Dislocations that Decrease Size Mismatch within the Lattice Leading to Ultrawide Band Gap, Large Second‐Order Susceptibility, and High Nonlinear Optical Performance of AgGaS2

The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage thresh...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 29; pp. 9979 - 9983
Main Authors Zhou, Hui‐Min, Xiong, Lin, Chen, Ling, Wu, Li‐Ming
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 15.07.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors. Lithium substitution maintains the symmetry of AgGaS2 structure and leads to an ultrawide band gap, simultaneously enhanced laser induced damage threshold (LIDT), and large second harmonic generation (SHG) that are otherwise inversely correlated. These enhancements are governed by the energy‐favorable decrease in dislocation in the lattice.
AbstractList The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors. Lithium substitution maintains the symmetry of AgGaS2 structure and leads to an ultrawide band gap, simultaneously enhanced laser induced damage threshold (LIDT), and large second harmonic generation (SHG) that are otherwise inversely correlated. These enhancements are governed by the energy‐favorable decrease in dislocation in the lattice.
The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser-induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2 , indicating a transparency edging nearly 180 nm shorter than that of AgGaS2 ), which gives Li0.60 Ag0.40 GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60 Ag0.40 GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy-favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser-induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2 , indicating a transparency edging nearly 180 nm shorter than that of AgGaS2 ), which gives Li0.60 Ag0.40 GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60 Ag0.40 GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy-favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.
The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical properties. AgGaS2 has the highest figure of merit for IR nonlinear optical interactions to date, but suffers low laser‐induced damage threshold (LIDT). The partial Li substitution of Ag atoms is now shown to push up the bottom of the conduction band and flatten the top of the valence band, leading to an ultrawide band gap of 3.40 eV (record high for AgGaS2, indicating a transparency edging nearly 180 nm shorter than that of AgGaS2), which gives Li0.60Ag0.40GaS2 a LIDT 8.6 times stronger when AgGaS2 is compared. Li0.60Ag0.40GaS2 exhibits 1.1 times stronger nonlinear susceptibility, which is because the energy‐favorable Li substitution gradually decreases the sulfur dislocation in the lattice, which allows a better geometric superposition of nonlinear optical tensors.
Author Wu, Li‐Ming
Xiong, Lin
Chen, Ling
Zhou, Hui‐Min
Author_xml – sequence: 1
  givenname: Hui‐Min
  surname: Zhou
  fullname: Zhou, Hui‐Min
  organization: Beijing Normal University
– sequence: 2
  givenname: Lin
  surname: Xiong
  fullname: Xiong, Lin
  organization: Beijing Normal University
– sequence: 3
  givenname: Ling
  orcidid: 0000-0002-3693-4193
  surname: Chen
  fullname: Chen, Ling
  email: chenl@bnu.edu.cn
  organization: Beijing Normal University
– sequence: 4
  givenname: Li‐Ming
  orcidid: 0000-0001-8390-2138
  surname: Wu
  fullname: Wu, Li‐Ming
  email: wlm@bnu.edu.cn
  organization: Beijing Normal University
BookMark eNpd0c1uEzEQB_AVKhJt4crZEhcO3eKv3bWPoS1ppdAghZ5XXnt248qxg-0oSk88Ao_CM_EkOCrqgdP446eZkf5n1YkPHqrqPcGXBGP6SXkLlxQTiZns2lfVKWkoqVnXsZNy5ozVnWjIm-ospcfihcDtafX72iYXtMo2-ITyWmV0DTqCSoBW9gnQV5s2Kus12tu8tr4QQAuVs9WlgjLWTygH9OByVHtrAH1W3qC52l4UFqfSBXTw5s_PX8toIKLVLmnYZjtYZ_PhAh31rZ3W6D54Zz2oiJblWyuHvkEcQ9woX0aFEc2muVrRt9XrUbkE7_7V8-rhy833q9t6sZzfXc0W9cQwa2tKRi1EJ6QhDQMxEhgk6aQYBSG6vHFNZGMMb3nXDWYYMR-MJHQwmHMqR8zOq4_Pfbcx_NhByv3Gls2dUx7CLvWUMoq5bAkp9MN_9DHsoi_bFdVyXBLgTVHyWe2tg0O_jXaj4qEnuD-m1x_T61_S62f3dzcvN_YXAoSUDA
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.201903976
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 9983
ExternalDocumentID ANIE201903976
Genre shortCommunication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21671023; 21571020
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g3036-21fc88789d153e8f1eb91798f811cd154c195dd46477bdbf04bd912bd04429f03
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 17:07:29 EDT 2025
Fri Jul 25 10:29:48 EDT 2025
Wed Jan 22 16:41:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3036-21fc88789d153e8f1eb91798f811cd154c195dd46477bdbf04bd912bd04429f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3693-4193
0000-0001-8390-2138
PQID 2264077345
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2232049611
proquest_journals_2264077345
wiley_primary_10_1002_anie_201903976_ANIE201903976
PublicationCentury 2000
PublicationDate July 15, 2019
PublicationDateYYYYMMDD 2019-07-15
PublicationDate_xml – month: 07
  year: 2019
  text: July 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 253
2004; 120
2018; 140
2005; 275
2005; 176
1997; 471
1984; 45
2016; 31
2008; 103
1992; 54
1996; 57
2019 2019; 58 131
2009; 457
2017; 139
1976; 32
1995; 40
2016 2016; 55 128
2015; 137
2018 2018; 57 130
1997; 14
1997; 36
1985; 91
2011; 23
2008; 20
2012; 24
References_xml – volume: 32
  start-page: 751
  year: 1976
  end-page: 756
  publication-title: Acta Crystallogr. Sect. A
– volume: 253
  start-page: 281
  year: 1991
  end-page: 285
  publication-title: Science
– volume: 31
  start-page: 123001
  year: 2016
  end-page: 123008
  publication-title: Semicond. Sci. Technol.
– volume: 137
  start-page: 13049
  year: 2015
  end-page: 13059
  publication-title: J. Am. Chem. Soc.
– volume: 471
  start-page: 712
  year: 1997
  end-page: 715
  publication-title: Pol. J. Chem.
– volume: 57 130
  start-page: 6095 6203
  year: 2018 2018
  end-page: 6099 6207
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 140
  start-page: 14082
  year: 2018
  end-page: 14086
  publication-title: J. Am. Chem. Soc.
– volume: 457
  start-page: 953
  year: 2009
  end-page: 955
  publication-title: Nature
– volume: 275
  start-page: 217
  year: 2005
  end-page: 223
  publication-title: J. Cryst. Growth
– volume: 57
  start-page: 1695
  year: 1996
  end-page: 1704
  publication-title: J. Phys. Chem. Solids
– volume: 23
  start-page: 075901
  year: 2011
  publication-title: J. Phys. Condens. Matter
– volume: 120
  start-page: 8772
  year: 2004
  end-page: 8778
  publication-title: J. Chem. Phys.
– volume: 20
  start-page: 6048
  year: 2008
  end-page: 6052
  publication-title: Chem. Mater.
– volume: 55 128
  start-page: 12078 12257
  year: 2016 2016
  end-page: 12082 12261
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 24
  start-page: 3406
  year: 2012
  end-page: 3414
  publication-title: Chem. Mater.
– volume: 14
  start-page: 2481
  year: 1997
  end-page: 2487
  publication-title: J. Opt. Soc. Am. B
– volume: 103
  start-page: 083111
  year: 2008
  publication-title: J. Appl. Phys.
– volume: 91
  start-page: 503
  year: 1985
  end-page: 507
  publication-title: Phys. Status Solidi A
– volume: 139
  start-page: 14885
  year: 2017
  end-page: 14888
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 6528 6598
  year: 2019 2019
  end-page: 6534 6604
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45
  start-page: 313
  year: 1984
  publication-title: Appl. Phys. Lett.
– volume: 140
  start-page: 4684
  year: 2018
  end-page: 4690
  publication-title: J. Am. Chem. Soc.
– volume: 176
  start-page: 2749
  year: 2005
  end-page: 2757
  publication-title: Solid State Ionics
– volume: 54
  start-page: 209
  year: 1992
  end-page: 220
  publication-title: Appl. Phys. A
– volume: 36
  start-page: 700
  year: 1997
  end-page: 703
  publication-title: Jpn. J. Appl. Phys.
– volume: 40
  start-page: 17
  year: 1995
  end-page: 22
  publication-title: Crystallogr. Rep.
SSID ssj0028806
Score 2.6220827
Snippet The essence of rational design syntheses of functional inorganic materials lies in understanding and control of crystal structures that determine the physical...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 9979
SubjectTerms alkali metals
Conduction
Conduction bands
Crystal structure
Dislocation
Dislocations
Energy gap
Figure of merit
high-temperature methods
inorganic functional materials
Inorganic materials
Laser damage
laser-induced damage threshold
Nonlinear optics
Physical properties
second harmonic generation
Silver
Silver gallium sulfide
Substitutes
Sulfur
Superposition (mathematics)
Tensors
Valence band
Yield point
Title Dislocations that Decrease Size Mismatch within the Lattice Leading to Ultrawide Band Gap, Large Second‐Order Susceptibility, and High Nonlinear Optical Performance of AgGaS2
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201903976
https://www.proquest.com/docview/2264077345
https://www.proquest.com/docview/2232049611
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTtwwELYQl_bSUtqq21I0SD0SiB2HbI7LPxUsVZeVuEV2bC9Rq-xqkxWCUx-hj9Jn4kmYcXbDz5He8jOO4szY83ky85mxb1bkqGrngshFMpAyjwPFrQiks3HClXVpSAXOZ_2d46H8fhlfPqrib_gh2oAbjQw_X9MAV7rafiANpQpsSs1KQ3KpOAlTwhahop8tf5RA42zKi6IooF3oF6yNodh-2vwJvnyMUr2bOXzL1OIFm-ySX1uzWm_lt8-4G_-nByvszRyDQq8xmndsyZar7NXeYuu39-zfflGRk_M2CfWVqmHfw8vKwqC4tXBWVIh08yugMG5RooiFU1VTIh2cNmn5UI9h-LuequvCWNhVpYEjNdlEsekIn0LrcHP35-85UX_CYFb59BqfqXuzCSRNGSjQb_qppnA-8VF3-PFQ6QBjB73RkRqID2x4eHCxdxzMt3YIRuQzA8FdjtNbNzU449qu41anRJ3mupzneE3mPI2NkVQmq412odQm5UKbUKIDdWH0kS2X49J-YiCtSaVKIhR2MteJ6irFY4vLMkSqCH47bG2h2mw-PquMyofDJIlk3GEb7W38yvS7RJV2PCOZSOD6aYfzDhNej9mkYQDJGq5nkZEGs1aDWa9_ctCefX5Joy_sNR1T8JjHa2y5ns7sV0Q9tV73ln0POZ79FQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VcigX_hGhBQYJbnXrXa_r-MAhNG0TmqSINFJv7tq7m1pUThQ7qtoTj8CjwKvwCDwJM3acUo5IPXD0eryyZmdmZ2dnvmHsrREJLrW1jmc96UiZ-I7iRjjSGj_gytjQpQLn_mCnM5IfT_yTFfajroWp8CGWATfSjNJek4JTQHr7GjWUSrApNyt0aU9d5FUemssLPLXl77ttXOJ3QuzvHe92nEVjAWdMFtsR3CaoXM1Qo76bpuUmDgm4yzY5T3BMJjz0tZZUpBnr2Loy1iEXsXYlmm_rejjvHXaX2ogTXH_78xKxSqA6VAVNnudQ3_saJ9IV2zf_94ZH-6dfXG5s-w_Yz5olVT7Ll615EW8lV3-hRf5XPHvI7i_cbGhVevGIrZjsMVvbrbvbPWHf22lO-3ipdlCcqQLapQedGximVwb6aY7OfHIGFKlOMyQx0FMF5QpCr6o8gGICo_Nipi5SbeCDyjQcqOkmks3GOAuFGvSvr9-OCN0UhvO8zCAqk5EvN4GoKckGBhVj1QyOpuXFAny6LuaAiYXW-EANxVM2uhWGPWOr2SQzzxlIo0OpAg-JrUziQDWV4r7Bkyc64-jfN9hGLUvRwgTlEVVIu0HgSb_B3ixfI5fpRkhlZjInGk_gEXGH8wYTpeBE0wrkJKrgrEVEEhMtJSZqDbp7y6cX__LRa7bWOe73ol53cLjO7tE4xcq5v8FWi9ncvEQnr4hflWoF7PS2ZfI3a7pZeg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEF6VIkEv_CMCBQYJbnXrXa_j-MAh1E0bmqYVIVJv7tq7m0ZFThQ7qtoTj8Cj9FV4BZ6EGTtxKUekHjh6PV5ZszOzs7Mz3zD23ogUl9pax7OedKRMfUdxIxxpjR9wZWzoUoHzQb-5N5Sfj_3jFXa1rIWp8CHqgBtpRmmvScGn2m5dg4ZSBTalZoUubamLtMp9c3GOh7b8YzfCFf4gRGfn6_aes-gr4IzIYDuC2xR1qxVqVHfTstwkIeF22RbnKY7JlIe-1pJqNBOdWFcmOuQi0a5E621dD-e9w-7KphtSs4joSw1YJVAbqnomz3Oo7f0SJtIVWzf_94ZD-6dbXO5rnYfs55IjVTrL2ea8SDbTy7_AIv8nlj1iDxZONrQrrXjMVkz2hN3fXva2e8quonFOu3ipdFCcqgKi0n_ODQzGlwYOxjm68ukpUJx6nCGJgZ4qKFMQelXdARQTGH4rZup8rA18UpmGXTXdQLLZCGehQIP-9f3HIWGbwmCel_lDZSryxQYQNaXYQL_iq5rB4bS8VoCj61IOmFhoj3bVQDxjw1th2HO2mk0y84KBNDqUKvCQ2Mo0CVRLKe4bPHeiK47efYOtL0UpXhigPKb6aDcIPOk32Lv6NXKZ7oNUZiZzovEEHhCbnDeYKOUmnlYQJ3EFZi1ikpi4lpi43e_u1E8v_-Wjt-zeUdSJe93-_iu2RsMUKOf-OlstZnPzGj28InlTKhWwk9sWyd_nf1gp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dislocations+that+Decrease+Size+Mismatch+within+the+Lattice+Leading+to+Ultrawide+Band+Gap%2C+Large+Second%E2%80%90Order+Susceptibility%2C+and+High+Nonlinear+Optical+Performance+of+AgGaS2&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhou%2C+Hui%E2%80%90Min&rft.au=Xiong%2C+Lin&rft.au=Chen%2C+Ling&rft.au=Wu%2C+Li%E2%80%90Ming&rft.date=2019-07-15&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=29&rft.spage=9979&rft.epage=9983&rft_id=info:doi/10.1002%2Fanie.201903976&rft.externalDBID=10.1002%252Fanie.201903976&rft.externalDocID=ANIE201903976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon