Electrode Materials Engineering in Electrocatalytic CO2 Reduction: Energy Input and Conversion Efficiency

Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 32; no. 27; pp. e1903796 - n/a
Main Authors Song, Rong‐Bin, Zhu, Wenlei, Fu, Jiaju, Chen, Ying, Liu, Lixia, Zhang, Jian‐Rong, Lin, Yuehe, Zhu, Jun‐Jie
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2020
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.201903796

Cover

Loading…
Abstract Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high‐efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo‐anode‐assisted ECR systems and bio‐anode‐assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems. Electrode materials are considered to be important components for electrocatalytic CO2 reduction systems, as they affect the energy input method and CO2 conversion efficiencies. Various photo‐anode and bio‐anode materials for lowering external bias and progress on cathode catalysts for improving CO2 conversion efficiencies are comprehensively reviewed. Moreover, enhancement strategies in the design of these electrode materials are highlighted.
AbstractList Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high‐efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo‐anode‐assisted ECR systems and bio‐anode‐assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high-efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo-anode-assisted ECR systems and bio-anode-assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems.
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it can utilize CO2 in the atmosphere to provide the required feedstocks for industrial production and daily life. In recent years, substantial progress in ECR systems has been achieved by the exploitation of various novel electrode materials. The anodic materials and cathodic catalysts that have, respectively, led to high‐efficiency energy input and effective heterogenous catalytic conversion in ECR systems are comprehensively reviewed. Based on the differences in the nature of energy sources and the role of materials used at the anode, the fundamentals of ECR systems, including photo‐anode‐assisted ECR systems and bio‐anode‐assisted ECR systems, are explained in detail. Additionally, the cathodic reaction mechanisms and pathways of ECR are described along with a discussion of different design strategies for cathode catalysts to enhance conversion efficiency and selectivity. The emerging challenges and some perspective on both anode materials and cathodic catalysts are also outlined for better development of ECR systems. Electrode materials are considered to be important components for electrocatalytic CO2 reduction systems, as they affect the energy input method and CO2 conversion efficiencies. Various photo‐anode and bio‐anode materials for lowering external bias and progress on cathode catalysts for improving CO2 conversion efficiencies are comprehensively reviewed. Moreover, enhancement strategies in the design of these electrode materials are highlighted.
Author Song, Rong‐Bin
Liu, Lixia
Zhu, Jun‐Jie
Chen, Ying
Fu, Jiaju
Lin, Yuehe
Zhu, Wenlei
Zhang, Jian‐Rong
Author_xml – sequence: 1
  givenname: Rong‐Bin
  orcidid: 0000-0002-3493-9812
  surname: Song
  fullname: Song, Rong‐Bin
  organization: Nanjing University
– sequence: 2
  givenname: Wenlei
  surname: Zhu
  fullname: Zhu, Wenlei
  organization: Washington State University
– sequence: 3
  givenname: Jiaju
  surname: Fu
  fullname: Fu, Jiaju
  organization: Nanjing University
– sequence: 4
  givenname: Ying
  surname: Chen
  fullname: Chen, Ying
  organization: Nanjing University
– sequence: 5
  givenname: Lixia
  surname: Liu
  fullname: Liu, Lixia
  organization: Nanjing University
– sequence: 6
  givenname: Jian‐Rong
  surname: Zhang
  fullname: Zhang, Jian‐Rong
  organization: Nanjing University
– sequence: 7
  givenname: Yuehe
  surname: Lin
  fullname: Lin, Yuehe
  email: yuehe.lin@wsu.edu
  organization: Washington State University
– sequence: 8
  givenname: Jun‐Jie
  orcidid: 0000-0002-8201-1285
  surname: Zhu
  fullname: Zhu, Jun‐Jie
  email: jjzhu@nju.edu.cn
  organization: Nanjing University
BookMark eNpdkM9LwzAYhoNMcJtePQe8eOn8krTp4m3MqoONgeg5pOnXktGlsz-U_vd2bOzg6ePle3h5eSZk5CuPhNwzmDEA_mSyvZlxYApErOQVGbOIsyAEFY3IGJSIAiXD-Q2ZNM0OAJQEOSYuKdG2dZUh3ZgWa2fKhia-cB6H4AvqPD0j1rSm7Ftn6XLL6QdmnW1d5Z8HHOuipyt_6FpqfEaXlf_BuhmeNMlzZx1629-S63wox7vznZKv1-Rz-R6st2-r5WIdFAKEDOJU8VgJE_FYAKRowTKeCgORhDTjTBrBJZpQgJV5ahhESmDKwhSkDeccxJQ8nnoPdfXdYdPqvWsslqXxWHWN5lypOAYI5YA-_EN3VVf7YZ3mIYcoZEypgVIn6teV2OtD7fam7jUDfdSuj9r1RbtevGwWlyT-AIWMebQ
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201903796
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201903796
Genre reviewArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21834004; 21804070; 21775067
– fundername: Chinese Ministry of Science and Technology
  funderid: 2016YFE0130100
– fundername: China Postdoctoral Science Foundation
  funderid: 2017M621694; 2018T110475
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-g3036-7b92793a527300bec0c12b3a0560bd216a326ea430c6fba10593eb14b06c48203
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Thu Jul 10 22:12:10 EDT 2025
Sun Jul 13 04:37:19 EDT 2025
Wed Jan 22 16:33:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3036-7b92793a527300bec0c12b3a0560bd216a326ea430c6fba10593eb14b06c48203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-3493-9812
0000-0002-8201-1285
PQID 2420541199
PQPubID 2045203
PageCount 25
ParticipantIDs proquest_miscellaneous_2299770046
proquest_journals_2420541199
wiley_primary_10_1002_adma_201903796_ADMA201903796
PublicationCentury 2000
PublicationDate 2020-07-01
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2016 2015 2015; 45 8 49
1987; 220
2019; 11
2019; 10
2019 2018 2018 2013; 48 4 2 495
2018 2014; 86 53
2019; 12
2006; 36
1860; 113
2014; 26
2014 2016 2015; 53 7 5
2014; 136
2018; 9
2018; 8
2018; 2
2012; 134
2018; 5
2015; 137
2006; 21
2018; 1
2013 2016 2015 2018 2013 2010 2015; 42 270 115 47 6 8 17
2013; 52
2014; 16
2007; 9
2014; 14
2019; 29
2018; 30
2013; 110
2018 2018; 8 5
2010; 3
2012; 25
2014; 126
1995 2011; 28 10
2019; 9
2019; 4
2015 2015 2017 2018 2016; 61 8 29 24 28
2019; 3
1980 2015 2015; 102 5 3
2019; 31
2019; 2
2018; 229
2015; 51
2014 2016; 43 9
1986; 15
2015; 54
2016; 10
2016 2016; 28 6
2016; 286
2013 2017 2018 2017 2017; 6 10 118 355 2
2013 2012 2016; 34 335 215
2018 2019 2012; 5 31 3
2018; 21
2016; 16
2014; 43
2017; 139
2016; 4
2016; 6
2006; 40
2018; 237
2009 2011 2017 2013; 43 4 12 1
2017; 56
2019 2016 2018; 103 106 220
2014; 30
2012 2017; 5 90
2012; 46
2018; 11
2016; 27
2018; 97
2016; 8
2016; 25
2016; 9
2017; 2
2018; 360
2017; 46
2014 2010 2018; 43 101 90
2019; 58
2015; 349
2013 2012; 341 5
2017 2012; 56 5
2017; 9
2016 2018; 24 3
2014; 4
2019; 31 31
2019; 358
2017; 240
2014; 6
1998; 53
2012; 217
2019; 475
2018 2018 2019; 10 140 10
2018 2014; 30 7
2018 2017 2015; 9 336 58
2015; 15
2015; 5
2018; 140
1987 2011; 134 185
2000; 22
2016; 529
2019; 303
2016; 52
2018 2001 2017 2017; 61 414 1 210
1999; 1
2019; 141
2015; 9
2016; 55
2016 2015 2016 2019; 18 137 7 15
2012 2010 2010; 41 1 132
2013; 35
2012 2017; 1 10
2017; 10
1958; 62
2013; 135
2018; 57
References_xml – volume: 16
  year: 2014
  publication-title: Phys. Chem. Chem. Phys.
– volume: 52
  start-page: 7282
  year: 2013
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 8235
  year: 2016
  publication-title: Chem. Commun.
– volume: 303
  start-page: 268
  year: 2019
  publication-title: Electrochim. Acta
– volume: 358
  start-page: 860
  year: 2019
  publication-title: Chem. Eng. J.
– volume: 136
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 1944
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 62
  start-page: 1049
  year: 1958
  publication-title: J. Phys. Chem.
– volume: 24 3
  start-page: 1 946
  year: 2016 2018
  publication-title: Nano Energy ACS Energy Lett.
– volume: 11
  start-page: 1204
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1334
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 27
  start-page: 1062
  year: 2016
  publication-title: J. Mater. Sci.: Mater. Electron.
– volume: 8
  start-page: 1469
  year: 2018
  publication-title: ACS Catal.
– volume: 10 140 10
  start-page: 974 2880 892
  year: 2018 2018 2019
  publication-title: Nat. Chem. J. Am. Chem. Soc. Nat. Commun.
– volume: 10
  start-page: 4491
  year: 2019
  publication-title: Chem. Sci.
– volume: 57
  start-page: 6054
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 51
  year: 2015
  publication-title: Chem. Commun.
– volume: 46
  start-page: 1545
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 25
  start-page: 70
  year: 2012
  publication-title: Electrochem. Commun.
– volume: 139
  start-page: 8078
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 7593
  year: 2014
  publication-title: Langmuir
– volume: 86 53
  start-page: 167 871
  year: 2018 2014
  publication-title: Diamond Relat. Mater. Angew. Chem., Int. Ed.
– volume: 9
  start-page: 925
  year: 2018
  publication-title: Nat. Commun.
– volume: 2
  start-page: 0105
  year: 2018
  publication-title: Nat. Rev. Chem.
– volume: 139
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 3991
  year: 2018
  publication-title: ChemElectroChem
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 292
  year: 2010
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 3527
  year: 2019
  publication-title: ACS Catal.
– volume: 286
  start-page: 91
  year: 2016
  publication-title: Chem. Eng. J.
– volume: 139
  start-page: 8329
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 6344
  year: 2016
  publication-title: ACS Sustainable Chem. Eng.
– volume: 53
  start-page: 229
  year: 1998
  publication-title: Catal. Lett.
– volume: 217
  start-page: 59
  year: 2012
  publication-title: J. Power Sources
– volume: 58
  start-page: 2256
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 10
  start-page: 677
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1075
  year: 2019
  publication-title: Chem. Sci.
– volume: 134 185
  start-page: 2749 575
  year: 1987 2011
  publication-title: J. Electrochem. Soc. J. Hazard. Mater.
– volume: 61 8 29 24 28
  start-page: 97 2574 3423
  year: 2015 2015 2017 2018 2016
  publication-title: Electrochem. Commun. Energy Environ. Sci. Adv. Mater. Chem. – Eur. J. Adv. Mater.
– volume: 1
  start-page: 213
  year: 1999
  publication-title: Electrochem. Commun.
– volume: 110
  year: 2013
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 28 6
  start-page: 270
  year: 2016 2016
  publication-title: Adv. Mater. Adv. Energy Mater.
– volume: 31 31
  year: 2019
  publication-title: Adv. Mater. Adv. Mater.
– volume: 1
  start-page: 421
  year: 2018
  publication-title: Nat. Catal.
– volume: 46
  start-page: 5198
  year: 2012
  publication-title: Environ. Sci. Technol.
– volume: 9
  start-page: 1320
  year: 2018
  publication-title: Nat. Commun.
– volume: 57
  start-page: 9604
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 529
  start-page: 68
  year: 2016
  publication-title: Nature
– volume: 34 335 215
  start-page: 1915 1596 357
  year: 2013 2012 2016
  publication-title: Environ. Technol. Science Bioresour. Technol.
– volume: 237
  start-page: 911
  year: 2018
  publication-title: Appl. Catal., B
– volume: 240
  start-page: 225
  year: 2017
  publication-title: Electrochim. Acta
– volume: 10
  start-page: 32
  year: 2019
  publication-title: Nat. Commun.
– volume: 36
  start-page: 1105
  year: 2006
  publication-title: J. Appl. Electrochem.
– volume: 137
  start-page: 4288
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 55
  start-page: 698
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 134
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 8 5
  start-page: 3854
  year: 2018 2018
  publication-title: Adv. Energy Mater. ChemElectroChem
– volume: 5 90
  start-page: 5540 558
  year: 2012 2017
  publication-title: Energy Environ. Sci. Biosens. Bioelectron.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 3116
  year: 2018
  publication-title: ACS Catal.
– volume: 28 10
  start-page: 141 456
  year: 1995 2011
  publication-title: Acc. Chem. Res. Nat. Mater.
– volume: 9
  start-page: 606
  year: 2016
  publication-title: ChemSusChem
– volume: 26
  start-page: 4607
  year: 2014
  publication-title: Adv. Mater.
– volume: 43 9
  start-page: 7718 2177
  year: 2014 2016
  publication-title: Chem. Soc. Rev. Energy Environ. Sci.
– volume: 229
  start-page: 163
  year: 2018
  publication-title: Appl. Catal., B
– volume: 58
  start-page: 4031
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 43
  start-page: 2492
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 349
  start-page: 1208
  year: 2015
  publication-title: Science
– volume: 4
  start-page: 490
  year: 2019
  publication-title: Nanoscale Horiz.
– volume: 57
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 35
  start-page: 91
  year: 2013
  publication-title: Electrochem. Commun.
– volume: 2
  start-page: 55
  year: 2019
  publication-title: Nat. Catal.
– volume: 97
  start-page: 73
  year: 2018
  publication-title: Electrochem. Commun.
– volume: 5 31 3
  start-page: 251
  year: 2018 2019 2012
  publication-title: Adv. Sci. Adv. Mater. J. Phys. Chem. Lett.
– volume: 140
  start-page: 5791
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 475
  start-page: 20
  year: 2019
  publication-title: Appl. Surf. Sci.
– volume: 56
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 43 4 12 1
  start-page: 6870 1417 308
  year: 2009 2011 2017 2013
  publication-title: Environ. Sci. Technol. Energy Environ. Sci. Chem. – Asian J. J. Mater. Chem. A
– volume: 360
  start-page: 783
  year: 2018
  publication-title: Science
– volume: 2
  start-page: 532
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 126
  start-page: 4569
  year: 2014
  publication-title: Angew. Chem.
– volume: 56 5
  start-page: 7050
  year: 2017 2012
  publication-title: Angew. Chem., Int. Ed. Energy Environ. Sci.
– volume: 10
  start-page: 1733
  year: 2017
  publication-title: ChemSusChem
– volume: 113
  start-page: 125
  year: 1860
  publication-title: Ann. Chem. Pharm.
– volume: 61 414 1 210
  start-page: 771 338 0003 235
  year: 2018 2001 2017 2017
  publication-title: Sci. China Mater. Nature Nat. Rev. Chem. Appl. Catal., B
– volume: 21
  start-page: 41
  year: 2018
  publication-title: Nano Today
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 48
  year: 2019
  publication-title: ACS Energy Lett.
– volume: 53 7 5
  start-page: 1034 266 6302
  year: 2014 2016 2015
  publication-title: Angew. Chem., Int. Ed. Chem. Sci. ACS Catal.
– volume: 5
  start-page: 5089
  year: 2015
  publication-title: ACS Catal.
– volume: 14
  start-page: 3688
  year: 2014
  publication-title: Nano Lett.
– volume: 22
  start-page: 127
  year: 2000
  publication-title: Energy Sources
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 48 4 2 495
  start-page: 205 2571 2551 80
  year: 2019 2018 2018 2013
  publication-title: Chem. Soc. Rev. Chem Joule Nature
– volume: 139
  start-page: 5652
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 5181
  year: 2006
  publication-title: Environ. Sci. Technol.
– volume: 220
  start-page: 333
  year: 1987
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 141
  start-page: 4791
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 57
  start-page: 9640
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 1903
  year: 2018
  publication-title: ACS Catal.
– volume: 6
  start-page: 1899
  year: 2014
  publication-title: ChemCatChem
– volume: 9
  start-page: 2124
  year: 2019
  publication-title: ACS Catal.
– volume: 6 10 118 355 2
  start-page: 3112 1039 4631
  year: 2013 2017 2018 2017 2017
  publication-title: Energy Environ. Sci. ChemSusChem Chem. Rev. Science Nat. Rev. Mater.
– volume: 5
  year: 2015
  publication-title: RSC Adv.
– volume: 9
  start-page: 2619
  year: 2007
  publication-title: Phys. Chem. Chem. Phys.
– volume: 1 10
  start-page: H17 1100
  year: 2012 2017
  publication-title: ECS Electrochem. Lett. ChemSusChem
– volume: 25
  start-page: 51
  year: 2016
  publication-title: Nano Energy
– volume: 103 106 220
  start-page: 13 339 8
  year: 2019 2016 2018
  publication-title: Renewable Sustainable Energy Rev. Water Res. Fuel
– volume: 43 101 90
  start-page: 631 3085 16
  year: 2014 2010 2018
  publication-title: Chem. Soc. Rev. Bioresour. Technol. Renewable Sustainable Energy Rev.
– volume: 6
  start-page: 7142
  year: 2014
  publication-title: Nanoscale
– volume: 3
  start-page: 265
  year: 2019
  publication-title: Joule
– volume: 10
  start-page: 4559
  year: 2016
  publication-title: ACS Nano
– volume: 18 137 7 15
  start-page: 3250
  year: 2016 2015 2016 2019
  publication-title: Green Chem. J. Am. Chem. Soc. Nat. Commun. Small
– volume: 9 336 58
  start-page: 6017 78 30
  year: 2018 2017 2015
  publication-title: Chem. Sci. Coord. Chem. Rev. Top. Catal.
– volume: 10
  start-page: 2181
  year: 2017
  publication-title: Nano Res.
– volume: 9
  start-page: 4466
  year: 2018
  publication-title: Nat. Commun.
– volume: 9
  start-page: 5302
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30 7
  start-page: 1
  year: 2018 2014
  publication-title: Adv. Mater. J. CO2 Util.
– volume: 54
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  start-page: 6571
  year: 2018
  publication-title: ACS Catal.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 2015
  year: 2006
  publication-title: Biosens. Bioelectron.
– volume: 9
  start-page: 5364
  year: 2015
  publication-title: ACS Nano
– volume: 102 5 3
  start-page: 2592 1360
  year: 1980 2015 2015
  publication-title: J. Am. Chem. Soc. Catal. Sci. Technol. J. Mater. Chem. A
– volume: 45 8 49
  start-page: 2847 3418 3267
  year: 2016 2015 2015
  publication-title: Chem. Soc. Rev. Energy Environ. Sci. Environ. Sci. Technol.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 4440
  year: 2014
  publication-title: Catal. Sci. Technol.
– volume: 15
  start-page: 153
  year: 2015
  publication-title: Nano Energy
– volume: 136
  start-page: 6978
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 341 5
  start-page: 7281
  year: 2013 2012
  publication-title: Science Energy Environ. Sci.
– volume: 42 270 115 47 6 8 17
  start-page: 2423 19 5423 2892 706 1375
  year: 2013 2016 2015 2018 2013 2010 2015
  publication-title: Chem. Soc. Rev. Catal. Today Chem. Rev. Chem. Soc. Rev. Energy Environ. Sci. Nat. Rev. Microbiol. Green Chem.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 15
  start-page: 897
  year: 1986
  publication-title: Chem. Lett.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 3774
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 4428
  year: 2016
  publication-title: ACS Catal.
– volume: 41 1 132
  start-page: 2036 3451
  year: 2012 2010 2010
  publication-title: Chem. Soc. Rev. J. Phys. Chem. Lett. J. Am. Chem. Soc.
– volume: 2
  start-page: 2394
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 10
  start-page: 2256
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 16
  start-page: 466
  year: 2016
  publication-title: Nano Lett.
– volume: 11
  start-page: 222
  year: 2019
  publication-title: Nat. Chem.
SSID ssj0009606
Score 2.6360621
SecondaryResourceType review_article
Snippet Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2‐caused climate hazards and ever‐increasing energy demands, as it...
Electrocatalytic CO2 reduction (ECR) is a promising technology to simultaneously alleviate CO2 -caused climate hazards and ever-increasing energy demands, as...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e1903796
SubjectTerms bioanodes
Carbon dioxide
Catalysts
Catalytic converters
CO2 reduction
Efficiency
electrocatalysis
Electrode materials
Electrodes
Energy conversion efficiency
Materials engineering
Materials science
Photoanodes
photoelectric conversion
Reaction mechanisms
Reduction
Selectivity
System effectiveness
Title Electrode Materials Engineering in Electrocatalytic CO2 Reduction: Energy Input and Conversion Efficiency
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201903796
https://www.proquest.com/docview/2420541199
https://www.proquest.com/docview/2299770046
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT8IwFMcbw0kP_jaiaGriddC13cq8EYSgCZoQSbgt7VYMMRlExkH_et_rYAyPelz2umzte3vfda-fEnIfKfCEJEy8KNDWk4nyvbaQgWdDX6dcCFDYOKE_fAkHY_k8CSaVVfwFH6KccMPIcO9rDHBtlq0tNFSnjhsECU2oCJnbWLCFqmi05UehPHewPRF4USjbG2oj463d5jv6sqpSXZrpHxG9ucGiuuSjucpNM_n-xW78zxMck8O1BqWdwmlOyJ7NTslBhUx4Rma9Ynuc1NKhzgsvpRULOsvo2sRNAH3BpWj3ldMRomBxsB_AHJcV0qdsscqpzlLaxQp3Nz1He45cgcs-z8m433vrDrz1rgzeO6Y7T5mIQ1BrJLcxBi7AEp8boUFJMZNyP9SgCK2WgiXh1GjUbwISgjQsTCToDXFBatk8s5eEWtEGY8WQ2COtrwxLglRO1VSrCL5j0jppbEYlXofWMgZNATLT96OoTu7K0xAU-KdDZ3a-AhtIsgrB_WGdcDcE8aKAd8QFppnH2Plx2flx53HYKY-u_tLomuxz_BZ3pbwNUss_V_YGBEtubp1T_gD16uH9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDMctHgfgwBsxnkHiWkiTNFm5TWNoPAYSAolblbQZQkgFQXeAT4-dbmNwhGNVp2oTu_7XTX4BOEwNekKu8yhNrI9UbuKoKVUSeR3bQkiJCpsK-r1r3b1XFw_JaDYhrYWp-RDjghtFRnhfU4BTQfr4mxpqiwAOwowmTaqnYZa29aZNDE5vvwlSJNADbk8mUapVc8Rt5OL4Z_sfCnNSp4ZEc7YEbnSL9fyS56NB5Y7yz1_0xn89wzIsDmUoa9V-swJTvlyFhQk44Ro8deodcgrPeraqHZVNWLCnkg1NQg3oAy_F2jeC3RINlsb7BM1pZSE7L18HFbNlwdo0yT1U6FgnwCto5ec63J917trdaLgxQ_RIGS8yLhUY15bgbZyjF_A8Fk5aFFPcFSLWFkWht0ryXPedJQknMScox3WuUHLIDZgpX0q_CczLJhobTtAe5WPjeJ4Uqm_61qT4KVM0YGc0LNkwut4zlBWoNOM4TRtwMD6NcUE_O2zpXwZog3nWELtfN0CEMchea35HVpOaRUadn407P2ud9lrjo62_NNqHue5d7yq7Or--3IZ5QZ_mYWbvDsxUbwO_i_qlcnvBQ78AJK_mFw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8MwDMctHhKCA2_EeAaJa0eapMnKbRqbeA0QAmm3Km0zhJDKBN0BPj12uo3BEY5VnapN7PpfN_kF4Dg26AmZzoI4si5QmQmDhlRR4HRocyElKmwq6Hdv9PmjuuxFvalV_BUfYlJwo8jw72sK8EHeP_mGhtrcc4MwoUkT61mYVxojhmTR_TdAivS5p-3JKIi1aoyxjVyc_Gz_Q2BOy1SfZzorYMd3WE0veakPy7Seff6CN_7nEVZheSRCWbPymjWYccU6LE2hCTfguV3tj5M71rVl5aZsyoI9F2xk4itAH3gp1roV7J5YsDTap2hO6wrZRTEYlswWOWvRFHdfn2Ntj66gdZ-b8NhpP7TOg9G2DMET5bvApLHAqLaEbuMcfYBnoUilRSnF01yE2qIkdFZJnul-aknAScwIKuU6Uyg45BbMFa-F2wbmZAONDSdkj3KhSXkW5apv-tbE-CGT12BvPCrJKLbeExQVqDPDMI5rcDQ5jVFBvzps4V6HaINZ1hC5X9dA-CFIBhW9I6k4zSKhzk8mnZ80z7rNydHOXxodwsLdWSe5vri52oVFQd_lflrvHsyVb0O3j-KlTA-8f34BmfDkzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrode+Materials+Engineering+in+Electrocatalytic+CO2+Reduction%3A+Energy+Input+and+Conversion+Efficiency&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Rong%E2%80%90Bin+Song&rft.au=Zhu%2C+Wenlei&rft.au=Fu%2C+Jiaju&rft.au=Chen%2C+Ying&rft.date=2020-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=27&rft_id=info:doi/10.1002%2Fadma.201903796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon