Nature of Bonding in Bowl‐Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location

The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of pape...

Full description

Saved in:
Bibliographic Details
Published inChemistry, an Asian journal Vol. 13; no. 9; pp. 1148 - 1156
Main Authors Li, Rui, You, Xue‐Rui, Wang, Kang, Zhai, Hua‐Jin
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 04.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl‐shaped C6v B36 cluster the global minimum. Bonding in boron bowls: The bowl‐shaped C6v B36 cluster is shown to possess inner 6π and outer 18π aromatic subsystems (see figure). This bonding pattern is retained and spatially fixed, irrespective of the migration of the hexagonal hole. Analysis also sheds crucial light on the reason why the hexagonal hole in B36 prefers to be positioned in the center of the bowl.
AbstractList The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl‐shaped C6v B36 cluster the global minimum.
The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl‐shaped C6v B36 cluster the global minimum. Bonding in boron bowls: The bowl‐shaped C6v B36 cluster is shown to possess inner 6π and outer 18π aromatic subsystems (see figure). This bonding pattern is retained and spatially fixed, irrespective of the migration of the hexagonal hole. Analysis also sheds crucial light on the reason why the hexagonal hole in B36 prefers to be positioned in the center of the bowl.
The bowl-shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C6v B36 cluster the global minimum.The bowl-shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the electron deficiency of boron, chemical bonding in the B36 cluster is intriguing, complicated, and has remained elusive despite a couple of papers in the literature. Herein, a bonding analysis is given through canonical molecular orbitals (CMOs) and adaptive natural density partitioning (AdNDP), further aided by natural bond orbital (NBO) analysis and orbital composition calculations. The concerted computational data establish the idea of concentric double π aromaticity for the B36 cluster, with inner 6π and outer 18π electron counting, which both conform to the (4n+2) Hückel rule. The updated bonding picture differs from existing knowledge of the system. A refined bonding model is also proposed for coronene, of which the B36 cluster is an inorganic analogue. It is further shown that concentric double π aromaticity in the B36 cluster is retained and spatially fixed, irrespective of the migration of the hexagonal hole; the latter process changes the system energetically. The hexagonal hole is a destabilizing factor for σ/π CMOs. The central hexagon hole affects substantially fewer CMOs, thus making the bowl-shaped C6v B36 cluster the global minimum.
Author Wang, Kang
Li, Rui
Zhai, Hua‐Jin
You, Xue‐Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  organization: Shanxi University
– sequence: 2
  givenname: Xue‐Rui
  surname: You
  fullname: You, Xue‐Rui
  organization: Shanxi University
– sequence: 3
  givenname: Kang
  surname: Wang
  fullname: Wang, Kang
  organization: Shanxi University
– sequence: 4
  givenname: Hua‐Jin
  orcidid: 0000-0002-1592-0534
  surname: Zhai
  fullname: Zhai, Hua‐Jin
  email: hj.zhai@sxu.edu.cn
  organization: Shanxi University
BookMark eNpdkc9u1DAQxi1UJNrClfNIXIrQFv9L4uW2TYGttCoIeuAWOc54ccnaxU5a9raPwGPwNn0HngRHrfbAyWPrN9-Mv--IHPjgkZCXjJ4ySvlbnZw-5ZQpSlkln5BDpko2kxX7drCvuXpGjlK6prTgdK4OyZ9LPYwRIVg4C75zfg3O5_Ku_7v7vXI_EM5ECXU_pgEjfMFbl9yA3Tuogzfoh-gMnJT3uzdM3e9ew3kY2x5hEcNGD864YQvad7lPp-DBhgjDd4TPES1GzALTXA1L_KXXweseliF35wU01JN4flkFk5WCf06eWt0nfPF4HpOrD--v6uVs9enjRb1YzdaCCjnTlTVVYaq5VaqUqDqmlOiYLanmyrQy21GKQtmWz1FiKwotqVBGWKtQd604JicPsjcx_BwxDc3GJYN9rz2GMTXZX1YyzoXM6Kv_0OswxvyLiRKSc14UZabmD9Sd63Hb3ES30XHbMNpMoTVTaM0-tGbx9WKxv4l_vDqQpg
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID K9.
7X8
DOI 10.1002/asia.201800174
DatabaseName ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1861-471X
EndPage 1156
ExternalDocumentID ASIA201800174
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21573138
– fundername: Sanjin Scholar Distinguished Professors Program
GroupedDBID ---
05W
0R~
1L6
1OC
29B
33P
3WU
4.4
5GY
6J9
8-1
87K
8UM
A00
AAESR
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDBF
ABIJN
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEGXH
AEIGN
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AHBTC
AHMBA
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DRFUL
DRSTM
EBD
EBS
EJD
F5P
G-S
HBH
HGLYW
HHY
HHZ
HZ~
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2W
P4E
PQQKQ
QRW
ROL
RWI
SUPJJ
WBKPD
WHG
WOHZO
WXSBR
WYJ
XSW
XV2
ZZTAW
~S-
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g3034-a7fc75c79f8864e8d1883d1f60a28cb44716358fb29e4eb35a4038c3ff8eadb3
ISSN 1861-4728
1861-471X
IngestDate Fri Jul 11 02:26:18 EDT 2025
Mon Jun 30 10:07:05 EDT 2025
Wed Jan 22 17:02:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g3034-a7fc75c79f8864e8d1883d1f60a28cb44716358fb29e4eb35a4038c3ff8eadb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1592-0534
PQID 2034222556
PQPubID 986338
PageCount 9
ParticipantIDs proquest_miscellaneous_2011612234
proquest_journals_2034222556
wiley_primary_10_1002_asia_201800174_ASIA201800174
PublicationCentury 2000
PublicationDate May 4, 2018
PublicationDateYYYYMMDD 2018-05-04
PublicationDate_xml – month: 05
  year: 2018
  text: May 4, 2018
  day: 04
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Chemistry, an Asian journal
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2013; 3
2012
2006; 250
2016; 144
2014; 47
2008; 10
2010 2010; 49 122
2008; 77
2003 2003; 42 115
2015; 9
2008; 73
1988; 92
2015; 7
2012; 33
2017; 9
2014; 136
2001; 105
2016; 11
2015; 350
2007; 28
2014; 5
2013; 15
2000; 104
2005; 102
2013; 34
1980; 72
2017; 38
2010; 136
2005; 127
2007 2007; 46 119
2013; 139
2003; 2
2014; 16
1999; 110
2015 2015; 54 127
2015
2011; 47
2012; 6
2010; 2
2014; 141
2014; 50
2014; 6
1994; 52
2008; 130
2016; 8
1996; 118
References_xml – volume: 8
  start-page: 17639
  year: 2016
  end-page: 17644
  publication-title: Nanoscale
– volume: 3
  start-page: 3238
  year: 2013
  publication-title: Sci. Rep.
– volume: 110
  start-page: 6158
  year: 1999
  end-page: 6170
  publication-title: J. Chem. Phys.
– start-page: 1
  year: 2015
  end-page: 16
– volume: 350
  start-page: 1513
  year: 2015
  end-page: 1516
  publication-title: Science
– volume: 9
  start-page: 754
  year: 2015
  end-page: 760
  publication-title: ACS Nano
– volume: 73
  start-page: 9251
  year: 2008
  end-page: 9258
  publication-title: J. Org. Chem.
– volume: 139
  start-page: 144307
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 52
  start-page: 1081
  year: 1994
  end-page: 1111
  publication-title: Int. J. Quantum Chem.
– volume: 141
  start-page: 034303
  year: 2014
  publication-title: J. Chem. Phys.
– volume: 34
  start-page: 1429
  year: 2013
  end-page: 1437
  publication-title: J. Comput. Chem.
– volume: 50
  start-page: 8140
  year: 2014
  end-page: 8143
  publication-title: Chem. Commun.
– volume: 38
  start-page: 1606
  year: 2017
  end-page: 1611
  publication-title: J. Comput. Chem.
– volume: 130
  start-page: 7244
  year: 2008
  end-page: 7246
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 202
  year: 2010
  end-page: 206
  publication-title: Nat. Chem.
– volume: 1
  start-page: 021001
  year: 2017
  publication-title: Phys. Rev. Mater.
– volume: 49 122
  start-page: 5668 5803
  year: 2010 2010
  end-page: 5671 5806
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 727
  year: 2014
  end-page: 731
  publication-title: Nat. Chem.
– volume: 5
  start-page: 3113
  year: 2014
  publication-title: Nat. Commun.
– volume: 105
  start-page: 5486
  year: 2001
  end-page: 5489
  publication-title: J. Phys. Chem. A
– volume: 46 119
  start-page: 8503 8656
  year: 2007 2007
  end-page: 8506 8659
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 77
  start-page: 041402
  year: 2008
  publication-title: Phys. Rev. B
– volume: 92
  start-page: 5803
  year: 1988
  end-page: 5812
  publication-title: J. Phys. Chem.
– volume: 10
  start-page: 5207
  year: 2008
  end-page: 5217
  publication-title: Phys. Chem. Chem. Phys.
– volume: 127
  start-page: 13324
  year: 2005
  end-page: 13330
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 9310
  year: 2017
  end-page: 9316
  publication-title: Nanoscale
– volume: 136
  start-page: 12257
  year: 2014
  end-page: 12260
  publication-title: J. Am. Chem. Soc.
– volume: 72
  start-page: 650
  year: 1980
  end-page: 654
  publication-title: J. Chem. Phys.
– start-page: 3485
  year: 2012
  end-page: 3491
  publication-title: Eur. J. Org. Chem.
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  publication-title: J. Comput. Chem.
– volume: 7
  start-page: 16054
  year: 2015
  end-page: 16060
  publication-title: Nanoscale
– volume: 104
  start-page: 397
  year: 2000
  end-page: 403
  publication-title: J. Phys. Chem. A
– volume: 47
  start-page: 1349
  year: 2014
  end-page: 1358
  publication-title: Acc. Chem. Res.
– volume: 54 127
  start-page: 13022 13214
  year: 2015 2015
  end-page: 13026 13218
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 102
  start-page: 961
  year: 2005
  end-page: 964
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 144
  start-page: 064307
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 139
  start-page: 174301
  year: 2013
  publication-title: J. Chem. Phys.
– volume: 118
  start-page: 6317
  year: 1996
  end-page: 6318
  publication-title: J. Am. Chem. Soc.
– volume: 47
  start-page: 2435
  year: 2014
  end-page: 2445
  publication-title: Acc. Chem. Res.
– volume: 2
  start-page: 827
  year: 2003
  end-page: 833
  publication-title: Nat. Mater.
– volume: 8
  start-page: 563
  year: 2016
  end-page: 568
  publication-title: Nat. Chem.
– volume: 16
  start-page: 18282
  year: 2014
  end-page: 18287
  publication-title: Phys. Chem. Chem. Phys.
– volume: 250
  start-page: 2811
  year: 2006
  end-page: 2866
  publication-title: Coord. Chem. Rev.
– volume: 136
  start-page: 275
  year: 2010
  end-page: 306
  publication-title: Struct. Bonding (Berlin)
– volume: 42 115
  start-page: 6004 6186
  year: 2003 2003
  end-page: 6008 6190
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 7443
  year: 2012
  end-page: 7453
  publication-title: ACS Nano
– volume: 11
  start-page: 3220
  year: 2016
  end-page: 3224
  publication-title: Chem. Asian J.
– volume: 15
  start-page: 18872
  year: 2013
  end-page: 18880
  publication-title: Phys. Chem. Chem. Phys.
– volume: 28
  start-page: 251
  year: 2007
  end-page: 268
  publication-title: J. Comput. Chem.
– volume: 47
  start-page: 6242
  year: 2011
  end-page: 6244
  publication-title: Chem. Commun.
SSID ssj0052098
Score 2.2834268
Snippet The bowl‐shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low‐dimensional boron‐based nanosystems. Owing to the...
The bowl-shaped C6v B36 cluster with a central hexagon hole is considered an ideal molecular model for low-dimensional boron-based nanosystems. Owing to the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 1148
SubjectTerms Aromaticity
bond theory
Boron
Chemical bonds
Chemistry
cluster compounds
Clusters
CMOS
density functional calculations
Molecular chains
Molecular orbitals
Title Nature of Bonding in Bowl‐Like B36 Cluster Revisited: Concentric (6π+18π) Double Aromaticity and Reason for the Preference of a Hexagonal Hole in a Central Location
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fasia.201800174
https://www.proquest.com/docview/2034222556
https://www.proquest.com/docview/2011612234
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK9wAXxK8oLMhIIIGqQOO4scOtLVuVpRQEXdFbZKfOqmLVoN1GIE77NFx4mH0lZmI7zUo9LFyi1K2c1PNpfuyZbwh5lvNQZzoTQayNDngW8yDpyySQuRC5lEhxh1sDH2bx5IgfLvqLVutPI2up3OhX2a-ddSX_I1UYA7lilew_SLaeFAbgHuQLV5AwXK8k41nFyon-HnYHdtUpw-LHSTBdfTPdYRR3RyclUiFUZwB4UFy1dB5hreIaufnRwYyfj8aY8MCGofS3CXrWWFQ1OC0qUld01m0tozprJCd-qtuU2ELLifmpji1jMaYtwusov4HcnRbZFgaeHMH3m7NZpICWlTsZ8H8ek4WqjIPP5aqhonBkUZqgMfrVbX2_V84a2_1w25a7VMGhIxl3exyhrDIKeUMtyxgiXVE11wGrtWPM6_KogdmkoZgx7NtpMSwDLVasYp6fRKvNt7bR5wPMPqbjo-k0nR8s5tfIHoOYhLXJ3mD4djj2hh8TiqrKS_9iniO0x15fnv9SNNOMiSqnZn6L3HTRCB1YaN0mLbO-Q67XQrlLfluI0SKnDmJ0taY1xChAjDqI0Rpib-gWYPRFfHHeDeXF-UtqIUUbkKIAKWohRQFSFCBFt5DCpypaQ4oipPDxijpIUQ-pe2Q-PpiPJoFr7REcg8_EAyXyTPQzkYA-iLmRyxD0wjLM455iMtMclg88YZlrlhhudNRXvBfJLMpzCapPR_dJe12szQNCTRYuBY-Xpi8h2FVxovMlY0KHmeoJEYkO2fdrnTr0nqUMiS8Zsu91yNP6a1haPC1Ta1OU-JsQoiHwnnmHsEpG6XdLAJNaqm-WolTTWqrp4Mu7Qf3p4RUmfkRubNG-T9qb09I8Bh93o584bP0FPIWkMg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nature+of+Bonding+in+Bowl-Like+B36+Cluster+Revisited%3A+Concentric+%286%CF%80%2B18%CF%80%29+Double+Aromaticity+and+Reason+for+the+Preference+of+a+Hexagonal+Hole+in+a+Central+Location&rft.jtitle=Chemistry%2C+an+Asian+journal&rft.au=Li%2C+Rui&rft.au=You%2C+Xue-Rui&rft.au=Wang%2C+Kang&rft.au=Zhai%2C+Hua-Jin&rft.date=2018-05-04&rft.issn=1861-471X&rft.eissn=1861-471X&rft.volume=13&rft.issue=9&rft.spage=1148&rft_id=info:doi/10.1002%2Fasia.201800174&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-4728&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-4728&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-4728&client=summon