319
  start-page: 939
  year: 2008
  publication-title: Science
– volume: 5
  start-page: 19456
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 280
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 126
  start-page: 32
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 48 121
  start-page: 9621 9621
  year: 2009 2009
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 769
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 31
  start-page: 2218
  year: 2015
  publication-title: Langmuir
– volume: 13
  start-page: 6090
  year: 2020
  publication-title: ChemSusChem
– volume: 140
  start-page: 53
  year: 2015
  publication-title: Sep. Purif. Technol.
– volume: 8
  start-page: 15378
  year: 2020
  publication-title: ACS Sustainable Chem. Eng.
– volume: 18
  start-page: 163
  year: 2012
  publication-title: Adsorption
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 34533
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 853
  year: 2010
  publication-title: Adv. Mater.
– volume: 558
  start-page: 55
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 7
  start-page: 7412
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 7
  start-page: 19513
  year: 2019
  publication-title: ACS Sustainable Chem. Eng.
– volume: 139
  start-page: 1
  year: 2020
  publication-title: Process Saf. Environ. Prot.
– volume: 46
  start-page: 4502
  year: 2010
  publication-title: Chem. Commun.
– volume: 4
  start-page: 3750
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 1765
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 241
  year: 1993
  publication-title: Gas Sep. Purif.
– volume: 116
  start-page: 448
  year: 2017
  publication-title: Carbon
– volume: 132
  start-page: 5578
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1528
  year: 2020
  publication-title: Mater. Horiz.
– volume: 29
  start-page: 103
  year: 2019
  publication-title: J. Energy Chem.
– volume: 348
  start-page: 109
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 45
  start-page: 14480
  year: 2014
  publication-title: RSC Adv.
– volume: 118
  start-page: 11784
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 132
  start-page: 12200
  year: 2010
  publication-title: J. Am. Chem. Soc.
– publication-title: Chem. Eng. J.
– volume: 89
  start-page: 10
  year: 2013
  publication-title: Chem. Eng. Sci.
– volume: 4
  start-page: 2070
  year: 2011
  publication-title: Energy Environ. Sci.
– volume: 161
  start-page: 629
  year: 2020
  publication-title: Carbon
– volume: 41
  start-page: 14351
  year: 2016
  publication-title: Int. J. Hydrogen Energy
– volume: 117
  start-page: 12841
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 23
  start-page: 225
  year: 2017
  publication-title: Adsorption
– volume: 6
  start-page: 23087
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 206
  start-page: 207
  year: 2015
  publication-title: Microporous Mesoporous Mater.
– volume: 47
  start-page: 4661
  year: 2011
  publication-title: J. Chem.
– volume: 47
  start-page: 2281
  year: 2009
  publication-title: Carbon
– volume: 22
  start-page: 19726
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 194
  start-page: 8
  year: 2014
  publication-title: Microporous Mesoporous Mater.
– volume: 109
  start-page: 93
  year: 2005
  publication-title: Catal. Today
– volume: 2014
  start-page: 1
  year: 2014
  publication-title: Sci. World J
– volume: 3
  start-page: 11350
  year: 2018
  publication-title: ChemistrySelect
– volume: 42
  start-page: 56
  year: 2020
  publication-title: J. Energy Chem.
– volume: 120
  start-page: 8087
  year: 2020
  publication-title: J. Phys. Chem. C
– volume: 137
  start-page: 72
  year: 2011
  publication-title: Chem. Eng. J.
– volume: 337
  start-page: 290
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 141
  start-page: 13171
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1303
  year: 2017
  publication-title: ChemSusChem
– volume: 5
  start-page: 6360
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  start-page: 77
  year: 2014
  publication-title: Mater. Today
– volume: 53
  start-page: 11176
  year: 2014
  publication-title: Ind. Eng. Chem. Res.
– volume: 4
  start-page: 5800
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 22
  start-page: 23710
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 7
  start-page: 5402
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 42
  start-page: 2686
  year: 2018
  publication-title: Int. J. Energy Res.
– volume: 26
  start-page: 2820
  year: 2014
  publication-title: Chem. Mater.
– volume: 55
  start-page: 595
  year: 2016
  publication-title: Ind. Eng. Chem. Res.
– volume: 130
  start-page: 13850
  year: 2008
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 3627
  year: 2009
  publication-title: Chem. Commun.
– volume: 10
  start-page: 1623
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 336
  start-page: 659
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 48
  start-page: 2680
  year: 2015
  publication-title: Acc. Chem. Res.
– volume: 47
  start-page: 5602
  year: 2008
  publication-title: Ind. Eng. Chem. Res.
– volume: 18
  start-page: 7114
  year: 2018
  publication-title: Cryst. Growth Des.
– volume: 119
  year: 2002
  publication-title: Renewable Sustainable Energy Rev.
– volume: 26
  start-page: 5
  year: 2020
  publication-title: Adsorption
– volume: 1
  start-page: 10951
  year: 2013
  publication-title: J. Mater. Chem. A
– volume: 800
  start-page: 279
  year: 2019
  publication-title: J. Alloys Compd.
– volume: 42 155
  start-page: 428 444
  year: 2003 2003
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 505
  start-page: 858
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 15
  start-page: 4195
  year: 2009
  publication-title: Chem. Eur. J.
– volume: 44
  start-page: 8877
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 519
  start-page: 303
  year: 2015
  publication-title: Nature
– volume: 329
  start-page: 424
  year: 2010
  publication-title: Science
– volume: 59 132
  start-page: 6984 7048
  year: 2019 2019
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 122
  start-page: 20366
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 12393
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1071
  year: 2020
  publication-title: SN Appl. Sci
SSID ssj0060966
Score 2.6202588
SecondaryResourceType review_article
Snippet The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 1428
SubjectTerms Activated carbon
Adsorbents
Adsorption
Aluminum oxide
carbon capture
Carbon dioxide
Carbon sequestration
Equilibrium conditions
Innovations
Performance assessment
Porosity
porous materials
Pressure swing adsorption
Recyclability
Regeneration
Selectivity
Separation
separation, Zeolites
Silicon dioxide
Technical literature
Zeolites
Title Advances in Post‐Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202002677
https://www.proquest.com/docview/2509227765
https://www.proquest.com/docview/2475529085
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToQwFG3MbHTj2zi-UhO3OHBLC3U3IU7URJ04TjI70kJrjBHMwCx05Sf4jX6JLTDouNRlA00K98GhvfcchE5clgAXyjgvCOn4VJmQCrnnpK5ioD3t8sRuDVzfsIuxfzWhkx9d_DU_RLvhZiOjytc2wIUset-koUlRWApCW2TAAttObgu2LCq6a_mjmMHnVXtRyHyHMuLNWRtd6C1OX8CXP1Fq9ZkZrCExX2BdXfJ0OivlafL2i7vxP0-wjlYbDIr7tdNsoCWVbaLlaC79toWm_boyoMCPGbZyvp_vHyZxSKv8lWc4ugUciRd79oDlKx42psb9tMinVQo6w4Np_oyvRVk7OL5sxVdxmeORqhnHzWjYdGlto_Hg_D66cBpxBueB2NZCnYYGuyimBAl8DTwlUiov9SVPhQw40zwRIKiWjAvCNQsTIt3QSv14wks4JTuok-WZ2kWYJCBCrXwuzN-qyzUnqQLFqKJaBakOu-hgbpy4ibAiNtCNAwQBo1103F4278keeIhM5TNzjx9QCtygyi6CyhLxS83hEddszRBbG8StDeJoNIra0d5fJu2jFbBlLy5xAA5Qp5zO1KHBLaU8qnzzC8om6I4
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL0qdAGbQmkrpkBrpG4DyXXsxN2NIkZDy1DUAam7yE7sqkJNRpPMoqz4BL6RL6mdV6FLWFqJpST3kWP73nMAPvk8QyG1dV6UyguZtiEVi8DLfc3RBMYXmdsamJ3z6VX45QfrqwldL0zLDzFsuLnIaPK1C3C3IX38jzU0qyrHQeiqDHgUrcFLJ-vdrKq-DwxS3CL0psEo5qHHOA163kYfjx_Pf4QwH-LU5kcz2QLVP2JbX3J9tKrVUXbzH3vjs95hG151MJSMW795DS90sQMbSa_-9gaW47Y4oCK_CuIUfe9v72zuUE78qyxI8g1JIhfu-IGoP-SiszYZ51W5bLLQZzJZlr_JTNatj5PTQX-V1CWZ65Z03I4uukatt3A1OblMpl6nz-D9pK670OSxhS-aa0mj0KDIqVI6yEMlcqkiwY3IJEpmFBeSCsPjjCo_dmo_gQwyweg7WC_KQu8CoRnK2OhQSLtg9YURNNeoOdPM6Cg38Qj2e-ukXZBVqUVvAjGKOBvB4XDZfid35iELXa7sPWHEGAoLLEeAjSnSRUvjkbaEzZg6G6SDDdJkPk-G0funTPoIG9PL2Vl6dnr-dQ820VXB-NRD3If1ernSBxbG1OpD46h_AVSH7Kk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkYAL5VNdaMFIXNMm49iOua3SrlqgZcVSqbfIjm2EUJPVJnuAEz-B38gvqZ1kQ8sRjlZiycmbmbzYM28A3sS8RKmsN15UOkqZ9S6VySQyseXoEhfLMmwNnJ7x4_P03QW7uFbF3-tDjBtuwTO6eB0cfGncwR_R0LJpggRhSDLgQtyGOymPs2DXh59GASnuCXpXX5TxNGKcJhvZxhgPbs6_QTCv09TuOzPbBrVZYZ9e8m1_3er98sdf4o3_8wgP4cFAQsm0t5pHcMtWj-Fevun99gRW0z41oCFfKxL6-f7--ctHDh1af9UVyT8iydUyHD4Q_Z3MB6zJ1DT1qotBb8lsVV-SU9X2Fk5Oxu6rpK3JwvaS4340H8q0nsL57OhzfhwN3RmiLzTUFjqTefJiuVVUpA6loVrbxKRaGqWF5E6WChVzmktFpeNZSbUHiKNIVFJKRp_BVlVXdgcILVFlzqZS-d_VWDpJjUXLmWXOCuOyCexuwCkGF2sKz90kohCcTeD1eNm_p3DioSpbr_09qWAMpaeVE8AOiWLZi3gUvVwzFgGDYsSgyBeLfBw9_5dJr-Du_HBWfDg5e_8C7mNIgYlphLgLW-1qbfc8h2n1y85MrwC7jeth
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Post-Combustion+CO2+Capture+by+Physical+Adsorption%3A+From+Materials+Innovation+to+Separation+Practice&rft.jtitle=ChemSusChem&rft.au=Liu%2C+Ru-Shuai&rft.au=Shi%2C+Xiao-Dong&rft.au=Wang%2C+Cheng-Tong&rft.au=Gao%2C+Yu-Zhou&rft.date=2021-03-22&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=14&rft.issue=6&rft.spage=1428&rft_id=info:doi/10.1002%2Fcssc.202002677&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon