Advances in Post‐Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice
The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stabil...
Saved in:
Published in | ChemSusChem Vol. 14; no. 6; pp. 1428 - 1471 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
22.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal‐organic frameworks (MOFs) and covalent‐organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot‐scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption‐based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.
Divide and conquer: This Review discusses the recent advances in adsorption‐based CO2 separation technology, from porous materials synthesis, adsorbents’ intrinsic property evaluation to performance assessments not only in view of the ideal equilibrium conditions but also in critically practical perspective. |
---|---|
AbstractList | The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal‐organic frameworks (MOFs) and covalent‐organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot‐scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption‐based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes. The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption‐based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal‐organic frameworks (MOFs) and covalent‐organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot‐scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption‐based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes. Divide and conquer: This Review discusses the recent advances in adsorption‐based CO2 separation technology, from porous materials synthesis, adsorbents’ intrinsic property evaluation to performance assessments not only in view of the ideal equilibrium conditions but also in critically practical perspective. The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes.The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture technologies. One of the attractive technologies is physical adsorption-based separation, which shows easy regeneration and high cycle stability, and thus reduced energy penalties and cost. The extensive research on this topic is evidenced by the growing body of scientific and technical literature. The progress spans from the innovation of novel porous adsorbents to practical separation practices. Major CO2 capture materials include the most widely used industrially relevant porous carbons, zeolites, activated alumina, mesoporous silica, and the newly emerging metal-organic frameworks (MOFs) and covalent-organic framework (COFs). The key intrinsic properties such as pore structure, surface chemistry, preferable adsorption sites, and other structural features that would affect CO2 capture capacity, selectivity, and recyclability are first discussed. The industrial relevant variables such as particle size of adsorbents, the mechanical strength, adsorption heat management, and other technological advances are equally important, even more crucial when scaling up from bench and pilot-scale to demonstration and commercial scale. Therefore, we aim to bring a full picture of the adsorption-based CO2 separation technologies, from adsorbent design, intrinsic property evaluation to performance assessment not only under ideal equilibrium conditions but also in realistic pressure swing adsorption processes. |
Author | Liu, Ru‐Shuai Gao, Yu‐Zhou Xu, Shuang Lu, An‐Hui Shi, Xiao‐Dong Wang, Cheng‐Tong Hao, Guang‐Ping Chen, Shaoyun |
Author_xml | – sequence: 1 givenname: Ru‐Shuai surname: Liu fullname: Liu, Ru‐Shuai organization: Dalian University of Technology – sequence: 2 givenname: Xiao‐Dong surname: Shi fullname: Shi, Xiao‐Dong organization: Dalian University of Technology – sequence: 3 givenname: Cheng‐Tong surname: Wang fullname: Wang, Cheng‐Tong organization: Dalian University of Technology – sequence: 4 givenname: Yu‐Zhou surname: Gao fullname: Gao, Yu‐Zhou organization: Dalian University of Technology – sequence: 5 givenname: Shuang surname: Xu fullname: Xu, Shuang organization: Dalian University of Technology – sequence: 6 givenname: Guang‐Ping surname: Hao fullname: Hao, Guang‐Ping email: guangpinghao@dlut.edu.cn organization: Dalian University of Technology – sequence: 7 givenname: Shaoyun surname: Chen fullname: Chen, Shaoyun organization: Dalian University of Technology – sequence: 8 givenname: An‐Hui orcidid: 0000-0003-1294-5928 surname: Lu fullname: Lu, An‐Hui email: anhuilu@dlut.edu.cn organization: Dalian University of Technology |
BookMark | eNpdkEFLwzAYhoNMcJtePQe8eNlMkzZpvI3idDDZYAreQpqm2tEmNWknvfkT_I3-ElcnO3j63hee7-PjGYGBsUYDcBmgaYAQvlHeqylGeJ8pYydgGMQ0nEQ0fBkcMwnOwMj7LUIUcUqHwM2ynTRKe1gYuLa--f78SmyVtr4prIHJCsNE1k3rNEw7uH7rfKFkCWeZt67ukVs4d7aCj7LRrpClhwtj7E7-bjcWbnQt3aGtnVRNofQ5OM33oL74m2PwPL97Sh4my9X9IpktJ68EETbJsziKQ021JCzMMc9ImuogC1OeyZRxmnMlsYzylHJJeE5jRVIUc4pZIAPFIzIG14e7tbPvrfaNqAqvdFlKo23rBQ5ZFGGO4h69-odubevM_juBI8QxZoz2FD9QH0WpO1G7opKuEwESvX_R-xdH_yLZbJJjIz_9E3-d |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 K9. 7X8 |
DOI | 10.1002/cssc.202002677 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | Materials Research Database ProQuest Health & Medical Complete (Alumni) Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1864-564X |
EndPage | 1471 |
ExternalDocumentID | CSSC202002677 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities funderid: DUT20GJ215 – fundername: Cheung Kong Scholars Programme of China funderid: T2015036 – fundername: National Natural Science Foundation of China funderid: 21975037 |
GroupedDBID | --- 05W 0R~ 1OC 29B 33P 4.4 5GY 5VS 66C 77Q 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S HGLYW HZ~ IX1 LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- OIG P2W P4E PQQKQ ROL SUPJJ SV3 W99 WBKPD WOHZO WXSBR WYJ XV2 ZZTAW ~S- 7SR 8BQ 8FD AAMMB AEFGJ AEYWJ AGXDD AGYGG AIDQK AIDYY JG9 K9. 7X8 |
ID | FETCH-LOGICAL-g3037-fd8584e6ea374f29d3bbe1d4b9dab796f9ca2a5fb69a39f68c3b0896271a1c953 |
IEDL.DBID | DR2 |
ISSN | 1864-5631 1864-564X |
IngestDate | Fri Jul 11 03:27:39 EDT 2025 Fri Jul 25 12:06:20 EDT 2025 Wed Jan 22 16:31:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3037-fd8584e6ea374f29d3bbe1d4b9dab796f9ca2a5fb69a39f68c3b0896271a1c953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0003-1294-5928 |
PQID | 2509227765 |
PQPubID | 986333 |
PageCount | 44 |
ParticipantIDs | proquest_miscellaneous_2475529085 proquest_journals_2509227765 wiley_primary_10_1002_cssc_202002677_CSSC202002677 |
PublicationCentury | 2000 |
PublicationDate | March 22, 2021 |
PublicationDateYYYYMMDD | 2021-03-22 |
PublicationDate_xml | – month: 03 year: 2021 text: March 22, 2021 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | ChemSusChem |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 140 2009 2009; 48 121 2019; 11 2020; 160 2020; 161 2020; 13 2012; 18 2020; 12 2020; 10 2012; 11 2018; 337 2015; 137 2020; 294 2018; 336 2013; 53 2013; 117 2019; 25 2013; 52 1992; 359 2016; 41 2019; 29 2008; 24 2008; 113 2013; 230 2010; 3 2012; 24 1944; 40 2012; 22 2010; 4 2009; 67 2019 2019; 59 132 2011; 137 2020; 383 2020; 42 2018; 348 2019; 31 2019; 33 2015; 245 2013; 89 2018; 223 2019; 35 2013; 225 2018; 345 2005; 84 2010; 161 2020; 32 2011; 4 2020; 707 2007; 13 2011; 133 2019; 186 2017; 139 2016; 11 2016; 4 2015; 350 2017; 50 2016; 6 2017; 53 2018; 353 2009; 70 2020; 30 2019; 48 2020; 159 2008; 47 2018; 57, 14 1999; 34 2020; 26 2015; 119 2012; 48 2008; 254 2019; 171 2008; 130 2016; 8 2016; 9 2012; 41 2006; 103 2013; 25 2019; 55 2020; 120 2019; 58 2020 2020; 59 132 2020; 59 2008; 8 2002; 119 2017; 113 2017; 355 2017; 114 2017; 116 2004; 76 2020; 8 2013; 19 2020; 7 2020; 2 2020; 53 2018 2018; 57 130 2003; 7 2010; 156 2008; 319 2020; 49 2020; 139 2017; 121 2014; 7 2014; 50 2014; 6 2016; 230 1947 2009; 325 2014; 53 2015; 5 2015; 3 2020; 85 2006; 16 2013; 42 2017; 23 2006; 152 2020; 588 2019; 542 2007 2006 2014; 194 2017; 29 2017; 332 2008; 92 2019 2019; 58 131 2020; 1908371 2020 2017; 10 2010; 132 2019 2009; 9 2017 2014; 184 2016; 138 2020; 66 2008; 453 2007; 46 2018; 57 2016 2016; 55 27 2013; 3 1965; 11 2013; 1 2014; 26 1999; 283 2011; 57 2016; 148 2016; 147 2014; 253 2018; 44 2013; 5 2018; 42 2013; 6 2014; 136 2010; 22 2018; 6 2018; 8 2018; 3 2012; 134 2014; 14 2005; 109 2018; 30 2015; 91 2014; 17 2012; 258 2018; 32 2009; 15 2014; 123 2019; 7 2019; 9 2019; 3 2010; 329 1963; 67 2019; 5 2015; 51 2019; 2 2010; 39 2019; 1 2016; 168 2020; 303 2014; 2014 1995; 4 2003 2003; 42 155 2018; 20 2014; 45 2018; 26 2018; 25 2018; 24 2018; 18 2017; 308 2018; 17 2010; 48 2010; 46 2000; 227 2002; 124 2005; 127 2011; 94 2015; 519 2020; 558 2018; 11 2018; 10 1993; 7 2017; 5 2014; 218 2021; 406 1989; 85 2009; 47 2018; 122 2017; 7 2017; 8 2004; 126 2017; 2 2000; 45 2015; 31 2019; 368 2019; 800 2019; 481 2019; 361 2012; 57 1998; 43 2017; 9 2015; 45 2015; 48 2015; 214 2015; 44 2018; 257 2019; 358 2019; 355 2011; 21 2011; 23 2019; 359 2011; 27 2011; 166 1998; 120 2014; 118 2006; 90 2009; 24 2018; 140 2015; 202 2018; 267 2018; 268 2019; 148 2016; 52 2008; 10 2015; 206 2009; 131 2019; 141 2019; 143 2016; 55 2017; 505 2015; 23 2012; 2 2015; 27 2016 2016; 55 128 2012; 156 2018 2020; 57 132 2011; 46 2011; 47 2019; 372 2011; 49 2012; 4 1998; 102 2012; 5 2009; 38 |
References_xml | – volume: 588 year: 2020 publication-title: Colloids Surf. A – volume: 4 start-page: 3059 year: 2011 publication-title: Energy Environ. Sci. – volume: 6 start-page: 6370 year: 2018 publication-title: J. Mater. Chem. A – volume: 50 year: 2017 publication-title: Carbon – volume: 9 start-page: 1880 year: 2016 publication-title: ChemSusChem – volume: 10 start-page: 1204 year: 2008 publication-title: Green Chem. – volume: 94 start-page: 92 year: 2011 publication-title: J. Am. Ceram. Soc. – volume: 9 start-page: 1803 year: 2016 publication-title: Energy Environ. Sci. – volume: 138 start-page: 10100 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3723 year: 2011 publication-title: Adv. Mater. – volume: 58 start-page: 18241 year: 2019 publication-title: Ind. Eng. Chem. Res. – start-page: 1315 year: 1947 publication-title: J. Chem. Soc. – volume: 53 start-page: 12970 year: 2017 publication-title: Chem. Commun. – volume: 9 start-page: 2614 year: 2019 publication-title: Appl. Sci. – volume: 29 start-page: 2724 year: 2017 publication-title: Chem. Mater. – volume: 48 start-page: 3320 year: 2019 publication-title: Chem. Soc. Rev. – volume: 353 start-page: 584 year: 2018 publication-title: Chem. Eng. J. – volume: 4 start-page: 407 year: 1995 publication-title: Microporous Mater. – volume: 6 start-page: 21237 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 1717 year: 2006 publication-title: Adv. Funct. Mater. – volume: 58 131 start-page: 6600 6672 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 22310 year: 2015 publication-title: J. Phys. Chem. C – volume: 6 start-page: 97728 year: 2016 publication-title: RSC Adv. – volume: 171 start-page: 581 year: 2019 publication-title: Energy – volume: 225 start-page: 350 year: 2013 publication-title: Chem. Eng. J. – volume: 47 start-page: 209 year: 2008 publication-title: Ind. Eng. Chem. Res. – volume: 124 start-page: 13519 year: 2002 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 1093 year: 2000 publication-title: J. Chem. Eng. Data. – volume: 8 start-page: 6135 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 55 27 start-page: 7857 128 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 138 start-page: 9301 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 691 year: 2019 publication-title: Chem. Commun. – volume: 5 start-page: 7664 year: 2012 publication-title: Energy Environ. Sci. – volume: 103 start-page: 10186 year: 2006 publication-title: Proc. Natl. Acad. Sci. USA – volume: 46 start-page: 434 year: 2011 publication-title: Sep. Sci. Technol. – volume: 52 start-page: 7947 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 55 start-page: 4734 year: 2016 publication-title: Ind. Eng. Chem. Res. – volume: 102 start-page: 9297 year: 1998 publication-title: J. Phys. Chem. B – volume: 114 start-page: 473 year: 2017 publication-title: Carbon – volume: 268 start-page: 50 year: 2018 publication-title: Microporous Mesoporous Mater. – volume: 123 start-page: 66 year: 2014 publication-title: Fuel – volume: 85 start-page: 538 year: 2020 publication-title: ChemPlusChem – volume: 9 start-page: 455 year: 2016 publication-title: ChemSusChem – volume: 359 start-page: 344 year: 2019 publication-title: Chem. Eng. J. – volume: 134 start-page: 17628 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 428 year: 2019 publication-title: Matter – volume: 11 start-page: 40424 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 138 start-page: 920 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 451 year: 1999 publication-title: Process Biochem. – volume: 57, 14 start-page: 5106 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 21680 year: 2020 publication-title: J. Mater. Chem. A – volume: 131 start-page: 8784 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 3030 year: 2011 publication-title: Energy Environ. Sci. – volume: 148 start-page: 164 year: 2019 publication-title: Carbon – volume: 21 start-page: 2781 year: 2011 publication-title: Adv. Funct. Mater. – volume: 218 start-page: 90 year: 2014 publication-title: J. Solid State Chem. – volume: 41 start-page: 3679 year: 2012 publication-title: Chem. Soc. Rev. – volume: 130 start-page: 5390 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 325 start-page: 1652 year: 2009 publication-title: Science – volume: 11 start-page: 710 year: 2012 publication-title: Nat. Mater. – volume: 10 start-page: 24642 year: 2020 publication-title: RSC Adv. – volume: 24 start-page: 7245 year: 2008 publication-title: Langmuir – volume: 7 start-page: 3478 year: 2014 publication-title: Energy Environ. Sci. – volume: 57 start-page: 16875 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 57 start-page: 93 year: 2012 publication-title: J. Chem. Eng. Data – volume: 7 start-page: 335 year: 2014 publication-title: Energy Environ. Sci. – volume: 406 year: 2021 publication-title: Chem. Eng. J. – volume: 127 start-page: 13519 year: 2005 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 239 year: 2007 publication-title: Adsorption – volume: 45 start-page: 359 year: 2015 publication-title: Renewable Sustainable Energy Rev. – volume: 5 start-page: 18801 year: 2017 publication-title: J. Mater. Chem. A – volume: 383 year: 2020 publication-title: Chem. Eng. J. – volume: 139 start-page: 12125 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 16628 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 4689 year: 2019 publication-title: J. Mater. Chem. A – volume: 355 start-page: 963 year: 2019 publication-title: Chem. Eng. J. – volume: 133 start-page: 11378 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 332 start-page: 48 year: 2017 publication-title: Coord. Chem. Rev. – volume: 3 year: 2019 publication-title: Adv. Sustainable Syst. – volume: 57 start-page: 3042 year: 2011 publication-title: AIChE J. – volume: 22 start-page: 813 year: 2010 publication-title: Adv. Mater. – volume: 130 start-page: 2902 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 53 start-page: 1206 year: 2020 publication-title: Acc. Chem. Res. – volume: 6 start-page: 128 year: 2013 publication-title: Energy Environ. Sci. – volume: 139 start-page: 13541 year: 2017 publication-title: J. Am. Chem. Soc. – start-page: 100 year: 2017 publication-title: Microporous Mesoporous Mater. – volume: 140 start-page: 18016 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 48 start-page: 215 year: 2012 publication-title: Chem. Commun. – volume: 32 start-page: 4502 year: 2018 publication-title: Energy Fuels – volume: 159 start-page: 625 year: 2020 publication-title: Carbon – volume: 542 start-page: 91 year: 2019 publication-title: J. Colloid Interface Sci. – volume: 2 start-page: 17045 year: 2017 publication-title: Nat. Rev. Mater. – volume: 32 start-page: 5985 year: 2020 publication-title: Chem. Mater. – volume: 6 start-page: 19570 year: 2018 publication-title: J. Mater. Chem. A – volume: 7 start-page: 468 year: 2003 publication-title: Energy Fuels – volume: 44 start-page: 1244 year: 2018 publication-title: Mol. Simul. – volume: 46 start-page: 446 year: 2007 publication-title: Ind. Eng. Chem. Res. – volume: 143 start-page: 531 year: 2019 publication-title: Carbon – volume: 114 start-page: 496 year: 2017 publication-title: Carbon – volume: 283 start-page: 1148 year: 1999 publication-title: Science – volume: 48 start-page: 456 year: 2010 publication-title: Carbon – volume: 138 start-page: 1001 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 58 start-page: 3349 year: 2019 publication-title: Ind. Eng. Chem. Res. – volume: 134 start-page: 7056 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 12792 year: 2012 publication-title: RSC Adv. – volume: 52 start-page: 11704 year: 2016 publication-title: Chem. Commun. – volume: 156 start-page: 2 year: 2010 publication-title: Chem. Eng. J. – volume: 160 start-page: 113 year: 2020 publication-title: Carbon – volume: 168 start-page: 282 year: 2016 publication-title: Appl. Energy – volume: 47 start-page: 6840 year: 2011 publication-title: Chem. Commun. – volume: 24 start-page: 5982 year: 2018 publication-title: Chem. Eur. J. – volume: 10 start-page: 19076 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 137 start-page: 4787 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 15325 19636 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 25 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 23990 year: 2015 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1604 year: 2019 publication-title: ACS Appl. Nano Mater – volume: 90 start-page: 299 year: 2006 publication-title: Microporous Mesoporous Mater. – volume: 92 start-page: 601 year: 2008 publication-title: J. Therm. Anal. Calorim. – volume: 26 start-page: 2052 year: 2014 publication-title: Chem. Mater. – volume: 134 start-page: 13834 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 147 start-page: 109 year: 2016 publication-title: Chem. Eng. Sci. – volume: 18 start-page: 16649 year: 2012 publication-title: Chem. Eur. J. – volume: 134 start-page: 10757 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 1439 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 35908 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 55 start-page: 19 year: 2016 publication-title: Ind. Eng. Chem. Res. – volume: 161 start-page: 46 year: 2010 publication-title: Chem. Eng. J. – volume: 130 start-page: 10870 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 55325 year: 2018 publication-title: AIP Adv. – volume: 120 start-page: 8571 year: 1998 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 18 year: 2012 publication-title: Chem. Mater. – volume: 46 start-page: 8490 year: 2007 publication-title: Inorg. Chem. – volume: 59 start-page: 13724 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 3 start-page: 632 year: 2010 publication-title: Nano Res. – volume: 202 start-page: 259 year: 2015 publication-title: Microporous Mesoporous Mater. – volume: 76 start-page: 185 year: 2004 publication-title: Microporous Mesoporous Mater. – volume: 55 start-page: 3266 year: 2019 publication-title: Chem. Commun. – volume: 85 start-page: 4201 year: 1989 publication-title: J. Chem. Soc. Faraday Trans. 1 – volume: 148 start-page: 53 year: 2016 publication-title: Procedia Eng. – volume: 113 start-page: 31 year: 2008 publication-title: Microporous Mesoporous Mater. – volume: 53 start-page: 15398 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 26 start-page: 36 year: 2018 publication-title: J. CO2 Util. – volume: 55 128 start-page: 10268 10424 year: 2016 2016 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 38 start-page: 1477 year: 2009 publication-title: Chem – volume: 245 start-page: 147 year: 2015 publication-title: Catal. Today – volume: 17 start-page: 1128 year: 2018 publication-title: Nat. Mater. – volume: 258 start-page: 4301 year: 2012 publication-title: Appl. Surf. Sci. – volume: 57 start-page: 7244 year: 2018 publication-title: Inorg. Chem. – volume: 1908371 year: 2020 publication-title: Adv. Funct. Mater. – start-page: 3909 year: 2006 publication-title: Chem. Commun. – volume: 25 start-page: 89 year: 2018 publication-title: J. CO2 Util. – volume: 214 start-page: 149 year: 2015 publication-title: Microporous Mesoporous Mater. – volume: 4 start-page: 143 year: 2010 publication-title: ACS Nano – volume: 4 start-page: 6125 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 1245 year: 2018 publication-title: Ind. Eng. Chem. Res. – volume: 355 start-page: 716 year: 2019 publication-title: Powder Technol. – volume: 30 start-page: 4102 year: 2018 publication-title: Chem. Mater – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 156 start-page: 90 year: 2012 publication-title: Microporous Mesoporous Mater. – volume: 21 year: 2011 publication-title: J. Mater. Chem. – volume: 91 start-page: 142 year: 2015 publication-title: Energy – volume: 57 start-page: 5267 year: 2018 publication-title: Inorg. Chem. – volume: 358 start-page: 331 year: 2019 publication-title: Chem. Eng. J. – volume: 227 start-page: 247 year: 2000 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 3031 year: 2014 publication-title: ChemSusChem – volume: 70 start-page: 87 year: 2009 publication-title: Sep. Purif. Technol. – volume: 59 132 start-page: 19468 19636 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 134 start-page: 18940 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 11123 11216 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 3 start-page: 10284 year: 2015 publication-title: J. Mater. Chem. A – volume: 5 start-page: 3160 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 11299 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 258 year: 2017 publication-title: J. Mater. Chem. A – volume: 51 start-page: 4591 year: 2015 publication-title: Chem. Commun. – volume: 223 start-page: 99 year: 2018 publication-title: Fuel – volume: 49 start-page: 3762 year: 2011 publication-title: Carbon – volume: 358 start-page: 1507 year: 2019 publication-title: Chem. Eng. J. – volume: 358 start-page: 707 year: 2019 publication-title: Chem. Eng. J. – volume: 4 start-page: 225 year: 2010 publication-title: ACS Nano – volume: 66 start-page: 16297 year: 2020 publication-title: AIChE J. – volume: 53 start-page: 250 year: 2013 publication-title: J. Hazard. Mater. – volume: 8 start-page: 3498 year: 2008 publication-title: Nano Lett. – volume: 186 start-page: 35 year: 2019 publication-title: Fuel Process. Technol. – start-page: 360 year: 2019 publication-title: Chem. Eng. J. – volume: 131 start-page: 17490 year: 2009 publication-title: J. Am. Chem. Soc. – start-page: 3470 year: 2007 publication-title: Chem. Commun. – volume: 14 start-page: 2092 year: 2014 publication-title: Cryst. Growth Des. – volume: 10 start-page: 118 year: 2018 publication-title: Pharmaceuticals – volume: 7 start-page: 291 year: 2014 publication-title: ChemSusChem – volume: 139 start-page: 3627 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 14751 year: 2019 publication-title: Langmuir – volume: 707 year: 2020 publication-title: Sci. Total Environ. – volume: 294 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 8 start-page: 27753 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 25 start-page: 124 year: 2013 publication-title: J. Environ. Sci. – volume: 19 start-page: 835 year: 2013 publication-title: Adsorption – volume: 254 start-page: 7165 year: 2008 publication-title: Appl. Surf. Sci. – volume: 11 start-page: 1756 year: 2018 publication-title: ChemSusChem – volume: 27 start-page: 5432 year: 2015 publication-title: Adv. Mater. – volume: 253 start-page: 46 year: 2014 publication-title: Chem. Eng. J. – volume: 4 start-page: 42 year: 2011 publication-title: Energy Environ. Sci. – volume: 49 start-page: 708 year: 2020 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 91 year: 2011 publication-title: ChemSusChem – volume: 230 start-page: 100 year: 2016 publication-title: Microporous Mesoporous Mater. – volume: 12 start-page: 42711 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 885 year: 2013 publication-title: Ind. Eng. Chem. Res. – volume: 49 start-page: 4360 year: 2020 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 7323 year: 2012 publication-title: Energy Environ. Sci. – volume: 43 start-page: 994 year: 1998 publication-title: J. Chem. Eng. Data. – volume: 18 start-page: 5449 year: 2018 publication-title: Cryst. Growth Des. – volume: 5 start-page: 950 year: 2019 publication-title: Chem – volume: 308 start-page: 1065 year: 2017 publication-title: Chem. Eng. J. – volume: 166 start-page: 646 year: 2011 publication-title: Chem. Eng. J. – volume: 26 start-page: 4679 year: 2014 publication-title: Chem. Mater. – volume: 3 start-page: 30 year: 2013 publication-title: Greenhouse Gases-Science and Technology – volume: 25 start-page: 5105 year: 2019 publication-title: Chem. Eur. J. – volume: 11 start-page: 121 year: 1965 publication-title: AIChE J. – volume: 23 start-page: 1 year: 2015 publication-title: J. Ind. Eng. Chem. – volume: 7 start-page: 20985 year: 2019 publication-title: J. Mater. Chem. A – volume: 24 start-page: 8369 year: 2018 publication-title: Chem. Eur. J. – year: 2020 publication-title: Catal. Today – volume: 303 year: 2020 publication-title: Microporous Mesoporous Mater. – volume: 67 start-page: 336 year: 2009 publication-title: Sep. Purif. Technol. – volume: 6 start-page: 26673 year: 2016 publication-title: Sci. Rep. – volume: 353 start-page: 1 year: 2018 publication-title: Chem. Eng. J. – volume: 11 start-page: 57 year: 2018 publication-title: Energy Environ. Sci. – volume: 134 start-page: 13950 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 134 start-page: 19246 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 372 start-page: 65 year: 2019 publication-title: Chem. Eng. J. – volume: 345 start-page: 631 year: 2018 publication-title: Chem. Eng. J. – volume: 6 start-page: 15550 year: 2018 publication-title: ACS Sustainable Chem. Eng. – volume: 184 start-page: 61 year: 2014 publication-title: Microporous Mesoporous Mater. – volume: 27 start-page: 12411 year: 2011 publication-title: Langmuir – volume: 267 start-page: 53 year: 2018 publication-title: Microporous Mesoporous Mater. – volume: 121 start-page: 3404 year: 2017 publication-title: J. Phys. Chem. C – volume: 122 start-page: 17211 year: 2018 publication-title: J. Phys. Chem. C – volume: 40 start-page: 195 year: 1944 publication-title: Trans. Faraday Soc. – volume: 42 start-page: 2610 year: 2013 publication-title: Chem. Soc. Rev. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 50 start-page: 13825 year: 2014 publication-title: Chem. Commun. – volume: 59 start-page: 7109 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 57 132 start-page: 5156 5250 year: 2018 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 350 start-page: 302 year: 2015 publication-title: Science – volume: 24 start-page: 73 year: 2018 publication-title: J. CO2 Util. – volume: 453 start-page: 207 year: 2008 publication-title: Nature – volume: 136 start-page: 8863 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 67 start-page: 1621 year: 1963 publication-title: J. Phys. Chem. – volume: 152 year: 2006 publication-title: Fifth Annual Conference on Carbon Capture & Sequestration – volume: 3 start-page: 1658 year: 2015 publication-title: ACS Sustainable Chem. Eng. – volume: 84 start-page: 357 year: 2005 publication-title: Microporous Mesoporous Mater. – volume: 59 start-page: 10093 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 257 start-page: 193 year: 2018 publication-title: Microporous Mesoporous Mater. – volume: 121 start-page: 257 year: 2017 publication-title: Carbon – volume: 59 132 start-page: 23491 19636 year: 2020 2020 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 137 start-page: 2641 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 10113 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 113 start-page: 283 year: 2017 publication-title: Carbon – volume: 361 start-page: 278 year: 2019 publication-title: Chem. Eng. J. – volume: 4 start-page: 3805 year: 2011 publication-title: Energy Environ. Sci. – volume: 11 start-page: 127 year: 2016 publication-title: Nanoscale Res. Lett. – volume: 355 start-page: 923 year: 2017 publication-title: Science – volume: 119 start-page: 16115 year: 2015 publication-title: J. Phys. Chem. C – volume: 368 start-page: 618 year: 2019 publication-title: Chem. Eng. J. – volume: 7 start-page: 40207 year: 2017 publication-title: Sci. Rep. – volume: 52 start-page: 11378 year: 2016 publication-title: Chem. Commun. – volume: 20 start-page: 6487 year: 2018 publication-title: Phys. Chem. Chem. Phys. – volume: 22 start-page: 1558 year: 2010 publication-title: J Environ Sci (China) – volume: 359 start-page: 710 year: 1992 publication-title: Nature – volume: 59 start-page: 9207 year: 2020 publication-title: Ind. Eng. Chem. Res. – volume: 230 start-page: 380 year: 2013 publication-title: Chem. Eng. J. – volume: 57 130 start-page: 14281 14477 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 9544 year: 2017 publication-title: J. Mater. Chem. A – volume: 58 start-page: 21679 year: 2019 publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 405 year: 2019 publication-title: J. CO2 Util. – volume: 122 start-page: 28815 year: 2018 publication-title: J. Phys. Chem. C. – volume: 141 start-page: 12744 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 155 year: 2020 publication-title: Carbon Lett. – volume: 2 start-page: 161 year: 2012 publication-title: RSC Adv. – volume: 24 start-page: 4725 year: 2012 publication-title: Chem. Mater. – volume: 481 start-page: 1139 year: 2019 publication-title: Appl. Surf. Sci. – volume: 39 start-page: 103 year: 2010 publication-title: Chem. Soc. Rev. – volume: 52 start-page: 9757 year: 2016 publication-title: Chem. Commun. – volume: 319 start-page: 939 year: 2008 publication-title: Science – volume: 5 start-page: 19456 year: 2017 publication-title: J. Mater. Chem. A – volume: 4 start-page: 280 year: 2016 publication-title: J. Mater. Chem. A – volume: 126 start-page: 32 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 48 121 start-page: 9621 9621 year: 2009 2009 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 769 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 2218 year: 2015 publication-title: Langmuir – volume: 13 start-page: 6090 year: 2020 publication-title: ChemSusChem – volume: 140 start-page: 53 year: 2015 publication-title: Sep. Purif. Technol. – volume: 8 start-page: 15378 year: 2020 publication-title: ACS Sustainable Chem. Eng. – volume: 18 start-page: 163 year: 2012 publication-title: Adsorption – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 11 start-page: 34533 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 853 year: 2010 publication-title: Adv. Mater. – volume: 558 start-page: 55 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 7 start-page: 7412 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 7 start-page: 19513 year: 2019 publication-title: ACS Sustainable Chem. Eng. – volume: 139 start-page: 1 year: 2020 publication-title: Process Saf. Environ. Prot. – volume: 46 start-page: 4502 year: 2010 publication-title: Chem. Commun. – volume: 4 start-page: 3750 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 1765 year: 2011 publication-title: Energy Environ. Sci. – volume: 7 start-page: 241 year: 1993 publication-title: Gas Sep. Purif. – volume: 116 start-page: 448 year: 2017 publication-title: Carbon – volume: 132 start-page: 5578 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1528 year: 2020 publication-title: Mater. Horiz. – volume: 29 start-page: 103 year: 2019 publication-title: J. Energy Chem. – volume: 348 start-page: 109 year: 2018 publication-title: Chem. Eng. J. – volume: 45 start-page: 14480 year: 2014 publication-title: RSC Adv. – volume: 118 start-page: 11784 year: 2014 publication-title: J. Phys. Chem. C – volume: 132 start-page: 12200 year: 2010 publication-title: J. Am. Chem. Soc. – publication-title: Chem. Eng. J. – volume: 89 start-page: 10 year: 2013 publication-title: Chem. Eng. Sci. – volume: 4 start-page: 2070 year: 2011 publication-title: Energy Environ. Sci. – volume: 161 start-page: 629 year: 2020 publication-title: Carbon – volume: 41 start-page: 14351 year: 2016 publication-title: Int. J. Hydrogen Energy – volume: 117 start-page: 12841 year: 2013 publication-title: J. Phys. Chem. C – volume: 23 start-page: 225 year: 2017 publication-title: Adsorption – volume: 6 start-page: 23087 year: 2018 publication-title: J. Mater. Chem. A – volume: 206 start-page: 207 year: 2015 publication-title: Microporous Mesoporous Mater. – volume: 47 start-page: 4661 year: 2011 publication-title: J. Chem. – volume: 47 start-page: 2281 year: 2009 publication-title: Carbon – volume: 22 start-page: 19726 year: 2012 publication-title: J. Mater. Chem. – volume: 194 start-page: 8 year: 2014 publication-title: Microporous Mesoporous Mater. – volume: 109 start-page: 93 year: 2005 publication-title: Catal. Today – volume: 2014 start-page: 1 year: 2014 publication-title: Sci. World J – volume: 3 start-page: 11350 year: 2018 publication-title: ChemistrySelect – volume: 42 start-page: 56 year: 2020 publication-title: J. Energy Chem. – volume: 120 start-page: 8087 year: 2020 publication-title: J. Phys. Chem. C – volume: 137 start-page: 72 year: 2011 publication-title: Chem. Eng. J. – volume: 337 start-page: 290 year: 2018 publication-title: Chem. Eng. J. – volume: 141 start-page: 13171 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1303 year: 2017 publication-title: ChemSusChem – volume: 5 start-page: 6360 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 17 start-page: 77 year: 2014 publication-title: Mater. Today – volume: 53 start-page: 11176 year: 2014 publication-title: Ind. Eng. Chem. Res. – volume: 4 start-page: 5800 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 23710 year: 2012 publication-title: J. Mater. Chem. – volume: 7 start-page: 5402 year: 2019 publication-title: J. Mater. Chem. A – volume: 42 start-page: 2686 year: 2018 publication-title: Int. J. Energy Res. – volume: 26 start-page: 2820 year: 2014 publication-title: Chem. Mater. – volume: 55 start-page: 595 year: 2016 publication-title: Ind. Eng. Chem. Res. – volume: 130 start-page: 13850 year: 2008 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 3627 year: 2009 publication-title: Chem. Commun. – volume: 10 start-page: 1623 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 336 start-page: 659 year: 2018 publication-title: Chem. Eng. J. – volume: 48 start-page: 2680 year: 2015 publication-title: Acc. Chem. Res. – volume: 47 start-page: 5602 year: 2008 publication-title: Ind. Eng. Chem. Res. – volume: 18 start-page: 7114 year: 2018 publication-title: Cryst. Growth Des. – volume: 119 year: 2002 publication-title: Renewable Sustainable Energy Rev. – volume: 26 start-page: 5 year: 2020 publication-title: Adsorption – volume: 1 start-page: 10951 year: 2013 publication-title: J. Mater. Chem. A – volume: 800 start-page: 279 year: 2019 publication-title: J. Alloys Compd. – volume: 42 155 start-page: 428 444 year: 2003 2003 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 505 start-page: 858 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 15 start-page: 4195 year: 2009 publication-title: Chem. Eur. J. – volume: 44 start-page: 8877 year: 2015 publication-title: Chem. Soc. Rev. – volume: 519 start-page: 303 year: 2015 publication-title: Nature – volume: 329 start-page: 424 year: 2010 publication-title: Science – volume: 59 132 start-page: 6984 7048 year: 2019 2019 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 122 start-page: 20366 year: 2018 publication-title: J. Phys. Chem. C – volume: 6 start-page: 12393 year: 2018 publication-title: J. Mater. Chem. A – volume: 2 start-page: 1071 year: 2020 publication-title: SN Appl. Sci |
SSID | ssj0060966 |
Score | 2.6202588 |
SecondaryResourceType | review_article |
Snippet | The atmospheric CO2 concentration continues a rapid increase to its current record high value of 416 ppm for the time being. It calls for advanced CO2 capture... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 1428 |
SubjectTerms | Activated carbon Adsorbents Adsorption Aluminum oxide carbon capture Carbon dioxide Carbon sequestration Equilibrium conditions Innovations Performance assessment Porosity porous materials Pressure swing adsorption Recyclability Regeneration Selectivity Separation separation, Zeolites Silicon dioxide Technical literature Zeolites |
Title | Advances in Post‐Combustion CO2 Capture by Physical Adsorption: From Materials Innovation to Separation Practice |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.202002677 https://www.proquest.com/docview/2509227765 https://www.proquest.com/docview/2475529085 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LToQwFG3MbHTj2zi-UhO3OHBLC3U3IU7URJ04TjI70kJrjBHMwCx05Sf4jX6JLTDouNRlA00K98GhvfcchE5clgAXyjgvCOn4VJmQCrnnpK5ioD3t8sRuDVzfsIuxfzWhkx9d_DU_RLvhZiOjytc2wIUset-koUlRWApCW2TAAttObgu2LCq6a_mjmMHnVXtRyHyHMuLNWRtd6C1OX8CXP1Fq9ZkZrCExX2BdXfJ0OivlafL2i7vxP0-wjlYbDIr7tdNsoCWVbaLlaC79toWm_boyoMCPGbZyvp_vHyZxSKv8lWc4ugUciRd79oDlKx42psb9tMinVQo6w4Np_oyvRVk7OL5sxVdxmeORqhnHzWjYdGlto_Hg_D66cBpxBueB2NZCnYYGuyimBAl8DTwlUiov9SVPhQw40zwRIKiWjAvCNQsTIt3QSv14wks4JTuok-WZ2kWYJCBCrXwuzN-qyzUnqQLFqKJaBakOu-hgbpy4ibAiNtCNAwQBo1103F4278keeIhM5TNzjx9QCtygyi6CyhLxS83hEddszRBbG8StDeJoNIra0d5fJu2jFbBlLy5xAA5Qp5zO1KHBLaU8qnzzC8om6I4 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL0qdAGbQmkrpkBrpG4DyXXsxN2NIkZDy1DUAam7yE7sqkJNRpPMoqz4BL6RL6mdV6FLWFqJpST3kWP73nMAPvk8QyG1dV6UyguZtiEVi8DLfc3RBMYXmdsamJ3z6VX45QfrqwldL0zLDzFsuLnIaPK1C3C3IX38jzU0qyrHQeiqDHgUrcFLJ-vdrKq-DwxS3CL0psEo5qHHOA163kYfjx_Pf4QwH-LU5kcz2QLVP2JbX3J9tKrVUXbzH3vjs95hG151MJSMW795DS90sQMbSa_-9gaW47Y4oCK_CuIUfe9v72zuUE78qyxI8g1JIhfu-IGoP-SiszYZ51W5bLLQZzJZlr_JTNatj5PTQX-V1CWZ65Z03I4uukatt3A1OblMpl6nz-D9pK670OSxhS-aa0mj0KDIqVI6yEMlcqkiwY3IJEpmFBeSCsPjjCo_dmo_gQwyweg7WC_KQu8CoRnK2OhQSLtg9YURNNeoOdPM6Cg38Qj2e-ukXZBVqUVvAjGKOBvB4XDZfid35iELXa7sPWHEGAoLLEeAjSnSRUvjkbaEzZg6G6SDDdJkPk-G0funTPoIG9PL2Vl6dnr-dQ820VXB-NRD3If1ernSBxbG1OpD46h_AVSH7Kk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB1BkYAL5VNdaMFIXNMm49iOua3SrlqgZcVSqbfIjm2EUJPVJnuAEz-B38gvqZ1kQ8sRjlZiycmbmbzYM28A3sS8RKmsN15UOkqZ9S6VySQyseXoEhfLMmwNnJ7x4_P03QW7uFbF3-tDjBtuwTO6eB0cfGncwR_R0LJpggRhSDLgQtyGOymPs2DXh59GASnuCXpXX5TxNGKcJhvZxhgPbs6_QTCv09TuOzPbBrVZYZ9e8m1_3er98sdf4o3_8wgP4cFAQsm0t5pHcMtWj-Fevun99gRW0z41oCFfKxL6-f7--ctHDh1af9UVyT8iydUyHD4Q_Z3MB6zJ1DT1qotBb8lsVV-SU9X2Fk5Oxu6rpK3JwvaS4340H8q0nsL57OhzfhwN3RmiLzTUFjqTefJiuVVUpA6loVrbxKRaGqWF5E6WChVzmktFpeNZSbUHiKNIVFJKRp_BVlVXdgcILVFlzqZS-d_VWDpJjUXLmWXOCuOyCexuwCkGF2sKz90kohCcTeD1eNm_p3DioSpbr_09qWAMpaeVE8AOiWLZi3gUvVwzFgGDYsSgyBeLfBw9_5dJr-Du_HBWfDg5e_8C7mNIgYlphLgLW-1qbfc8h2n1y85MrwC7jeth |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advances+in+Post-Combustion+CO2+Capture+by+Physical+Adsorption%3A+From+Materials+Innovation+to+Separation+Practice&rft.jtitle=ChemSusChem&rft.au=Liu%2C+Ru-Shuai&rft.au=Shi%2C+Xiao-Dong&rft.au=Wang%2C+Cheng-Tong&rft.au=Gao%2C+Yu-Zhou&rft.date=2021-03-22&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=14&rft.issue=6&rft.spage=1428&rft_id=info:doi/10.1002%2Fcssc.202002677&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon |