Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long‐Lifespan and Dendrite‐Free Zn Metal Anodes

Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practi...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 11; pp. e2007388 - n/a
Main Authors Yang, Yang, Liu, Chaoyue, Lv, Zeheng, Yang, Hao, Zhang, Yufei, Ye, Minghui, Chen, Libao, Zhao, Jinbao, Li, Cheng Chao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm−2 with a capacity of 1.0 mAh cm−2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2//MnO2 and Zn@ZnF2//V2O5 full batteries. Importantly, a hybrid zinc‐ion capacitor of the Zn@ZnF2//AC can work at an ultrahigh current density of ≈60 mA cm−2 for up to 5000 cycles with a high capacity retention of 92.8%. A 3D interconnected ZnF2 matrix on the surface of Zn foil (Zn@ZnF2) is prepared through a simple and fast electrochemical anodic growth method. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics.
AbstractList Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm−2 with a capacity of 1.0 mAh cm−2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2//MnO2 and Zn@ZnF2//V2O5 full batteries. Importantly, a hybrid zinc‐ion capacitor of the Zn@ZnF2//AC can work at an ultrahigh current density of ≈60 mA cm−2 for up to 5000 cycles with a high capacity retention of 92.8%. A 3D interconnected ZnF2 matrix on the surface of Zn foil (Zn@ZnF2) is prepared through a simple and fast electrochemical anodic growth method. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics.
Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2 ) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as-fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm-2 with a capacity of 1.0 mAh cm-2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2 //MnO2 and Zn@ZnF2 //V2 O5 full batteries. Importantly, a hybrid zinc-ion capacitor of the Zn@ZnF2 //AC can work at an ultrahigh current density of ≈60 mA cm-2 for up to 5000 cycles with a high capacity retention of 92.8%.Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2 ) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as-fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm-2 with a capacity of 1.0 mAh cm-2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2 //MnO2 and Zn@ZnF2 //V2 O5 full batteries. Importantly, a hybrid zinc-ion capacitor of the Zn@ZnF2 //AC can work at an ultrahigh current density of ≈60 mA cm-2 for up to 5000 cycles with a high capacity retention of 92.8%.
Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm−2 with a capacity of 1.0 mAh cm−2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2//MnO2 and Zn@ZnF2//V2O5 full batteries. Importantly, a hybrid zinc‐ion capacitor of the Zn@ZnF2//AC can work at an ultrahigh current density of ≈60 mA cm−2 for up to 5000 cycles with a high capacity retention of 92.8%.
Author Liu, Chaoyue
Zhang, Yufei
Lv, Zeheng
Ye, Minghui
Zhao, Jinbao
Yang, Hao
Yang, Yang
Chen, Libao
Li, Cheng Chao
Author_xml – sequence: 1
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
  organization: Guangdong University of Technology
– sequence: 2
  givenname: Chaoyue
  surname: Liu
  fullname: Liu, Chaoyue
  organization: Xiamen University
– sequence: 3
  givenname: Zeheng
  surname: Lv
  fullname: Lv, Zeheng
  organization: Guangdong University of Technology
– sequence: 4
  givenname: Hao
  surname: Yang
  fullname: Yang, Hao
  organization: Central South University
– sequence: 5
  givenname: Yufei
  surname: Zhang
  fullname: Zhang, Yufei
  organization: Guangdong University of Technology
– sequence: 6
  givenname: Minghui
  surname: Ye
  fullname: Ye, Minghui
  organization: Guangdong University of Technology
– sequence: 7
  givenname: Libao
  surname: Chen
  fullname: Chen, Libao
  organization: Central South University
– sequence: 8
  givenname: Jinbao
  surname: Zhao
  fullname: Zhao, Jinbao
  organization: Xiamen University
– sequence: 9
  givenname: Cheng Chao
  orcidid: 0000-0003-2434-760X
  surname: Li
  fullname: Li, Cheng Chao
  email: licc@gdut.edu.cn
  organization: Guangdong University of Technology
BookMark eNpdkb1u2zAURokiBeqkXTsT6FKgUHJFUhI1GrGdBrCRIenShaCsS5cBTbqk1MRbH6Ev0Rfrk4SOgwyd-INzDz7c75Sc-OCRkI8lnJcA7EL3W33OgAE0XMo3ZFJWrCwEtNUJmUDLq6KthXxHTlO6B4C2hnpC_t7uPcaNTYNd05X2djc6PdjgaTD0u2df6HW-L9z4SLXv6QxTcL-OwNwYXA907nXnsKfdnk596LPmKoaH4cdBoCmfZcuCZfUQ7SM1IdJl8Jt_v_8srcG00_7F6_toB8z_i4iYZ-gKB-2elZjek7dGu4QfXs4z8m0xv7v8Wixvrq4vp8tiw6GURWkkY7UR1boGLgCBVbpmpuobwAq0ZFp2sjcgeZ2zC5Agy75jLO-ok3WL_Ix8Pnp3MfwcMQ1qa9MandMew5gUE7IRHEA0Gf30H3ofxuhzOsWqHKaRreCZao_Ug3W4V7totzruVQnqUJk6VKZeK1PT2Wr6-uJPaG2O7Q
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID 7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202007388
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA202007388
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51771058
– fundername: Guangdong Province Basic and Applied Basic Research Fund
  funderid: 2019A1515111069
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-g3018-1f8226f45c60340e025a62f5d70e50a82a8b8df0836ffe408081db22409b869e3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:55:53 EDT 2025
Sun Jul 13 04:11:32 EDT 2025
Wed Jan 22 16:29:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g3018-1f8226f45c60340e025a62f5d70e50a82a8b8df0836ffe408081db22409b869e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2434-760X
PQID 2501878943
PQPubID 2045203
PageCount 11
ParticipantIDs proquest_miscellaneous_2487430047
proquest_journals_2501878943
wiley_primary_10_1002_adma_202007388_ADMA202007388
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2013 2005; 3 86
2020 2019; 4 20
2020 2019 2020; 32 56 59
2019; 10
2019; 57
2019; 12
2020 2020; 30 13
2019; 58
2020; 13
2019 2018; 141 54
2020; 12
2018 2017 2018; 6 13 2
2020; 11
2020; 32
2019 2019 2018; 569 7 3
2017; 199
2019; 166
2016; 55
2018; 17
2018; 8
2020; 5
2020; 4
2021; 31
2019; 62
2020; 30
2020; 396
2020; 577
2018; 30
2001; 414
References_xml – volume: 13
  start-page: 5556
  year: 2020
  publication-title: ChemSusChem
– volume: 1
  start-page: 122
  year: 2017
  publication-title: Joule
– volume: 12
  year: 2020
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 625
  year: 2019
  publication-title: Nano Energy
– volume: 396
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 577
  start-page: 256
  year: 2020
  publication-title: J. Colloid Interface Sci.
– volume: 62
  start-page: 275
  year: 2019
  publication-title: Nano Energy
– volume: 4 20
  start-page: 771 410
  year: 2020 2019
  publication-title: Joule Energy Storage Mater.
– volume: 32 56 59
  start-page: 92 9377
  year: 2020 2019 2020
  publication-title: Adv. Mater. Nano Energy Angew. Chem., Int. Ed.
– volume: 5
  start-page: 2466
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 30 13
  start-page: 503
  year: 2020 2020
  publication-title: Adv. Funct. Mater. Energy Environ. Sci.
– volume: 12
  start-page: 4
  year: 2020
  publication-title: NPG Asia Mater.
– volume: 10
  start-page: 5374
  year: 2019
  publication-title: Nat. Commun.
– volume: 55
  start-page: 2889
  year: 2016
  publication-title: Angew. Chem., Int. Ed.
– volume: 17
  start-page: 543
  year: 2018
  publication-title: Nat. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 6 13 2
  start-page: 8006 577
  year: 2018 2017 2018
  publication-title: J. Mater. Chem. A Small Sustainable Energy Fuels
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 569 7 3
  start-page: 245 2480
  year: 2019 2019 2018
  publication-title: Nature J. Mater. Chem. A ACS Energy Lett.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 199
  start-page: 73
  year: 2017
  publication-title: Mater. Chem. Phys.
– volume: 12
  start-page: 1938
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 2028
  year: 2020
  publication-title: Chem. Sci.
– volume: 141 54
  start-page: 6338
  year: 2019 2018
  publication-title: J. Am. Chem. Soc. Chem. Commun.
– volume: 3 86
  start-page: E1
  year: 2013 2005
  publication-title: ECS Electrochem. Lett. Appl. Phys. Lett.
– volume: 4
  start-page: 1557
  year: 2020
  publication-title: Joule
– volume: 166
  start-page: D583
  year: 2019
  publication-title: J. Electrochem. Soc.
– volume: 166
  year: 2019
  publication-title: J. Electrochem. Soc.
SSID ssj0009606
Score 2.7162797
Snippet Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However,...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage e2007388
SubjectTerms Anodes
Anodic protection
aqueous zinc‐ion batteries
Dendritic structure
desolvation effect
Electrodes
Hydrogen evolution reactions
Ion flux
Life span
Manganese dioxide
Metal foils
Rechargeable batteries
Zinc fluorides
Zn metal anodes
Zn2+ ion flux
ZnF2 matrix
Title Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long‐Lifespan and Dendrite‐Free Zn Metal Anodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202007388
https://www.proquest.com/docview/2501878943
https://www.proquest.com/docview/2487430047
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMctxKkcWkpbdSlURuoNBVJ_bXJcAQEqlkNbJNRLZMcTWIGcajcrAac-Ql-iL9Yn6Yyzuyw9trd82CNH_vrbmfmZsQ8yB5w2QSZgfJYo2_-YZE6bRAgvTIXzi4gg7eG5OblQny715VIUf8eHWGy4Uc-I4zV1cOsm-4_QUOsjN4j22mRG0b7ksEWq6PMjP4rkeYTtSZ3kRmVzamMq9p9mf6Ivl1VqnGaKF8zOC9h5l9zsTVu3Vz38xW78ny9YZ89nGpQPukbzkq1A2GBrS2TCV-zXl3sKCowUZz60YTQ_5os3Nf8WxC4_xevidnrHbfAcV6_Nbbe5yzseMj-KQVmeu3s-CI1HM8e44m-vyYDl8hCtFAJNt-PRHUflzM-acPX7x8-zUQ04yoWZ3eDHKIrxeTEGwDx8CC2VHU3C5DW7KI6-HpwksxMdkiscSHC5WqMeMbXSlUmlSgEFlzWi1r6fgk5tJmzmMl8TMRvLqlI6FsQ7Uh25y0wO8g1bDU2At4znHrQSVmrvpDKY1FgBPq2MzmXlpOuxrXmNlrNuOSkF4Qv7hJzvsZ3Fa-xQ9JfEBmimmAaXcIo4ZP0eE7H6yu8d-KPsEM-ipIorFxVXDg6Hg8Xd5r9keseeCfKVib5tW2y1HU9hG8VO697HBv0Hnez3Xw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIYtKAtgQSkXMVDAlbpDaYNv4yxHbcMUJl2UVkJsIjt2yojKQdOM1LLiEfoSfTGehHOcybRlCbtc7CNHvv3nxP5MyCbPPEybnideOZ0IM3yfaCtVwphjqoL5hUWQdnGgxsfi4xfZrybEvTAdH2IZcMOeEcdr7OAYkN6-poYaF8FBGGzjWt8l9_BY7-hVHV4TpFCgR9wel0mmhO65jSnbvp3_lsK8qVPjRJOvEtsXsVtf8n1r3tqt6udf9Mb_-obH5NFChtJR127WyB0fnpCHN-CET8nV5wvcFxhBzrQwYdqf9EWbmn4N7B3dh-v8dH5OTXAUHNjmtIvv0g6JTPfivixH7QUdhcaBmQ_g9Lff0IChfBes5AxMt7PpOQXxTCdNOPn963IyrT0MdGFhN7gZ6GJ4ns-8hzy08C2WHUz6s2fkON872hkni0MdkhMYS8BjrUGSqFrISqVcpB40l1Gslm6YepkazYy22tUIzYayihRPBnEWhUdmtco8f05WQhP8C0Iz56VghktnuVCQVBnmXVopmfHKcjsg632VloueeVYyJBgOkTo_IBvL19Cn8EeJCb6ZQxrw4gSiyIYDwmL9lT869kfZUZ5ZiRVXLiuuHO0Wo-Xdy3_J9JbcHx8Vk3Kyf_DpFXnAcOlMXOq2Tlba2dy_Bu3T2jexdf8BF4z7eg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dThQxFMcbhMToheJXXEEtiXdmYOzXdi43LiPoLiEqCfFm0k7P4EbSIctsAlzxCLwEL8aTeNrZXRYu9W4-2pNOTk_7b6f9lZAPPAPsNoEnoJxOhOl-SrSVKmHMMVVi_8IiSHu4p3YOxNdDebiwi7_lQ8wn3EJkxPY6BPiJq7ZuoaHGRW5QmGvjWj8gK0KlOtTr_vdbgFTQ55G2x2WSKaFn2MaUbd3Nf0dgLsrU2M_kT4mZlbBdXvJnc9LYzfLiHrzxfz5hlTyZilDaa2vNM7IE_jl5vIAmfEGuf5yHXYER40yHxo9m53zRuqK_PPtId_E6P56cUeMdxeFrfdzO7tIWiEy3464sR-057fnaoZkvOORvfgcDhvI-WskZmm7GozOK0pkOan90c3k1GFWAzZyf2vVujKoYn-djAMxDh9CEsqNJOH1JDvLtn593kumRDskRtiQ4Xq1QkKhKyFKlXKSAissoVknXTUGmRjOjrXZVQGZjWUUazgVxNsiOzGqVAX9Fln3t4TWhmQMpmOHSWS4UJlWGgUtLJTNeWm47ZH3m0WIal6cFC_zCbmDOd8jG_DVGVPhNYjzUE0yDYzgRQGTdDmHRfcVJS_4oWsYzK4Ljirnjil5_2JvfvfmXTO_Jw_1-Xgx2976tkUcsrJuJ69zWyXIznsBbFD6NfRfr9l9AJPoy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Manipulation+of+Zn2%2B+Ion+Flux+and+Desolvation+Effect+Enabled+by+Anodic+Growth+of+a+3D+ZnF2+Matrix+for+Long%E2%80%90Lifespan+and+Dendrite%E2%80%90Free+Zn+Metal+Anodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Yang&rft.au=Liu%2C+Chaoyue&rft.au=Lv%2C+Zeheng&rft.au=Yang%2C+Hao&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202007388&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon