Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long‐Lifespan and Dendrite‐Free Zn Metal Anodes
Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practi...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 11; pp. e2007388 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm−2 with a capacity of 1.0 mAh cm−2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2//MnO2 and Zn@ZnF2//V2O5 full batteries. Importantly, a hybrid zinc‐ion capacitor of the Zn@ZnF2//AC can work at an ultrahigh current density of ≈60 mA cm−2 for up to 5000 cycles with a high capacity retention of 92.8%.
A 3D interconnected ZnF2 matrix on the surface of Zn foil (Zn@ZnF2) is prepared through a simple and fast electrochemical anodic growth method. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. |
---|---|
AbstractList | Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm−2 with a capacity of 1.0 mAh cm−2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2//MnO2 and Zn@ZnF2//V2O5 full batteries. Importantly, a hybrid zinc‐ion capacitor of the Zn@ZnF2//AC can work at an ultrahigh current density of ≈60 mA cm−2 for up to 5000 cycles with a high capacity retention of 92.8%.
A 3D interconnected ZnF2 matrix on the surface of Zn foil (Zn@ZnF2) is prepared through a simple and fast electrochemical anodic growth method. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2 ) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as-fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm-2 with a capacity of 1.0 mAh cm-2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2 //MnO2 and Zn@ZnF2 //V2 O5 full batteries. Importantly, a hybrid zinc-ion capacitor of the Zn@ZnF2 //AC can work at an ultrahigh current density of ≈60 mA cm-2 for up to 5000 cycles with a high capacity retention of 92.8%.Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2 ) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as-fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm-2 with a capacity of 1.0 mAh cm-2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2 //MnO2 and Zn@ZnF2 //V2 O5 full batteries. Importantly, a hybrid zinc-ion capacitor of the Zn@ZnF2 //AC can work at an ultrahigh current density of ≈60 mA cm-2 for up to 5000 cycles with a high capacity retention of 92.8%. Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However, the low Coulombic efficiency and limited lifespan of Zn metal anodes resulting from uncontrollable growth of Zn dendrites impede their practical application. In this work, a 3D interconnected ZnF2 matrix is designed on the surface of Zn foil (Zn@ZnF2) through a simple and fast anodic growth method, serving as a multifunctional protective layer. The as‐fabricated Zn@ZnF2 electrode can not only redistribute the Zn2+ ion flux, but also reduce the desolvation active energy significantly, leading to stable and facile Zn deposition kinetics. The results reveal that the Zn@ZnF2 electrode can effectively inhibit dendrites growth, restrain the hydrogen evolution reactions, and endow excellent plating/stripping reversibility. Accordingly, the Zn@ZnF2 electrode exhibits a long cycle life of over 800 h at 1 mA cm−2 with a capacity of 1.0 mAh cm−2 in a symmetrical cell test, the feasibility of which is also convincing in Zn@ZnF2//MnO2 and Zn@ZnF2//V2O5 full batteries. Importantly, a hybrid zinc‐ion capacitor of the Zn@ZnF2//AC can work at an ultrahigh current density of ≈60 mA cm−2 for up to 5000 cycles with a high capacity retention of 92.8%. |
Author | Liu, Chaoyue Zhang, Yufei Lv, Zeheng Ye, Minghui Zhao, Jinbao Yang, Hao Yang, Yang Chen, Libao Li, Cheng Chao |
Author_xml | – sequence: 1 givenname: Yang surname: Yang fullname: Yang, Yang organization: Guangdong University of Technology – sequence: 2 givenname: Chaoyue surname: Liu fullname: Liu, Chaoyue organization: Xiamen University – sequence: 3 givenname: Zeheng surname: Lv fullname: Lv, Zeheng organization: Guangdong University of Technology – sequence: 4 givenname: Hao surname: Yang fullname: Yang, Hao organization: Central South University – sequence: 5 givenname: Yufei surname: Zhang fullname: Zhang, Yufei organization: Guangdong University of Technology – sequence: 6 givenname: Minghui surname: Ye fullname: Ye, Minghui organization: Guangdong University of Technology – sequence: 7 givenname: Libao surname: Chen fullname: Chen, Libao organization: Central South University – sequence: 8 givenname: Jinbao surname: Zhao fullname: Zhao, Jinbao organization: Xiamen University – sequence: 9 givenname: Cheng Chao orcidid: 0000-0003-2434-760X surname: Li fullname: Li, Cheng Chao email: licc@gdut.edu.cn organization: Guangdong University of Technology |
BookMark | eNpdkb1u2zAURokiBeqkXTsT6FKgUHJFUhI1GrGdBrCRIenShaCsS5cBTbqk1MRbH6Ev0Rfrk4SOgwyd-INzDz7c75Sc-OCRkI8lnJcA7EL3W33OgAE0XMo3ZFJWrCwEtNUJmUDLq6KthXxHTlO6B4C2hnpC_t7uPcaNTYNd05X2djc6PdjgaTD0u2df6HW-L9z4SLXv6QxTcL-OwNwYXA907nXnsKfdnk596LPmKoaH4cdBoCmfZcuCZfUQ7SM1IdJl8Jt_v_8srcG00_7F6_toB8z_i4iYZ-gKB-2elZjek7dGu4QfXs4z8m0xv7v8Wixvrq4vp8tiw6GURWkkY7UR1boGLgCBVbpmpuobwAq0ZFp2sjcgeZ2zC5Agy75jLO-ok3WL_Ix8Pnp3MfwcMQ1qa9MandMew5gUE7IRHEA0Gf30H3ofxuhzOsWqHKaRreCZao_Ug3W4V7totzruVQnqUJk6VKZeK1PT2Wr6-uJPaG2O7Q |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202007388 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA202007388 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51771058 – fundername: Guangdong Province Basic and Applied Basic Research Fund funderid: 2019A1515111069 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-g3018-1f8226f45c60340e025a62f5d70e50a82a8b8df0836ffe408081db22409b869e3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 03:55:53 EDT 2025 Sun Jul 13 04:11:32 EDT 2025 Wed Jan 22 16:29:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g3018-1f8226f45c60340e025a62f5d70e50a82a8b8df0836ffe408081db22409b869e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2434-760X |
PQID | 2501878943 |
PQPubID | 2045203 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2487430047 proquest_journals_2501878943 wiley_primary_10_1002_adma_202007388_ADMA202007388 |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 1 2013 2005; 3 86 2020 2019; 4 20 2020 2019 2020; 32 56 59 2019; 10 2019; 57 2019; 12 2020 2020; 30 13 2019; 58 2020; 13 2019 2018; 141 54 2020; 12 2018 2017 2018; 6 13 2 2020; 11 2020; 32 2019 2019 2018; 569 7 3 2017; 199 2019; 166 2016; 55 2018; 17 2018; 8 2020; 5 2020; 4 2021; 31 2019; 62 2020; 30 2020; 396 2020; 577 2018; 30 2001; 414 |
References_xml | – volume: 13 start-page: 5556 year: 2020 publication-title: ChemSusChem – volume: 1 start-page: 122 year: 2017 publication-title: Joule – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 625 year: 2019 publication-title: Nano Energy – volume: 396 year: 2020 publication-title: Chem. Eng. J. – volume: 577 start-page: 256 year: 2020 publication-title: J. Colloid Interface Sci. – volume: 62 start-page: 275 year: 2019 publication-title: Nano Energy – volume: 4 20 start-page: 771 410 year: 2020 2019 publication-title: Joule Energy Storage Mater. – volume: 32 56 59 start-page: 92 9377 year: 2020 2019 2020 publication-title: Adv. Mater. Nano Energy Angew. Chem., Int. Ed. – volume: 5 start-page: 2466 year: 2020 publication-title: ACS Energy Lett. – volume: 30 13 start-page: 503 year: 2020 2020 publication-title: Adv. Funct. Mater. Energy Environ. Sci. – volume: 12 start-page: 4 year: 2020 publication-title: NPG Asia Mater. – volume: 10 start-page: 5374 year: 2019 publication-title: Nat. Commun. – volume: 55 start-page: 2889 year: 2016 publication-title: Angew. Chem., Int. Ed. – volume: 17 start-page: 543 year: 2018 publication-title: Nat. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 6 13 2 start-page: 8006 577 year: 2018 2017 2018 publication-title: J. Mater. Chem. A Small Sustainable Energy Fuels – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 569 7 3 start-page: 245 2480 year: 2019 2019 2018 publication-title: Nature J. Mater. Chem. A ACS Energy Lett. – volume: 414 start-page: 359 year: 2001 publication-title: Nature – volume: 199 start-page: 73 year: 2017 publication-title: Mater. Chem. Phys. – volume: 12 start-page: 1938 year: 2019 publication-title: Energy Environ. Sci. – volume: 11 start-page: 2028 year: 2020 publication-title: Chem. Sci. – volume: 141 54 start-page: 6338 year: 2019 2018 publication-title: J. Am. Chem. Soc. Chem. Commun. – volume: 3 86 start-page: E1 year: 2013 2005 publication-title: ECS Electrochem. Lett. Appl. Phys. Lett. – volume: 4 start-page: 1557 year: 2020 publication-title: Joule – volume: 166 start-page: D583 year: 2019 publication-title: J. Electrochem. Soc. – volume: 166 year: 2019 publication-title: J. Electrochem. Soc. |
SSID | ssj0009606 |
Score | 2.7162797 |
Snippet | Aqueous rechargeable Zn metal batteries have attracted widespread attention due to the intrinsic high volumetric capacity, low cost, and high safety. However,... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | e2007388 |
SubjectTerms | Anodes Anodic protection aqueous zinc‐ion batteries Dendritic structure desolvation effect Electrodes Hydrogen evolution reactions Ion flux Life span Manganese dioxide Metal foils Rechargeable batteries Zinc fluorides Zn metal anodes Zn2+ ion flux ZnF2 matrix |
Title | Synergistic Manipulation of Zn2+ Ion Flux and Desolvation Effect Enabled by Anodic Growth of a 3D ZnF2 Matrix for Long‐Lifespan and Dendrite‐Free Zn Metal Anodes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202007388 https://www.proquest.com/docview/2501878943 https://www.proquest.com/docview/2487430047 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3NTtwwEMctxKkcWkpbdSlURuoNBVJ_bXJcAQEqlkNbJNRLZMcTWIGcajcrAac-Ql-iL9Yn6Yyzuyw9trd82CNH_vrbmfmZsQ8yB5w2QSZgfJYo2_-YZE6bRAgvTIXzi4gg7eG5OblQny715VIUf8eHWGy4Uc-I4zV1cOsm-4_QUOsjN4j22mRG0b7ksEWq6PMjP4rkeYTtSZ3kRmVzamMq9p9mf6Ivl1VqnGaKF8zOC9h5l9zsTVu3Vz38xW78ny9YZ89nGpQPukbzkq1A2GBrS2TCV-zXl3sKCowUZz60YTQ_5os3Nf8WxC4_xevidnrHbfAcV6_Nbbe5yzseMj-KQVmeu3s-CI1HM8e44m-vyYDl8hCtFAJNt-PRHUflzM-acPX7x8-zUQ04yoWZ3eDHKIrxeTEGwDx8CC2VHU3C5DW7KI6-HpwksxMdkiscSHC5WqMeMbXSlUmlSgEFlzWi1r6fgk5tJmzmMl8TMRvLqlI6FsQ7Uh25y0wO8g1bDU2At4znHrQSVmrvpDKY1FgBPq2MzmXlpOuxrXmNlrNuOSkF4Qv7hJzvsZ3Fa-xQ9JfEBmimmAaXcIo4ZP0eE7H6yu8d-KPsEM-ipIorFxVXDg6Hg8Xd5r9keseeCfKVib5tW2y1HU9hG8VO697HBv0Hnez3Xw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3LbtQwFIYtKAtgQSkXMVDAlbpDaYNv4yxHbcMUJl2UVkJsIjt2yojKQdOM1LLiEfoSfTGehHOcybRlCbtc7CNHvv3nxP5MyCbPPEybnideOZ0IM3yfaCtVwphjqoL5hUWQdnGgxsfi4xfZrybEvTAdH2IZcMOeEcdr7OAYkN6-poYaF8FBGGzjWt8l9_BY7-hVHV4TpFCgR9wel0mmhO65jSnbvp3_lsK8qVPjRJOvEtsXsVtf8n1r3tqt6udf9Mb_-obH5NFChtJR127WyB0fnpCHN-CET8nV5wvcFxhBzrQwYdqf9EWbmn4N7B3dh-v8dH5OTXAUHNjmtIvv0g6JTPfivixH7QUdhcaBmQ_g9Lff0IChfBes5AxMt7PpOQXxTCdNOPn963IyrT0MdGFhN7gZ6GJ4ns-8hzy08C2WHUz6s2fkON872hkni0MdkhMYS8BjrUGSqFrISqVcpB40l1Gslm6YepkazYy22tUIzYayihRPBnEWhUdmtco8f05WQhP8C0Iz56VghktnuVCQVBnmXVopmfHKcjsg632VloueeVYyJBgOkTo_IBvL19Cn8EeJCb6ZQxrw4gSiyIYDwmL9lT869kfZUZ5ZiRVXLiuuHO0Wo-Xdy3_J9JbcHx8Vk3Kyf_DpFXnAcOlMXOq2Tlba2dy_Bu3T2jexdf8BF4z7eg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3dThQxFMcbhMToheJXXEEtiXdmYOzXdi43LiPoLiEqCfFm0k7P4EbSIctsAlzxCLwEL8aTeNrZXRYu9W4-2pNOTk_7b6f9lZAPPAPsNoEnoJxOhOl-SrSVKmHMMVVi_8IiSHu4p3YOxNdDebiwi7_lQ8wn3EJkxPY6BPiJq7ZuoaHGRW5QmGvjWj8gK0KlOtTr_vdbgFTQ55G2x2WSKaFn2MaUbd3Nf0dgLsrU2M_kT4mZlbBdXvJnc9LYzfLiHrzxfz5hlTyZilDaa2vNM7IE_jl5vIAmfEGuf5yHXYER40yHxo9m53zRuqK_PPtId_E6P56cUeMdxeFrfdzO7tIWiEy3464sR-057fnaoZkvOORvfgcDhvI-WskZmm7GozOK0pkOan90c3k1GFWAzZyf2vVujKoYn-djAMxDh9CEsqNJOH1JDvLtn593kumRDskRtiQ4Xq1QkKhKyFKlXKSAissoVknXTUGmRjOjrXZVQGZjWUUazgVxNsiOzGqVAX9Fln3t4TWhmQMpmOHSWS4UJlWGgUtLJTNeWm47ZH3m0WIal6cFC_zCbmDOd8jG_DVGVPhNYjzUE0yDYzgRQGTdDmHRfcVJS_4oWsYzK4Ljirnjil5_2JvfvfmXTO_Jw_1-Xgx2976tkUcsrJuJ69zWyXIznsBbFD6NfRfr9l9AJPoy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synergistic+Manipulation+of+Zn2%2B+Ion+Flux+and+Desolvation+Effect+Enabled+by+Anodic+Growth+of+a+3D+ZnF2+Matrix+for+Long%E2%80%90Lifespan+and+Dendrite%E2%80%90Free+Zn+Metal+Anodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Yang%2C+Yang&rft.au=Liu%2C+Chaoyue&rft.au=Lv%2C+Zeheng&rft.au=Yang%2C+Hao&rft.date=2021-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=33&rft.issue=11&rft_id=info:doi/10.1002%2Fadma.202007388&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |