Electrode Materials Engineering in Electrocatalytic CO2 Reduction: Energy Input and Conversion Efficiency
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 32; no. 27; pp. e1903796 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201903796 |
Cover
Loading…
Abstract | Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high‐efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo‐anode‐assisted ECR systems and bio‐anode‐assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.
Electrode materials are considered to be important components for electrocatalytic CO2 reduction systems, as they affect the energy input method and CO2 conversion efficiencies. Various photo‐anode and bio‐anode materials for lowering external bias and progress on cathode catalysts for improving CO2 conversion efficiencies are comprehensively reviewed. Moreover, enhancement strategies in the design of these electrode materials are highlighted. |
---|---|
AbstractList | Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high‐efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo‐anode‐assisted ECR systems and bio‐anode‐assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems. Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems. Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high‐efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo‐anode‐assisted ECR systems and bio‐anode‐assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems. Electrode materials are considered to be important components for electrocatalytic CO2 reduction systems, as they affect the energy input method and CO2 conversion efficiencies. Various photo‐anode and bio‐anode materials for lowering external bias and progress on cathode catalysts for improving CO2 conversion efficiencies are comprehensively reviewed. Moreover, enhancement strategies in the design of these electrode materials are highlighted. |
Author | Song, Rong‐Bin Liu, Lixia Zhu, Jun‐Jie Chen, Ying Fu, Jiaju Lin, Yuehe Zhu, Wenlei Zhang, Jian‐Rong |
Author_xml | – sequence: 1 givenname: Rong‐Bin orcidid: 0000-0002-3493-9812 surname: Song fullname: Song, Rong‐Bin organization: Nanjing University – sequence: 2 givenname: Wenlei surname: Zhu fullname: Zhu, Wenlei organization: Washington State University – sequence: 3 givenname: Jiaju surname: Fu fullname: Fu, Jiaju organization: Nanjing University – sequence: 4 givenname: Ying surname: Chen fullname: Chen, Ying organization: Nanjing University – sequence: 5 givenname: Lixia surname: Liu fullname: Liu, Lixia organization: Nanjing University – sequence: 6 givenname: Jian‐Rong surname: Zhang fullname: Zhang, Jian‐Rong organization: Nanjing University – sequence: 7 givenname: Yuehe surname: Lin fullname: Lin, Yuehe email: yuehe.lin@wsu.edu organization: Washington State University – sequence: 8 givenname: Jun‐Jie orcidid: 0000-0002-8201-1285 surname: Zhu fullname: Zhu, Jun‐Jie email: jjzhu@nju.edu.cn organization: Nanjing University |
BookMark | eNpdkM9LwzAYhoNMcJtePQe8eOn8krTp4m3MqoONgeg5pOnXktGlsz-U_vd2bOzg6ePle3h5eSZk5CuPhNwzmDEA_mSyvZlxYApErOQVGbOIsyAEFY3IGJSIAiXD-Q2ZNM0OAJQEOSYuKdG2dZUh3ZgWa2fKhia-cB6H4AvqPD0j1rSm7Ftn6XLL6QdmnW1d5Z8HHOuipyt_6FpqfEaXlf_BuhmeNMlzZx1629-S63wox7vznZKv1-Rz-R6st2-r5WIdFAKEDOJU8VgJE_FYAKRowTKeCgORhDTjTBrBJZpQgJV5ahhESmDKwhSkDeccxJQ8nnoPdfXdYdPqvWsslqXxWHWN5lypOAYI5YA-_EN3VVf7YZ3mIYcoZEypgVIn6teV2OtD7fam7jUDfdSuj9r1RbtevGwWlyT-AIWMebQ |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.201903796 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201903796 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21834004; 21804070; 21775067 – fundername: Chinese Ministry of Science and Technology funderid: 2016YFE0130100 – fundername: China Postdoctoral Science Foundation funderid: 2017M621694; 2018T110475 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-g3036-7b92793a527300bec0c12b3a0560bd216a326ea430c6fba10593eb14b06c48203 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Thu Jul 10 22:12:10 EDT 2025 Sun Jul 13 04:37:19 EDT 2025 Wed Jan 22 16:33:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3036-7b92793a527300bec0c12b3a0560bd216a326ea430c6fba10593eb14b06c48203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-3493-9812 0000-0002-8201-1285 |
PQID | 2420541199 |
PQPubID | 2045203 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2299770046 proquest_journals_2420541199 wiley_primary_10_1002_adma_201903796_ADMA201903796 |
PublicationCentury | 2000 |
PublicationDate | 2020-07-01 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2016 2015 2015; 45 8 49 1987; 220 2019; 11 2019; 10 2019 2018 2018 2013; 48 4 2 495 2018 2014; 86 53 2019; 12 2006; 36 1860; 113 2014; 26 2014 2016 2015; 53 7 5 2014; 136 2018; 9 2018; 8 2018; 2 2012; 134 2018; 5 2015; 137 2006; 21 2018; 1 2013 2016 2015 2018 2013 2010 2015; 42 270 115 47 6 8 17 2013; 52 2014; 16 2007; 9 2014; 14 2019; 29 2018; 30 2013; 110 2018 2018; 8 5 2010; 3 2012; 25 2014; 126 1995 2011; 28 10 2019; 9 2019; 4 2015 2015 2017 2018 2016; 61 8 29 24 28 2019; 3 1980 2015 2015; 102 5 3 2019; 31 2019; 2 2018; 229 2015; 51 2014 2016; 43 9 1986; 15 2015; 54 2016; 10 2016 2016; 28 6 2016; 286 2013 2017 2018 2017 2017; 6 10 118 355 2 2013 2012 2016; 34 335 215 2018 2019 2012; 5 31 3 2018; 21 2016; 16 2014; 43 2017; 139 2016; 4 2016; 6 2006; 40 2018; 237 2009 2011 2017 2013; 43 4 12 1 2017; 56 2019 2016 2018; 103 106 220 2014; 30 2012 2017; 5 90 2012; 46 2018; 11 2016; 27 2018; 97 2016; 8 2016; 25 2016; 9 2017; 2 2018; 360 2017; 46 2014 2010 2018; 43 101 90 2019; 58 2015; 349 2013 2012; 341 5 2017 2012; 56 5 2017; 9 2016 2018; 24 3 2014; 4 2019; 31 31 2019; 358 2017; 240 2014; 6 1998; 53 2012; 217 2019; 475 2018 2018 2019; 10 140 10 2018 2014; 30 7 2018 2017 2015; 9 336 58 2015; 15 2015; 5 2018; 140 1987 2011; 134 185 2000; 22 2016; 529 2019; 303 2016; 52 2018 2001 2017 2017; 61 414 1 210 1999; 1 2019; 141 2015; 9 2016; 55 2016 2015 2016 2019; 18 137 7 15 2012 2010 2010; 41 1 132 2013; 35 2012 2017; 1 10 2017; 10 1958; 62 2013; 135 2018; 57 |
References_xml | – volume: 16 year: 2014 publication-title: Phys. Chem. Chem. Phys. – volume: 52 start-page: 7282 year: 2013 publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 8235 year: 2016 publication-title: Chem. Commun. – volume: 303 start-page: 268 year: 2019 publication-title: Electrochim. Acta – volume: 358 start-page: 860 year: 2019 publication-title: Chem. Eng. J. – volume: 136 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 1944 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 62 start-page: 1049 year: 1958 publication-title: J. Phys. Chem. – volume: 24 3 start-page: 1 946 year: 2016 2018 publication-title: Nano Energy ACS Energy Lett. – volume: 11 start-page: 1204 year: 2018 publication-title: Energy Environ. Sci. – volume: 12 start-page: 1334 year: 2019 publication-title: Energy Environ. Sci. – volume: 27 start-page: 1062 year: 2016 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 8 start-page: 1469 year: 2018 publication-title: ACS Catal. – volume: 10 140 10 start-page: 974 2880 892 year: 2018 2018 2019 publication-title: Nat. Chem. J. Am. Chem. Soc. Nat. Commun. – volume: 10 start-page: 4491 year: 2019 publication-title: Chem. Sci. – volume: 57 start-page: 6054 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 51 year: 2015 publication-title: Chem. Commun. – volume: 46 start-page: 1545 year: 2017 publication-title: Chem. Soc. Rev. – volume: 25 start-page: 70 year: 2012 publication-title: Electrochem. Commun. – volume: 139 start-page: 8078 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 7593 year: 2014 publication-title: Langmuir – volume: 86 53 start-page: 167 871 year: 2018 2014 publication-title: Diamond Relat. Mater. Angew. Chem., Int. Ed. – volume: 9 start-page: 925 year: 2018 publication-title: Nat. Commun. – volume: 2 start-page: 0105 year: 2018 publication-title: Nat. Rev. Chem. – volume: 139 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 3991 year: 2018 publication-title: ChemElectroChem – volume: 29 year: 2019 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 292 year: 2010 publication-title: Energy Environ. Sci. – volume: 9 start-page: 3527 year: 2019 publication-title: ACS Catal. – volume: 286 start-page: 91 year: 2016 publication-title: Chem. Eng. J. – volume: 139 start-page: 8329 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 6344 year: 2016 publication-title: ACS Sustainable Chem. Eng. – volume: 53 start-page: 229 year: 1998 publication-title: Catal. Lett. – volume: 217 start-page: 59 year: 2012 publication-title: J. Power Sources – volume: 58 start-page: 2256 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 10 start-page: 677 year: 2019 publication-title: Nat. Commun. – volume: 10 start-page: 1075 year: 2019 publication-title: Chem. Sci. – volume: 134 185 start-page: 2749 575 year: 1987 2011 publication-title: J. Electrochem. Soc. J. Hazard. Mater. – volume: 61 8 29 24 28 start-page: 97 2574 3423 year: 2015 2015 2017 2018 2016 publication-title: Electrochem. Commun. Energy Environ. Sci. Adv. Mater. Chem. – Eur. J. Adv. Mater. – volume: 1 start-page: 213 year: 1999 publication-title: Electrochem. Commun. – volume: 110 year: 2013 publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 28 6 start-page: 270 year: 2016 2016 publication-title: Adv. Mater. Adv. Energy Mater. – volume: 31 31 year: 2019 publication-title: Adv. Mater. Adv. Mater. – volume: 1 start-page: 421 year: 2018 publication-title: Nat. Catal. – volume: 46 start-page: 5198 year: 2012 publication-title: Environ. Sci. Technol. – volume: 9 start-page: 1320 year: 2018 publication-title: Nat. Commun. – volume: 57 start-page: 9604 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 529 start-page: 68 year: 2016 publication-title: Nature – volume: 34 335 215 start-page: 1915 1596 357 year: 2013 2012 2016 publication-title: Environ. Technol. Science Bioresour. Technol. – volume: 237 start-page: 911 year: 2018 publication-title: Appl. Catal., B – volume: 240 start-page: 225 year: 2017 publication-title: Electrochim. Acta – volume: 10 start-page: 32 year: 2019 publication-title: Nat. Commun. – volume: 36 start-page: 1105 year: 2006 publication-title: J. Appl. Electrochem. – volume: 137 start-page: 4288 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 55 start-page: 698 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 134 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 8 5 start-page: 3854 year: 2018 2018 publication-title: Adv. Energy Mater. ChemElectroChem – volume: 5 90 start-page: 5540 558 year: 2012 2017 publication-title: Energy Environ. Sci. Biosens. Bioelectron. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 3116 year: 2018 publication-title: ACS Catal. – volume: 28 10 start-page: 141 456 year: 1995 2011 publication-title: Acc. Chem. Res. Nat. Mater. – volume: 9 start-page: 606 year: 2016 publication-title: ChemSusChem – volume: 26 start-page: 4607 year: 2014 publication-title: Adv. Mater. – volume: 43 9 start-page: 7718 2177 year: 2014 2016 publication-title: Chem. Soc. Rev. Energy Environ. Sci. – volume: 229 start-page: 163 year: 2018 publication-title: Appl. Catal., B – volume: 58 start-page: 4031 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 43 start-page: 2492 year: 2014 publication-title: Chem. Soc. Rev. – volume: 349 start-page: 1208 year: 2015 publication-title: Science – volume: 4 start-page: 490 year: 2019 publication-title: Nanoscale Horiz. – volume: 57 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 35 start-page: 91 year: 2013 publication-title: Electrochem. Commun. – volume: 2 start-page: 55 year: 2019 publication-title: Nat. Catal. – volume: 97 start-page: 73 year: 2018 publication-title: Electrochem. Commun. – volume: 5 31 3 start-page: 251 year: 2018 2019 2012 publication-title: Adv. Sci. Adv. Mater. J. Phys. Chem. Lett. – volume: 140 start-page: 5791 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 475 start-page: 20 year: 2019 publication-title: Appl. Surf. Sci. – volume: 56 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 43 4 12 1 start-page: 6870 1417 308 year: 2009 2011 2017 2013 publication-title: Environ. Sci. Technol. Energy Environ. Sci. Chem. – Asian J. J. Mater. Chem. A – volume: 360 start-page: 783 year: 2018 publication-title: Science – volume: 2 start-page: 532 year: 2017 publication-title: ACS Energy Lett. – volume: 126 start-page: 4569 year: 2014 publication-title: Angew. Chem. – volume: 56 5 start-page: 7050 year: 2017 2012 publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci. – volume: 10 start-page: 1733 year: 2017 publication-title: ChemSusChem – volume: 113 start-page: 125 year: 1860 publication-title: Ann. Chem. Pharm. – volume: 61 414 1 210 start-page: 771 338 0003 235 year: 2018 2001 2017 2017 publication-title: Sci. China Mater. Nature Nat. Rev. Chem. Appl. Catal., B – volume: 21 start-page: 41 year: 2018 publication-title: Nano Today – volume: 135 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 48 year: 2019 publication-title: ACS Energy Lett. – volume: 53 7 5 start-page: 1034 266 6302 year: 2014 2016 2015 publication-title: Angew. Chem., Int. Ed. Chem. Sci. ACS Catal. – volume: 5 start-page: 5089 year: 2015 publication-title: ACS Catal. – volume: 14 start-page: 3688 year: 2014 publication-title: Nano Lett. – volume: 22 start-page: 127 year: 2000 publication-title: Energy Sources – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 48 4 2 495 start-page: 205 2571 2551 80 year: 2019 2018 2018 2013 publication-title: Chem. Soc. Rev. Chem Joule Nature – volume: 139 start-page: 5652 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 40 start-page: 5181 year: 2006 publication-title: Environ. Sci. Technol. – volume: 220 start-page: 333 year: 1987 publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 141 start-page: 4791 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 57 start-page: 9640 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 1903 year: 2018 publication-title: ACS Catal. – volume: 6 start-page: 1899 year: 2014 publication-title: ChemCatChem – volume: 9 start-page: 2124 year: 2019 publication-title: ACS Catal. – volume: 6 10 118 355 2 start-page: 3112 1039 4631 year: 2013 2017 2018 2017 2017 publication-title: Energy Environ. Sci. ChemSusChem Chem. Rev. Science Nat. Rev. Mater. – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 9 start-page: 2619 year: 2007 publication-title: Phys. Chem. Chem. Phys. – volume: 1 10 start-page: H17 1100 year: 2012 2017 publication-title: ECS Electrochem. Lett. ChemSusChem – volume: 25 start-page: 51 year: 2016 publication-title: Nano Energy – volume: 103 106 220 start-page: 13 339 8 year: 2019 2016 2018 publication-title: Renewable Sustainable Energy Rev. Water Res. Fuel – volume: 43 101 90 start-page: 631 3085 16 year: 2014 2010 2018 publication-title: Chem. Soc. Rev. Bioresour. Technol. Renewable Sustainable Energy Rev. – volume: 6 start-page: 7142 year: 2014 publication-title: Nanoscale – volume: 3 start-page: 265 year: 2019 publication-title: Joule – volume: 10 start-page: 4559 year: 2016 publication-title: ACS Nano – volume: 18 137 7 15 start-page: 3250 year: 2016 2015 2016 2019 publication-title: Green Chem. J. Am. Chem. Soc. Nat. Commun. Small – volume: 9 336 58 start-page: 6017 78 30 year: 2018 2017 2015 publication-title: Chem. Sci. Coord. Chem. Rev. Top. Catal. – volume: 10 start-page: 2181 year: 2017 publication-title: Nano Res. – volume: 9 start-page: 4466 year: 2018 publication-title: Nat. Commun. – volume: 9 start-page: 5302 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 30 7 start-page: 1 year: 2018 2014 publication-title: Adv. Mater. J. CO2 Util. – volume: 54 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 8 start-page: 6571 year: 2018 publication-title: ACS Catal. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 2015 year: 2006 publication-title: Biosens. Bioelectron. – volume: 9 start-page: 5364 year: 2015 publication-title: ACS Nano – volume: 102 5 3 start-page: 2592 1360 year: 1980 2015 2015 publication-title: J. Am. Chem. Soc. Catal. Sci. Technol. J. Mater. Chem. A – volume: 45 8 49 start-page: 2847 3418 3267 year: 2016 2015 2015 publication-title: Chem. Soc. Rev. Energy Environ. Sci. Environ. Sci. Technol. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 4 start-page: 4440 year: 2014 publication-title: Catal. Sci. Technol. – volume: 15 start-page: 153 year: 2015 publication-title: Nano Energy – volume: 136 start-page: 6978 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 341 5 start-page: 7281 year: 2013 2012 publication-title: Science Energy Environ. Sci. – volume: 42 270 115 47 6 8 17 start-page: 2423 19 5423 2892 706 1375 year: 2013 2016 2015 2018 2013 2010 2015 publication-title: Chem. Soc. Rev. Catal. Today Chem. Rev. Chem. Soc. Rev. Energy Environ. Sci. Nat. Rev. Microbiol. Green Chem. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 15 start-page: 897 year: 1986 publication-title: Chem. Lett. – volume: 8 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 3774 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 4428 year: 2016 publication-title: ACS Catal. – volume: 41 1 132 start-page: 2036 3451 year: 2012 2010 2010 publication-title: Chem. Soc. Rev. J. Phys. Chem. Lett. J. Am. Chem. Soc. – volume: 2 start-page: 2394 year: 2017 publication-title: ACS Energy Lett. – volume: 10 start-page: 2256 year: 2017 publication-title: Energy Environ. Sci. – volume: 16 start-page: 466 year: 2016 publication-title: Nano Lett. – volume: 11 start-page: 222 year: 2019 publication-title: Nat. Chem. |
SSID | ssj0009606 |
Score | 2.6360621 |
SecondaryResourceType | review_article |
Snippet | Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it... Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e1903796 |
SubjectTerms | bioanodes Carbon dioxide Catalysts Catalytic converters CO2 reduction Efficiency electrocatalysis Electrode materials Electrodes Energy conversion efficiency Materials engineering Materials science Photoanodes photoelectric conversion Reaction mechanisms Reduction Selectivity System effectiveness |
Title | Electrode Materials Engineering in Electrocatalytic CO2 Reduction: Energy Input and Conversion Efficiency |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903796 https://www.proquest.com/docview/2420541199 https://www.proquest.com/docview/2299770046 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaGriddC13cq8EYSgCZoQSbgt7VYMMRlExkH_et_rYAyPelz2umzte3vfda-fEnIfKfCEJEy8KNDWk4nyvbaQgWdDX6dcCFDYOKE_fAkHY_k8CSaVVfwFH6KccMPIcO9rDHBtlq0tNFSnjhsECU2oCJnbWLCFqmi05UehPHewPRF4USjbG2oj463d5jv6sqpSXZrpHxG9ucGiuuSjucpNM_n-xW78zxMck8O1BqWdwmlOyJ7NTslBhUx4Rma9Ynuc1NKhzgsvpRULOsvo2sRNAH3BpWj3ldMRomBxsB_AHJcV0qdsscqpzlLaxQp3Nz1He45cgcs-z8m433vrDrz1rgzeO6Y7T5mIQ1BrJLcxBi7AEp8boUFJMZNyP9SgCK2WgiXh1GjUbwISgjQsTCToDXFBatk8s5eEWtEGY8WQ2COtrwxLglRO1VSrCL5j0jppbEYlXofWMgZNATLT96OoTu7K0xAU-KdDZ3a-AhtIsgrB_WGdcDcE8aKAd8QFppnH2Plx2flx53HYKY-u_tLomuxz_BZ3pbwNUss_V_YGBEtubp1T_gD16uH9 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDMctHgfgwBsxnkHiWkiTNFm5TWNoPAYSAolblbQZQkgFQXeAT4-dbmNwhGNVp2oTu_7XTX4BOEwNekKu8yhNrI9UbuKoKVUSeR3bQkiJCpsK-r1r3b1XFw_JaDYhrYWp-RDjghtFRnhfU4BTQfr4mxpqiwAOwowmTaqnYZa29aZNDE5vvwlSJNADbk8mUapVc8Rt5OL4Z_sfCnNSp4ZEc7YEbnSL9fyS56NB5Y7yz1_0xn89wzIsDmUoa9V-swJTvlyFhQk44Ro8deodcgrPeraqHZVNWLCnkg1NQg3oAy_F2jeC3RINlsb7BM1pZSE7L18HFbNlwdo0yT1U6FgnwCto5ec63J917trdaLgxQ_RIGS8yLhUY15bgbZyjF_A8Fk5aFFPcFSLWFkWht0ryXPedJQknMScox3WuUHLIDZgpX0q_CczLJhobTtAe5WPjeJ4Uqm_61qT4KVM0YGc0LNkwut4zlBWoNOM4TRtwMD6NcUE_O2zpXwZog3nWELtfN0CEMchea35HVpOaRUadn407P2ud9lrjo62_NNqHue5d7yq7Or--3IZ5QZ_mYWbvDsxUbwO_i_qlcnvBQ78AJK_mFw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDMctHhKCA2_EeAaJa0eapMnKbRqbeA0QAmm3Km0zhJDKBN0BPj12uo3BEY5VnapN7PpfN_kF4Dg26AmZzoI4si5QmQmDhlRR4HRocyElKmwq6Hdv9PmjuuxFvalV_BUfYlJwo8jw72sK8EHeP_mGhtrcc4MwoUkT61mYVxojhmTR_TdAivS5p-3JKIi1aoyxjVyc_Gz_Q2BOy1SfZzorYMd3WE0veakPy7Seff6CN_7nEVZheSRCWbPymjWYccU6LE2hCTfguV3tj5M71rVl5aZsyoI9F2xk4itAH3gp1roV7J5YsDTap2hO6wrZRTEYlswWOWvRFHdfn2Ntj66gdZ-b8NhpP7TOg9G2DMET5bvApLHAqLaEbuMcfYBnoUilRSnF01yE2qIkdFZJnul-aknAScwIKuU6Uyg45BbMFa-F2wbmZAONDSdkj3KhSXkW5apv-tbE-CGT12BvPCrJKLbeExQVqDPDMI5rcDQ5jVFBvzps4V6HaINZ1hC5X9dA-CFIBhW9I6k4zSKhzk8mnZ80z7rNydHOXxodwsLdWSe5vri52oVFQd_lflrvHsyVb0O3j-KlTA-8f34BmfDkzw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrode+Materials+Engineering+in+Electrocatalytic+CO2+Reduction%3A+Energy+Input+and+Conversion+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Rong%E2%80%90Bin+Song&rft.au=Zhu%2C+Wenlei&rft.au=Fu%2C+Jiaju&rft.au=Chen%2C+Ying&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=27&rft_id=info:doi/10.1002%2Fadma.201903796&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |