Dislocations that Decrease Size Mismatch within the Lattice Leading to Ultrawide Band Gap, Large Second‐Order Susceptibility, and High Nonlinear Optical Performance of AgGaS2
The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage thresh...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 29; pp. 9979 - 9983 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
15.07.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.
Lithium substitution maintains the symmetry of AgGaS2 structure and leads to an ultrawide band gap, simultaneously enhanced laser induced damage threshold (LIDT), and large second harmonic generation (SHG) that are otherwise inversely correlated. These enhancements are governed by the energy‐favorable decrease in dislocation in the lattice. |
---|---|
AbstractList | The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.
Lithium substitution maintains the symmetry of AgGaS2 structure and leads to an ultrawide band gap, simultaneously enhanced laser induced damage threshold (LIDT), and large second harmonic generation (SHG) that are otherwise inversely correlated. These enhancements are governed by the energy‐favorable decrease in dislocation in the lattice. The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser-induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2 , indicating a transparency edging nearly 180 nm shorter than that of AgGaS2 ), which gives Li0.60 Ag0.40 GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60 Ag0.40 GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy-favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser-induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2 , indicating a transparency edging nearly 180 nm shorter than that of AgGaS2 ), which gives Li0.60 Ag0.40 GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60 Ag0.40 GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy-favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors. The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors. |
Author | Wu, Li‐Ming Xiong, Lin Chen, Ling Zhou, Hui‐Min |
Author_xml | – sequence: 1 givenname: Hui‐Min surname: Zhou fullname: Zhou, Hui‐Min organization: Beijing Normal University – sequence: 2 givenname: Lin surname: Xiong fullname: Xiong, Lin organization: Beijing Normal University – sequence: 3 givenname: Ling orcidid: 0000-0002-3693-4193 surname: Chen fullname: Chen, Ling email: chenl@bnu.edu.cn organization: Beijing Normal University – sequence: 4 givenname: Li‐Ming orcidid: 0000-0001-8390-2138 surname: Wu fullname: Wu, Li‐Ming email: wlm@bnu.edu.cn organization: Beijing Normal University |
BookMark | eNpd0c1uEzEQB_AVKhJt4crZEhcO3eKv3bWPoS1ppdAghZ5XXnt248qxg-0oSk88Ao_CM_EkOCrqgdP446eZkf5n1YkPHqrqPcGXBGP6SXkLlxQTiZns2lfVKWkoqVnXsZNy5ozVnWjIm-ospcfihcDtafX72iYXtMo2-ITyWmV0DTqCSoBW9gnQV5s2Kus12tu8tr4QQAuVs9WlgjLWTygH9OByVHtrAH1W3qC52l4UFqfSBXTw5s_PX8toIKLVLmnYZjtYZ_PhAh31rZ3W6D54Zz2oiJblWyuHvkEcQ9woX0aFEc2muVrRt9XrUbkE7_7V8-rhy833q9t6sZzfXc0W9cQwa2tKRi1EJ6QhDQMxEhgk6aQYBSG6vHFNZGMMb3nXDWYYMR-MJHQwmHMqR8zOq4_Pfbcx_NhByv3Gls2dUx7CLvWUMoq5bAkp9MN_9DHsoi_bFdVyXBLgTVHyWe2tg0O_jXaj4qEnuD-m1x_T61_S62f3dzcvN_YXAoSUDA |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.201903976 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 9983 |
ExternalDocumentID | ANIE201903976 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21671023; 21571020 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-g3036-21fc88789d153e8f1eb91798f811cd154c195dd46477bdbf04bd912bd04429f03 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 17:07:29 EDT 2025 Fri Jul 25 10:29:48 EDT 2025 Wed Jan 22 16:41:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3036-21fc88789d153e8f1eb91798f811cd154c195dd46477bdbf04bd912bd04429f03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3693-4193 0000-0001-8390-2138 |
PQID | 2264077345 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2232049611 proquest_journals_2264077345 wiley_primary_10_1002_anie_201903976_ANIE201903976 |
PublicationCentury | 2000 |
PublicationDate | July 15, 2019 |
PublicationDateYYYYMMDD | 2019-07-15 |
PublicationDate_xml | – month: 07 year: 2019 text: July 15, 2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1991; 253 2004; 120 2018; 140 2005; 275 2005; 176 1997; 471 1984; 45 2016; 31 2008; 103 1992; 54 1996; 57 2019 2019; 58 131 2009; 457 2017; 139 1976; 32 1995; 40 2016 2016; 55 128 2015; 137 2018 2018; 57 130 1997; 14 1997; 36 1985; 91 2011; 23 2008; 20 2012; 24 |
References_xml | – volume: 32 start-page: 751 year: 1976 end-page: 756 publication-title: Acta Crystallogr. Sect. A – volume: 253 start-page: 281 year: 1991 end-page: 285 publication-title: Science – volume: 31 start-page: 123001 year: 2016 end-page: 123008 publication-title: Semicond. Sci. Technol. – volume: 137 start-page: 13049 year: 2015 end-page: 13059 publication-title: J. Am. Chem. Soc. – volume: 471 start-page: 712 year: 1997 end-page: 715 publication-title: Pol. J. Chem. – volume: 57 130 start-page: 6095 6203 year: 2018 2018 end-page: 6099 6207 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 140 start-page: 14082 year: 2018 end-page: 14086 publication-title: J. Am. Chem. Soc. – volume: 457 start-page: 953 year: 2009 end-page: 955 publication-title: Nature – volume: 275 start-page: 217 year: 2005 end-page: 223 publication-title: J. Cryst. Growth – volume: 57 start-page: 1695 year: 1996 end-page: 1704 publication-title: J. Phys. Chem. Solids – volume: 23 start-page: 075901 year: 2011 publication-title: J. Phys. Condens. Matter – volume: 120 start-page: 8772 year: 2004 end-page: 8778 publication-title: J. Chem. Phys. – volume: 20 start-page: 6048 year: 2008 end-page: 6052 publication-title: Chem. Mater. – volume: 55 128 start-page: 12078 12257 year: 2016 2016 end-page: 12082 12261 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 24 start-page: 3406 year: 2012 end-page: 3414 publication-title: Chem. Mater. – volume: 14 start-page: 2481 year: 1997 end-page: 2487 publication-title: J. Opt. Soc. Am. B – volume: 103 start-page: 083111 year: 2008 publication-title: J. Appl. Phys. – volume: 91 start-page: 503 year: 1985 end-page: 507 publication-title: Phys. Status Solidi A – volume: 139 start-page: 14885 year: 2017 end-page: 14888 publication-title: J. Am. Chem. Soc. – volume: 58 131 start-page: 6528 6598 year: 2019 2019 end-page: 6534 6604 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 45 start-page: 313 year: 1984 publication-title: Appl. Phys. Lett. – volume: 140 start-page: 4684 year: 2018 end-page: 4690 publication-title: J. Am. Chem. Soc. – volume: 176 start-page: 2749 year: 2005 end-page: 2757 publication-title: Solid State Ionics – volume: 54 start-page: 209 year: 1992 end-page: 220 publication-title: Appl. Phys. A – volume: 36 start-page: 700 year: 1997 end-page: 703 publication-title: Jpn. J. Appl. Phys. – volume: 40 start-page: 17 year: 1995 end-page: 22 publication-title: Crystallogr. Rep. |
SSID | ssj0028806 |
Score | 2.6220827 |
Snippet | The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 9979 |
SubjectTerms | alkali metals Conduction Conduction bands Crystal structure Dislocation Dislocations Energy gap Figure of merit high-temperature methods inorganic functional materials Inorganic materials Laser damage laser-induced damage threshold Nonlinear optics Physical properties second harmonic generation Silver Silver gallium sulfide Substitutes Sulfur Superposition (mathematics) Tensors Valence band Yield point |
Title | Dislocations that Decrease Size Mismatch within the Lattice Leading to Ultrawide Band Gap, Large Second‐Order Susceptibility, and High Nonlinear Optical Performance of AgGaS2 |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903976 https://www.proquest.com/docview/2264077345 https://www.proquest.com/docview/2232049611 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl_bSUtqq21I0SD0SiB2HbI7LPxUsVZeVuEV2bC9Rq-xqkxWCUx-hj9Jn4kmYcXbDz5He8jOO4szY83ky85mxb1bkqGrngshFMpAyjwPFrQiks3HClXVpSAXOZ_2d46H8fhlfPqrib_gh2oAbjQw_X9MAV7rafiANpQpsSs1KQ3KpOAlTwhahop8tf5RA42zKi6IooF3oF6yNodh-2vwJvnyMUr2bOXzL1OIFm-ySX1uzWm_lt8-4G_-nByvszRyDQq8xmndsyZar7NXeYuu39-zfflGRk_M2CfWVqmHfw8vKwqC4tXBWVIh08yugMG5RooiFU1VTIh2cNmn5UI9h-LuequvCWNhVpYEjNdlEsekIn0LrcHP35-85UX_CYFb59BqfqXuzCSRNGSjQb_qppnA-8VF3-PFQ6QBjB73RkRqID2x4eHCxdxzMt3YIRuQzA8FdjtNbNzU449qu41anRJ3mupzneE3mPI2NkVQmq412odQm5UKbUKIDdWH0kS2X49J-YiCtSaVKIhR2MteJ6irFY4vLMkSqCH47bG2h2mw-PquMyofDJIlk3GEb7W38yvS7RJV2PCOZSOD6aYfzDhNej9mkYQDJGq5nkZEGs1aDWa9_ctCefX5Joy_sNR1T8JjHa2y5ns7sV0Q9tV73ln0POZ79FQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VcigX_hGhBQYJbnXrXa_r-MAhNG0TmqSINFJv7tq7m1pUThQ7qtoTj8CjwKvwCDwJM3acUo5IPXD0eryyZmdmZ2dnvmHsrREJLrW1jmc96UiZ-I7iRjjSGj_gytjQpQLn_mCnM5IfT_yTFfajroWp8CGWATfSjNJek4JTQHr7GjWUSrApNyt0aU9d5FUemssLPLXl77ttXOJ3QuzvHe92nEVjAWdMFtsR3CaoXM1Qo76bpuUmDgm4yzY5T3BMJjz0tZZUpBnr2Loy1iEXsXYlmm_rejjvHXaX2ogTXH_78xKxSqA6VAVNnudQ3_saJ9IV2zf_94ZH-6dfXG5s-w_Yz5olVT7Ll615EW8lV3-hRf5XPHvI7i_cbGhVevGIrZjsMVvbrbvbPWHf22lO-3ipdlCcqQLapQedGximVwb6aY7OfHIGFKlOMyQx0FMF5QpCr6o8gGICo_Nipi5SbeCDyjQcqOkmks3GOAuFGvSvr9-OCN0UhvO8zCAqk5EvN4GoKckGBhVj1QyOpuXFAny6LuaAiYXW-EANxVM2uhWGPWOr2SQzzxlIo0OpAg-JrUziQDWV4r7Bkyc64-jfN9hGLUvRwgTlEVVIu0HgSb_B3ixfI5fpRkhlZjInGk_gEXGH8wYTpeBE0wrkJKrgrEVEEhMtJSZqDbp7y6cX__LRa7bWOe73ol53cLjO7tE4xcq5v8FWi9ncvEQnr4hflWoF7PS2ZfI3a7pZeg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VIkEv_CMCBQYJbnXrXa_j-MAh1E0bmqYVIVJv7tq7m0ZFThQ7qtoTj8Cj9FV4BZ6EGTtxKUekHjh6PV5ZszOzs7Mz3zD23ogUl9pax7OedKRMfUdxIxxpjR9wZWzoUoHzQb-5N5Sfj_3jFXa1rIWp8CHqgBtpRmmvScGn2m5dg4ZSBTalZoUubamLtMp9c3GOh7b8YzfCFf4gRGfn6_aes-gr4IzIYDuC2xR1qxVqVHfTstwkIeF22RbnKY7JlIe-1pJqNBOdWFcmOuQi0a5E621dD-e9w-7KphtSs4joSw1YJVAbqnomz3Oo7f0SJtIVWzf_94ZD-6dbXO5rnYfs55IjVTrL2ea8SDbTy7_AIv8nlj1iDxZONrQrrXjMVkz2hN3fXva2e8quonFOu3ipdFCcqgKi0n_ODQzGlwYOxjm68ukpUJx6nCGJgZ4qKFMQelXdARQTGH4rZup8rA18UpmGXTXdQLLZCGehQIP-9f3HIWGbwmCel_lDZSryxQYQNaXYQL_iq5rB4bS8VoCj61IOmFhoj3bVQDxjw1th2HO2mk0y84KBNDqUKvCQ2Mo0CVRLKe4bPHeiK47efYOtL0UpXhigPKb6aDcIPOk32Lv6NXKZ7oNUZiZzovEEHhCbnDeYKOUmnlYQJ3EFZi1ikpi4lpi43e_u1E8v_-Wjt-zeUdSJe93-_iu2RsMUKOf-OlstZnPzGj28InlTKhWwk9sWyd_nf1gp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dislocations+that+Decrease+Size+Mismatch+within+the+Lattice+Leading+to+Ultrawide+Band+Gap%2C+Large+Second%E2%80%90Order+Susceptibility%2C+and+High+Nonlinear+Optical+Performance+of+AgGaS2&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Hui%E2%80%90Min&rft.au=Xiong%2C+Lin&rft.au=Chen%2C+Ling&rft.au=Wu%2C+Li%E2%80%90Ming&rft.date=2019-07-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=29&rft.spage=9979&rft.epage=9983&rft_id=info:doi/10.1002%2Fanie.201903976&rft.externalDBID=10.1002%252Fanie.201903976&rft.externalDocID=ANIE201903976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |