Efficient and Stable FASnI3 Perovskite Solar Cells with Effective Interface Modulation by Low‐Dimensional Perovskite Layer

The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+, leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low‐dimensional perovskite layer on the surface...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 12; no. 22; pp. 5007 - 5014
Main Authors Liao, Min, Yu, Bin‐Bin, Jin, Zhixin, Chen, Wei, Zhu, Yudong, Zhang, Xusheng, Yao, Weitang, Duan, Tao, Djerdj, Igor, He, Zhubing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 22.11.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+, leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low‐dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]‐phenyl‐C61‐butyricacid methyl) in the inverted planar device structure of the ITO (indium‐doped tin oxide)/PEDOT:PSS [poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]‐phenyl‐C61‐butyricacid methyl (PCBM)/BCP (2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low‐dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering. Treat yo self: Phenylethylammonium bromide (PEABr) is employed to treat pristine FASnI3 (FA=formamidinium) films, leading to formation of an ultrathin low‐dimensional perovskite layer on the surface of the pristine film and Br incorporation into the bulk of the FASnI3 film. The treatment enhances stability and conversion efficiency from 4.77 to 7.86 %.
AbstractList The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+, leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low‐dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]‐phenyl‐C61‐butyricacid methyl) in the inverted planar device structure of the ITO (indium‐doped tin oxide)/PEDOT:PSS [poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]‐phenyl‐C61‐butyricacid methyl (PCBM)/BCP (2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low‐dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering. Treat yo self: Phenylethylammonium bromide (PEABr) is employed to treat pristine FASnI3 (FA=formamidinium) films, leading to formation of an ultrathin low‐dimensional perovskite layer on the surface of the pristine film and Br incorporation into the bulk of the FASnI3 film. The treatment enhances stability and conversion efficiency from 4.77 to 7.86 %.
The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+ , leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low-dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]-phenyl-C61 -butyricacid methyl) in the inverted planar device structure of the ITO (indium-doped tin oxide)/PEDOT:PSS [poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]-phenyl-C61 -butyricacid methyl (PCBM)/BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low-dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering.The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+ , leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low-dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]-phenyl-C61 -butyricacid methyl) in the inverted planar device structure of the ITO (indium-doped tin oxide)/PEDOT:PSS [poly(3,4-ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]-phenyl-C61 -butyricacid methyl (PCBM)/BCP (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low-dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering.
The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+, leading to a disappointing conversion efficiency along with poor stability. In this work, phenylethylammonium bromide (PEABr) was employed to form an ultrathin, low‐dimensional perovskite layer on the surface of the FASnI3 (FA=formamidinium) absorber film to improve the interface of perovskite/PCBM ([6,6]‐phenyl‐C61‐butyricacid methyl) in the inverted planar device structure of the ITO (indium‐doped tin oxide)/PEDOT:PSS [poly(3,4‐ethylenedioxythiophene)/polystyrene sulfonate]/perovskite/[6,6]‐phenyl‐C61‐butyricacid methyl (PCBM)/BCP (2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline) electrode. The device efficiency was enhanced from 4.77 to 7.86 % by this PEABr treatment. A series of characterizations proved that this modification could improve the crystallinity of the FASnI3 perovskite by incorporating Br and forming an ultrathin, low‐dimensional perovskite layer at the interface, which led to the effective suppression of Sn2+ oxidation, improved band level alignment, and decreased defect density. These effects contributed to the clear enhancement of conversion efficiency. Moreover, this treatment also led to remarkably enhanced device stability, with approximately 80 % of the initial efficiency retained after 350 h light soaking, whereas the control device failed within 140 h. This work deepens our understanding of the suppression effect of PEABr on the oxidation of Sn2+ and paves a new way to fabricate promising tin halide PSCs by facile interface engineering.
Author Chen, Wei
Zhang, Xusheng
Duan, Tao
Zhu, Yudong
Yao, Weitang
Djerdj, Igor
Jin, Zhixin
He, Zhubing
Yu, Bin‐Bin
Liao, Min
Author_xml – sequence: 1
  givenname: Min
  surname: Liao
  fullname: Liao, Min
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Bin‐Bin
  surname: Yu
  fullname: Yu, Bin‐Bin
  organization: Southern University of Science and Technology
– sequence: 3
  givenname: Zhixin
  surname: Jin
  fullname: Jin, Zhixin
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Southern University of Science and Technology
– sequence: 5
  givenname: Yudong
  surname: Zhu
  fullname: Zhu, Yudong
  organization: Southern University of Science and Technology
– sequence: 6
  givenname: Xusheng
  surname: Zhang
  fullname: Zhang, Xusheng
  organization: Southern University of Science and Technology
– sequence: 7
  givenname: Weitang
  surname: Yao
  fullname: Yao, Weitang
  email: wtyao@ustc.edu.cn
  organization: Southwest University of Science and Technology
– sequence: 8
  givenname: Tao
  surname: Duan
  fullname: Duan, Tao
  organization: Southwest University of Science and Technology
– sequence: 9
  givenname: Igor
  surname: Djerdj
  fullname: Djerdj, Igor
  organization: Josip Juraj Strossmayer University of Osijek
– sequence: 10
  givenname: Zhubing
  orcidid: 0000-0002-2775-0894
  surname: He
  fullname: He, Zhubing
  email: hezb@sustech.edu.cn
  organization: Southern University of Science and Technology
BookMark eNpdkc1Kw0AUhQdR0Kpb1wNu3LTemUknyVKi1UJFIQruwiRzR6emMzWTthRc-Ag-o09ipFLE1f3hu4dzOT2y67xDQk4YDBgAP69CqAYcWAocAHbIAUtk1B_K6Gl32wu2T3ohTAEkpFIekPcrY2xl0bVUOU3zVpU10tFF7saC3mPjl-HVtkhzX6uGZljXga5s-0K7O6xau0Q6di02RlVIb71e1Kq13tFyTSd-9fXxeWln6EK3UvVfvYlaY3NE9oyqAx7_1kPyOLp6yG76k7vrcXYx6T8LENAvoUQWRyDioal0rHRSSq4MNyhMJONUKTFMUScGTYRoUq4T0NrEQmI0rLQUh-Rsoztv_NsCQ1vMbKi6X5RDvwgF54lgrJPnHXr6D536RdOZ7yjBZMwSYElHpRtqZWtcF_PGzlSzLhgUP0kUP0kU2ySKLM-z7SS-AX2gg5Q
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/cssc.201902000
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 5014
ExternalDocumentID CSSC201902000
Genre article
GrantInformation_xml – fundername: Shenzhen Key Laboratory Project
  funderid: ZDSYS201602261933302
– fundername: National Natural Science Foundation of China (NSFC)
  funderid: 61775091, 21671160
– fundername: Defense Industrial Technology Development Program
  funderid: JCKY2016208B012
– fundername: Natural Science Foundation of Shenzhen Innovation Committee
  funderid: JCYJ20180504165851864
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
7SR
8BQ
8FD
AAMMB
AEFGJ
AEYWJ
AGXDD
AGYGG
AIDQK
AIDYY
JG9
K9.
7X8
ID FETCH-LOGICAL-g3030-b0be1740375fcd7ad8b62af2fe3f4679aa359ed8fef4eef92d80ddf736e45cd63
IEDL.DBID DR2
ISSN 1864-5631
1864-564X
IngestDate Thu Jul 10 20:03:16 EDT 2025
Fri Jul 25 12:22:27 EDT 2025
Wed Jan 22 16:37:01 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3030-b0be1740375fcd7ad8b62af2fe3f4679aa359ed8fef4eef92d80ddf736e45cd63
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2775-0894
PQID 2316718018
PQPubID 986333
PageCount 8
ParticipantIDs proquest_miscellaneous_2283113752
proquest_journals_2316718018
wiley_primary_10_1002_cssc_201902000_CSSC201902000
PublicationCentury 2000
PublicationDate November 22, 2019
PublicationDateYYYYMMDD 2019-11-22
PublicationDate_xml – month: 11
  year: 2019
  text: November 22, 2019
  day: 22
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemSusChem
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2019; 7
2017; 8
2018; 28
2015; 6
2019; 3
2018; 140
2017; 3
2018; 360
2015; 3
2017; 4
2019; 31
2019; 10
2019; 12
2013; 205
2014; 26
2017; 29
2017 2017; 56 129
2018; 49
2019 2019; 58 131
2017; 139
2016; 4
2018; 6
2018; 9
2016; 6
2018; 3
2018; 2
2016; 1
2019; 29
2016; 138
2018; 11
2014; 8
2016; 28
2014; 7
References_xml – volume: 3
  start-page: 1116
  year: 2018
  end-page: 1121
  publication-title: ACS Energy Lett.
– volume: 4
  start-page: 17104
  year: 2016
  end-page: 17110
  publication-title: J. Mater. Chem. A
– volume: 2
  start-page: 1800136
  year: 2018
  publication-title: Sol. RRL
– volume: 1
  start-page: 16178
  year: 2016
  publication-title: Nat. Energy
– volume: 6
  start-page: 1543
  year: 2015
  end-page: 1547
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1700224
  year: 2018
  publication-title: Sol. RRL
– volume: 138
  start-page: 3974
  year: 2016
  end-page: 3977
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 11436
  year: 2017
  end-page: 11449
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 11518
  year: 2017
  end-page: 11549
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 1584
  year: 2018
  end-page: 1589
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 18173
  year: 2018
  end-page: 18182
  publication-title: J. Mater. Chem. A
– volume: 140
  start-page: 1019
  year: 2018
  end-page: 1027
  publication-title: J. Am. Chem. Soc.
– volume: 2
  start-page: 2732
  year: 2018
  end-page: 2743
  publication-title: Joule
– volume: 49
  start-page: 411
  year: 2018
  end-page: 418
  publication-title: Nano Energy
– volume: 8
  start-page: 1702019
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 952
  year: 2018
  end-page: 959
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1470
  year: 2018
  end-page: 1476
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 24560
  year: 2018
  end-page: 24568
  publication-title: J. Mater. Chem. A
– volume: 360
  start-page: 1442
  year: 2018
  end-page: 1446
  publication-title: Science
– volume: 7
  start-page: 3061
  year: 2014
  end-page: 3068
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 9523
  year: 2019
  end-page: 9529
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 713
  year: 2018
  end-page: 721
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 14996
  year: 2015
  end-page: 15000
  publication-title: J. Mater. Chem. A
– volume: 9
  start-page: 243
  year: 2018
  publication-title: Nat. Commun.
– volume: 3
  start-page: 1800290
  year: 2019
  publication-title: Sol. RRL
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– volume: 28
  start-page: 1706923
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 806 816
  year: 2019 2019
  end-page: 810 820
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 2065
  year: 2018
  end-page: 2075
  publication-title: Joule
– volume: 29
  start-page: 1605005
  year: 2017
  publication-title: Adv. Mater.
– volume: 12
  start-page: 4116
  year: 2019
  end-page: 4139
  publication-title: ChemSusChem
– volume: 4
  start-page: 1700204
  year: 2017
  publication-title: Adv. Sci.
– volume: 26
  start-page: 7122
  year: 2014
  end-page: 7127
  publication-title: Adv. Mater.
– volume: 3
  start-page: 2077
  year: 2018
  end-page: 2085
  publication-title: ACS Energy Lett.
– volume: 139
  start-page: 14800
  year: 2017
  end-page: 14806
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 2701
  year: 2018
  end-page: 2707
  publication-title: ACS Energy Lett.
– volume: 205
  start-page: 39
  year: 2013
  end-page: 43
  publication-title: J. Solid State Chem.
– volume: 6
  start-page: 1601130
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 46
  year: 2018
  end-page: 53
  publication-title: ACS Energy Lett.
– volume: 11
  start-page: 449
  year: 2018
  end-page: 463
  publication-title: ChemSusChem
– volume: 8
  start-page: 489
  year: 2014
  publication-title: Nat. Photonics
– volume: 139
  start-page: 836
  year: 2017
  end-page: 842
  publication-title: J. Am. Chem. Soc.
– volume: 139
  start-page: 6693
  year: 2017
  end-page: 6699
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 15124
  year: 2017
  end-page: 15129
  publication-title: J. Mater. Chem. A
– volume: 10
  start-page: 16
  year: 2019
  publication-title: Nat. Commun.
– volume: 29
  start-page: 1808059
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 8818
  year: 2019
  end-page: 8825
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 9333
  year: 2016
  end-page: 9340
  publication-title: Adv. Mater.
– volume: 56 129
  start-page: 13819 14007
  year: 2017 2017
  end-page: 13823 14011
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 31
  start-page: 1804835
  year: 2019
  publication-title: Adv. Mater.
– volume: 11
  start-page: 2353
  year: 2018
  end-page: 2362
  publication-title: Energy Environ. Sci.
SSID ssj0060966
Score 2.5885422
Snippet The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+, leading to a disappointing conversion efficiency along with poor...
The promising tin perovskite solar cells (PSCs) suffer from the oxidation of Sn2+ to Sn4+ , leading to a disappointing conversion efficiency along with poor...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 5007
SubjectTerms Dimensional stability
Efficiency
Energy conversion efficiency
Indium tin oxides
interface engineering
low-dimensional layer
Oxidation
Perovskites
phenylethylammonium bromide
Photovoltaic cells
Polystyrene resins
Solar cells
Tin
Tin oxides
tin perovskite
Title Efficient and Stable FASnI3 Perovskite Solar Cells with Effective Interface Modulation by Low‐Dimensional Perovskite Layer
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201902000
https://www.proquest.com/docview/2316718018
https://www.proquest.com/docview/2283113752
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4QwEG6MF734Nq6v1MQrCgW6cDToZjVqjKuJN9LH1IMbMLKr0XjwJ_gb_SVOyy7uetQLgUCbwrQz3wydbwjZF22hFTOBp1QqvQiM8FKeRqgMjfIl17Gv3QbZS969jc7u4ruJLP6aH6IJuNmV4fS1XeBCVoc_pKGqqiwFIRo0m22CSthu2LKo6Lrhj-KIz116UcIjL-ZhMGZt9NnhdPMpfDmJUp2Z6SwSMR5gvbvk4WA4kAfq7Rd343_eYIksjDAoPaonzTKZgWKFzGXj0m-r5P3EEUugPaKi0BQBqewD7Rz1itOQXsFT-VzZoC_tWb-YZtDvV9QGdGnNhYwKlLpIoxEK6EWpRyXCqHyl5-XL18fnsa0pUPOBTPZ3LtABWCO3nZObrOuNyjR492j_fE_6EtCvscV0jdIo-0RyJgwzEBpUw6kQYZyCTgyYCMCkTCe-1qYdcohipXm4TmaLsoANQlUiRJtFoYjwqMFPsRvEIIl2rD2pbpHtsZjy0VqrcmaT-QO0tEmL7DW38YvZXx-igHKIzyCKCgIcIWsR5mSSP9ZsHnnN28xyK428kUae9XpZc7X5l0ZbZN6e28RFxrbJ7OBpCDuIYAZy183Sb9qv7Go
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOZQLb8RCASNxTZs4iTc5VqGrLWwrxLYSt8iPMQdWCWp2QSAO_AR-I7-EGWcTWo5wiZSHLSdjz3wz8XwD8FJPtbPSJ5G1pYky9DoqVZmRMvQ2NsrlsQsbZE_V_Dx7_T4fdhNyLkzPDzEG3HhlBH3NC5wD0gd_WENt1zEHIVk0Tje5Dje4rHfwqt6NDFKKEHpIMCpUFuUqTQbexlgeXG1_BWFexqnB0MxugxmG2O8v-bi_WZt9--0v9sb_eoc7cGsLQ8VhP2_uwjVs7sFuNVR_uw_fjwK3BJkkoRsnCJOaFYrZ4bI5TsVbvGg_dxz3FUt2jUWFq1UnOKYrejpk0qEiBBu9tihOWretEibMV7Fov_z68fMVlxXoKUEu97fQ5AM8gPPZ0Vk1j7aVGqIPZALjyMQGybXherreOhJ_YZTUXnpMPWniUus0L9EVHn2G6Evpitg5P00VZrl1Kn0IO03b4CMQttB6KrNUZ3R0GJfUDcGQwgXintJNYG-QU71dbl0tOZ8_IWNbTODFeJu-GP_90A22G3qGgFSS0AjlBGQQSv2pJ_Soe-pmWbM06lEadbVcVuPZ439p9Bx252cni3pxfPrmCdzk65zHKOUe7KwvNviUAM3aPAtT9jehqPCF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VVgIupTyqLhQwEte0ieN4k2OV7aotS1WxVOot8mPMgVVSNbsgUA_8BH4jv4Sxsxu2HOESKQ9bTsae-Wbi-QbgrRoqa7hLImMKHQl0KipkIUgZOhNrabPYhg2y5_LkUpxdZVdrWfwdP0QfcPMrI-hrv8CvrTv8Qxpq2tZTEJJB89km92BLyDj383r0oSeQkgTQQ35RLkWUyTRZ0TbG_PBu-zsAcx2mBjszfgRqNcJue8nng8VcH5jvf5E3_s8r7MD2EoSyo27WPIYNrJ_Ag3JV--0p3B4HZgkySEzVlhEi1TNk46NpfZqyC7xpvrQ-6sum3jFmJc5mLfMRXdaRIZMGZSHU6JRB9r6xyxphTH9jk-brrx8_R76oQEcIst7fRJEH8Awux8cfy5NoWach-kQGMI50rJEcG19N1xlLws-15Mpxh6kjPVwolWYF2tyhE4iu4DaPrXXDVKLIjJXpLmzWTY17wEyu1JCLVAk6WowL6oZASG4DbU9hB7C_ElO1XGxtxX02f0KmNh_Am_42fTH_70PV2CzoGYJRSUIj5APgQSbVdUfnUXXEzbzy0qh6aVTldFr2Z8__pdFruH8xGleT0_N3L-Chv-yTGDnfh835zQJfEpqZ61dhwv4G-dzvPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+and+Stable+FASnI3+Perovskite+Solar+Cells+with+Effective+Interface+Modulation+by+Low-Dimensional+Perovskite+Layer&rft.jtitle=ChemSusChem&rft.au=Liao%2C+Min&rft.au=Yu%2C+Bin-Bin&rft.au=Jin%2C+Zhixin&rft.au=Chen%2C+Wei&rft.date=2019-11-22&rft.issn=1864-564X&rft.eissn=1864-564X&rft.volume=12&rft.issue=22&rft.spage=5007&rft_id=info:doi/10.1002%2Fcssc.201902000&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon