Non-convex security constrained optimal power flow by a new solution method composed of Benders decomposition and special ordered sets
SUMMARYThis paper presents a comprehensive formulation for the security constrained optimal power flow (SCOPF) problem considering valve loading effect, multiple fuel option, and prohibited operating zones of units as well as alternating current network modeling and contingency constraints. Also, th...
Saved in:
Published in | International transactions on electrical energy systems Vol. 24; no. 6; pp. 842 - 857 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Blackwell Publishing Ltd
01.06.2014
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2050-7038 2050-7038 |
DOI | 10.1002/etep.1742 |
Cover
Loading…
Abstract | SUMMARYThis paper presents a comprehensive formulation for the security constrained optimal power flow (SCOPF) problem considering valve loading effect, multiple fuel option, and prohibited operating zones of units as well as alternating current network modeling and contingency constraints. Also, the SCOPF formulation includes the integer variables, such as discrete transformer tap settings, in addition to continuous variables, such as generation of units. Thus, the suggested SCOPF model is a mixed integer, nonlinear, non‐convex, and non‐smooth optimization problem. To solve this problem, a new solution method composed of Benders decomposition and special ordered sets is presented. The proposed formulation decomposes the problem into a master problem and a sub‐problem. The master problem relaxes the nonlinear constraints of the model using a convex linear outer approximation based on the concept of special ordered sets, whereas the sub‐problem contains the nonlinear and non‐convex SCOPF formulation with fixed integer and binary variables. To show the effectiveness of the proposed solution method, it is tested on the well‐known test systems and compared with several other recently published solution methods. These comparisons confirm the validity of the developed approach. Copyright © 2013 John Wiley & Sons, Ltd. |
---|---|
AbstractList | SUMMARY This paper presents a comprehensive formulation for the security constrained optimal power flow (SCOPF) problem considering valve loading effect, multiple fuel option, and prohibited operating zones of units as well as alternating current network modeling and contingency constraints. Also, the SCOPF formulation includes the integer variables, such as discrete transformer tap settings, in addition to continuous variables, such as generation of units. Thus, the suggested SCOPF model is a mixed integer, nonlinear, non-convex, and non-smooth optimization problem. To solve this problem, a new solution method composed of Benders decomposition and special ordered sets is presented. The proposed formulation decomposes the problem into a master problem and a sub-problem. The master problem relaxes the nonlinear constraints of the model using a convex linear outer approximation based on the concept of special ordered sets, whereas the sub-problem contains the nonlinear and non-convex SCOPF formulation with fixed integer and binary variables. To show the effectiveness of the proposed solution method, it is tested on the well-known test systems and compared with several other recently published solution methods. These comparisons confirm the validity of the developed approach. Copyright © 2013 John Wiley & Sons, Ltd. SUMMARYThis paper presents a comprehensive formulation for the security constrained optimal power flow (SCOPF) problem considering valve loading effect, multiple fuel option, and prohibited operating zones of units as well as alternating current network modeling and contingency constraints. Also, the SCOPF formulation includes the integer variables, such as discrete transformer tap settings, in addition to continuous variables, such as generation of units. Thus, the suggested SCOPF model is a mixed integer, nonlinear, non‐convex, and non‐smooth optimization problem. To solve this problem, a new solution method composed of Benders decomposition and special ordered sets is presented. The proposed formulation decomposes the problem into a master problem and a sub‐problem. The master problem relaxes the nonlinear constraints of the model using a convex linear outer approximation based on the concept of special ordered sets, whereas the sub‐problem contains the nonlinear and non‐convex SCOPF formulation with fixed integer and binary variables. To show the effectiveness of the proposed solution method, it is tested on the well‐known test systems and compared with several other recently published solution methods. These comparisons confirm the validity of the developed approach. Copyright © 2013 John Wiley & Sons, Ltd. |
Author | Ansari, Mohammad Reza Amjady, Nima |
Author_xml | – sequence: 1 givenname: Nima surname: Amjady fullname: Amjady, Nima email: Correspondence to: Nima Amjady, Electrical Engineering Department, Semnan University, Semnan, Iran., amjady@tavanir.org.ir organization: Electrical Engineering Department, Semnan University, Semnan, Iran – sequence: 2 givenname: Mohammad Reza surname: Ansari fullname: Ansari, Mohammad Reza organization: Electrical Engineering Department, Semnan University, Semnan, Iran |
BookMark | eNpNkN9OwjAUhxuDiYhc-AZNvB70z8a2SyGAGoJeYDTeNNt6psPRzrYIvIDPbSfG2HPRc5rvO01-56ijtAKELikZUELYEBw0AxqH7AR1GYlIEBOedP71Z6hv7Zr4k4aUxkkXfS21CgqtPmGPLRRbU7kD9rN1JqsUSKwbV22yGjd6BwaXtd7h_IAzrGCHra63rtIKb8C9aem9TaNtK5V4DEqCsVjC8bX6ATMlsW2gqPxGbTzgYQvOXqDTMqst9H_vHnqcTVeTm2BxP7-dXC-CV5YmLGAjGfoiMSd5nvMiLSEHKAqWxynnMgwzkEnESw4p5JyDHEVFySijCUtkWgDvoavj3sbojy1YJ9Z6a5T_UtART1jEeUQ8NTxSu6qGg2iMT8AcBCWijVm0MYs2ZjFdTR_axhvB0aisg_2fkZl3MYp5HImn5Vy8PI_vlvNZKOb8G8mnhtg |
ContentType | Journal Article |
Copyright | Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2013 John Wiley & Sons, Ltd. – notice: Copyright © 2014 John Wiley & Sons, Ltd. |
DBID | BSCLL 7SP 7TB 8FD 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L6V L7M M7S P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
DOI | 10.1002/etep.1742 |
DatabaseName | Istex Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Aerospace Database SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering collection |
DatabaseTitle | Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection SciTech Premium Collection ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7038 |
EndPage | 857 |
ExternalDocumentID | 3531795311 ETEP1742 ark_67375_WNG_ZXBJNGF4_G |
Genre | article |
GroupedDBID | 1OC 24P 31~ 8-1 8-4 8-5 AAEVG AAHHS AAJEY AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACPOU ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ATUGU AUFTA AZFZN BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL D-F DCZOG DPXWK DRFUL DRSTM EBS EJD F00 F01 F04 F21 G-S GODZA GROUPED_DOAJ IX1 L8X LATKE LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM M~E QB0 RHX SUPJJ WIH WIK AANHP ACCMX ACRPL ACYXJ ADNMO 1OB 7SP 7TB 8FD 8FE 8FG AAMMB ABJCF ADMLS AEFGJ AEUYN AFKRA AGQPQ AGXDD AIDQK AIDYY ARAPS BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO FR3 H8D HCIFZ KR7 L6V L7M M7S P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS |
ID | FETCH-LOGICAL-g2982-26d4d4d0730bbb3c9febeecc2b7933d44aed853f3e9eb33ed65cf2121828d9ce3 |
IEDL.DBID | 8FG |
ISSN | 2050-7038 |
IngestDate | Sat Sep 06 07:30:51 EDT 2025 Wed Jan 22 16:34:04 EST 2025 Wed Oct 30 09:52:48 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2982-26d4d4d0730bbb3c9febeecc2b7933d44aed853f3e9eb33ed65cf2121828d9ce3 |
Notes | istex:A81A63AEDDF6EA2E8B088359A4FEEF58A1798B66 ArticleID:ETEP1742 ark:/67375/WNG-ZXBJNGF4-G ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1638253350 |
PQPubID | 2034359 |
PageCount | 16 |
ParticipantIDs | proquest_journals_1638253350 wiley_primary_10_1002_etep_1742_ETEP1742 istex_primary_ark_67375_WNG_ZXBJNGF4_G |
PublicationCentury | 2000 |
PublicationDate | June 2014 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: June 2014 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | International transactions on electrical energy systems |
PublicationTitleAlternate | Int. Trans. Electr. Energ. Syst |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd John Wiley & Sons, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: John Wiley & Sons, Inc |
References | Abido MA. Optimal power flow using particle swarm optimization. Elec. Power Energy Syst., Oct. 2002; 24(7):563-571. Chiang CL. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Syst., Nov. 2005; 20(4):1690-1699. Yamin H, Al-Agtash S, Shahidehpour M. Security-constrained optimal generation scheduling for GENCOs. IEEE Trans. Power Syst., Aug. 2004, 19(3):1365-1372. Thitithamrongchai C, Eua-arporn B. Self-adaptive differential evolution based optimal power flow for units with non-smooth fuel cost functions. Journal of Electrical Systems, June 2007, 3(2):88-99. Mahdad B, Srairi K, Bouktir T. Optimal power flow for large-scale power system with shunt FACTS using efficient parallel GA. Int. J. Elec. Power Energy Syst., June 2010; 32(5):507-517. Aoki K, Kanesashi H. A Modified Newton Method For Optimal Power Flow Using Quadratic Approximated Power Flow. Electrical Engineering in Japan, Sept. 1984; 104(5):115-122. Tang Wj, Li MS, Wu QH, Saunders JR. Bacterial foraging algorithm for optimal power flow in dynamic environments. IEEE Transactions on Circuits and Systems I: Regular Papers, Sept. 2008; 55(8):2433-2442. Lee FN, Breipohl AM. Reserve constrained economic dispatch with prohibited operating zones. IEEE Trans. Power Syst., 8(1):246-254, Feb. 1993. Olofsson M, Andersson G, Soder L. Linear programming based optimal power flow using second order sensitivities. IEEE Trans. Power Syst., Aug. 1995, 10(3):1691-1697. Bouktir T, Slimani L, Mahdad B. Optimal power dispatch for large-scale power system using stochastic search algorithms. Int. J. Power & Energy Syst., 2008; 28(2):118-127. Capitanescu F, Wehenkel L. A new iterative approach to the corrective security-constrained optimal power flow problem. IEEE Trans. Power Syst., Nov. 2008; 23(4):1533-1541. Devaraj D, Yegnanarayana B. Genetic-algorithm-based optimal power flow for security enhancement. IEE Proc. -Gener. Transm. Distrib., Nov. 2005; 152(6):899-905. O˜nate Yumbla PE, Ramirez JM, Coello Coello CA. Optimal power flow subject to security constraints solved with a particle swarm optimizer. IEEE Trans. Power Syst., Feb. 2008; 23(1):33-40. Capitanescu F, Glavic M, Ernst D, Wehenkel J. Contingency filtering techniques for preventive security-constrained optimal power flow. IEEE Trans. Power Syst., Nov. 2007; 22(4):1690-1697. Sivasubramani S, Swarup KS. Sequential quadratic programming based differential evolution algorithm for optimal power flow problem. IET Generation, Transmission and Distribution, Nov. 2011; 5(11):1149-1154. Min W, Shengsong L. A trust region interior point algorithm for optimal power flow problems. Int. J. Elec. Power Energy Syst., May. 2005, 24(4):293-300. AlRashidi MR, El-Hawary ME. Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans. Power Syst., Nov. 2007; 22(4):2030-2038. Giang ZL . Constrained optimal power flow by mixed-integer particle swarm optimization. Proc. IEEE Power Eng. Soc. General Meeting, San Francisco, CA, 1:243-250, June 2005. Guan X, Liu WHE, Papalexopoulos AD. Application of a fuzzy set method in an optimal power flow. Elec. Power Syst. Res., July 1995; vol. 34(1):11-18. Ongsakul W, Tantimaporn T. Optimal power flow by improved evolutionary programming. Elec. Power Comp. Syst., Jan. 2006; 34(1):79-95. Amorim EA, Hoshimoto SHM, Lima FGM, Mantovani JRS. Multi objective evolutionary algorithm applied to the optimal power flow problem. Latin America Transactions, IEEE (Revista IEEE America Latina), June 2010; 8(3):236-244. Biskas PN, Ziogos NP, Tellidou A, Zoumas CE, Bakirtzis AG, Petridis V. Comparison of two metaheuristics with mathematical programming methods for the solution of OPF. IEE Proc. Gener. Transm. Distrib., Jan. 2006, 153(1):16-24. Roa-Sepulveda CA, Pavez-Lazo BJ. A solution to the optimal power flow using simulated annealing. Elec. Power Energy Syst., Jan 2003; 25(1):47-57. Amjady N, Sharifzadeh H. Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm. Elec. Power Syst. Res., Feb. 2011; 81(2):740-749. Capitanescu F, Martinez Ramos JL, Panciatici P, Kirschen D, Marano Marcolini A, Platbrood L, Wehenkel L. State-of-the-art, challenges, and future trends in security constrained optimal power flow. Elec. Power Syst. Res., Aug. 2011; 81(8):1731-1741. Amjady N, Nasiri-Rad H. Non-convex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE Trans. Power Syst., Aug. 2009; 24(3):1489-1502. Condren J, Gedra TW. Expected-security-cost optimal power flow with small-signal stability constraints. IEEE Trans. Power Syst., Nov. 2006; 21(4):1736-1743. Amjady N, Fatemi H, Zareipour H. Solution of optimal power flow subject to security constraints by a New improved bacterial foraging method. IEEE Trans. Power Syst., Aug. 2012; 27(3):1311-1323. Abido MA. Optimal power flow using tabu search algorithm. Elec. Power Comp. Syst., May. 2002; 30(5):469-83. Varadarajan M, Swarup KS. Network loss minimization with voltage security using differential evolution. Elec. Power Syst. Res., May. 2008; 78(5):815-823. Sun Y, Xinlin Y, Wang HF. Approach for optimal power flow with transient stability constraints. IEE Proc. Gener. Transm. Distrib., Jan. 2004; 151(1):8-18. Todorovski M, Rajicic D. An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans. Power Syst., May 2006; 21(2):480-487. Capitanescu F, Wehenkel L. Improving the statement of the corrective security-constrained optimal power-flow problem. IEEE Trans. Power Syst., May. 2007; 22(2):887-889. Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V. Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst., May. 2002; 17(2):229-236. Sayah S, Zehar K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Conversion and Management, Nov. 2008; 49(11):3036-3042. Gaing ZL, Chang RF. Security-constrained optimal power flow by mixed-integer genetic algorithm with arithmetic operators. IEEE Power Eng. Soc. General Meeting, Oct. 2006,1-8. AlRashidi MR, El-Hawary ME. Applications of computational intelligence techniques for solving the revived optimal power flow problem. Elec. Power Syst. Res., Apr. 2009; 79(4):694-702. 2002; 17 2010; 32 2005; 152 2002; 30 2006; 34 Aug. 2004; 19 2011; 81 1995; 34 1984; 104 1995; 10 2004; 3 2008 2008; 78 2005; 20 2006 2006; 153 2008; 55 Aug. 2009; 24 1970 June 2005; 1 2011; 5 2005; 24 2009; 79 2006; 21 2004; 151 2002; 24 2008; 49 2008; 28 2003; 25 Feb. 1993; 8 2008; 23 2012; 27 2003; 1 2007; 3 2007; 22 2010; 8 |
References_xml | – reference: Sun Y, Xinlin Y, Wang HF. Approach for optimal power flow with transient stability constraints. IEE Proc. Gener. Transm. Distrib., Jan. 2004; 151(1):8-18. – reference: Capitanescu F, Wehenkel L. A new iterative approach to the corrective security-constrained optimal power flow problem. IEEE Trans. Power Syst., Nov. 2008; 23(4):1533-1541. – reference: Roa-Sepulveda CA, Pavez-Lazo BJ. A solution to the optimal power flow using simulated annealing. Elec. Power Energy Syst., Jan 2003; 25(1):47-57. – reference: Olofsson M, Andersson G, Soder L. Linear programming based optimal power flow using second order sensitivities. IEEE Trans. Power Syst., Aug. 1995, 10(3):1691-1697. – reference: Bakirtzis AG, Biskas PN, Zoumas CE, Petridis V. Optimal power flow by enhanced genetic algorithm. IEEE Trans. Power Syst., May. 2002; 17(2):229-236. – reference: Biskas PN, Ziogos NP, Tellidou A, Zoumas CE, Bakirtzis AG, Petridis V. Comparison of two metaheuristics with mathematical programming methods for the solution of OPF. IEE Proc. Gener. Transm. Distrib., Jan. 2006, 153(1):16-24. – reference: Capitanescu F, Wehenkel L. Improving the statement of the corrective security-constrained optimal power-flow problem. IEEE Trans. Power Syst., May. 2007; 22(2):887-889. – reference: Amjady N, Nasiri-Rad H. Non-convex economic dispatch with AC constraints by a new real coded genetic algorithm. IEEE Trans. Power Syst., Aug. 2009; 24(3):1489-1502. – reference: Gaing ZL, Chang RF. Security-constrained optimal power flow by mixed-integer genetic algorithm with arithmetic operators. IEEE Power Eng. Soc. General Meeting, Oct. 2006,1-8. – reference: Min W, Shengsong L. A trust region interior point algorithm for optimal power flow problems. Int. J. Elec. Power Energy Syst., May. 2005, 24(4):293-300. – reference: Capitanescu F, Martinez Ramos JL, Panciatici P, Kirschen D, Marano Marcolini A, Platbrood L, Wehenkel L. State-of-the-art, challenges, and future trends in security constrained optimal power flow. Elec. Power Syst. Res., Aug. 2011; 81(8):1731-1741. – reference: Giang ZL . Constrained optimal power flow by mixed-integer particle swarm optimization. Proc. IEEE Power Eng. Soc. General Meeting, San Francisco, CA, 1:243-250, June 2005. – reference: AlRashidi MR, El-Hawary ME. Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects. IEEE Trans. Power Syst., Nov. 2007; 22(4):2030-2038. – reference: Devaraj D, Yegnanarayana B. Genetic-algorithm-based optimal power flow for security enhancement. IEE Proc. -Gener. Transm. Distrib., Nov. 2005; 152(6):899-905. – reference: Tang Wj, Li MS, Wu QH, Saunders JR. Bacterial foraging algorithm for optimal power flow in dynamic environments. IEEE Transactions on Circuits and Systems I: Regular Papers, Sept. 2008; 55(8):2433-2442. – reference: Lee FN, Breipohl AM. Reserve constrained economic dispatch with prohibited operating zones. IEEE Trans. Power Syst., 8(1):246-254, Feb. 1993. – reference: Capitanescu F, Glavic M, Ernst D, Wehenkel J. Contingency filtering techniques for preventive security-constrained optimal power flow. IEEE Trans. Power Syst., Nov. 2007; 22(4):1690-1697. – reference: Varadarajan M, Swarup KS. Network loss minimization with voltage security using differential evolution. Elec. Power Syst. Res., May. 2008; 78(5):815-823. – reference: AlRashidi MR, El-Hawary ME. Applications of computational intelligence techniques for solving the revived optimal power flow problem. Elec. Power Syst. Res., Apr. 2009; 79(4):694-702. – reference: Amjady N, Sharifzadeh H. Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm. Elec. Power Syst. Res., Feb. 2011; 81(2):740-749. – reference: Chiang CL. Improved genetic algorithm for power economic dispatch of units with valve-point effects and multiple fuels. IEEE Trans. Power Syst., Nov. 2005; 20(4):1690-1699. – reference: Todorovski M, Rajicic D. An initialization procedure in solving optimal power flow by genetic algorithm. IEEE Trans. Power Syst., May 2006; 21(2):480-487. – reference: Bouktir T, Slimani L, Mahdad B. Optimal power dispatch for large-scale power system using stochastic search algorithms. Int. J. Power & Energy Syst., 2008; 28(2):118-127. – reference: Yamin H, Al-Agtash S, Shahidehpour M. Security-constrained optimal generation scheduling for GENCOs. IEEE Trans. Power Syst., Aug. 2004, 19(3):1365-1372. – reference: O˜nate Yumbla PE, Ramirez JM, Coello Coello CA. Optimal power flow subject to security constraints solved with a particle swarm optimizer. IEEE Trans. Power Syst., Feb. 2008; 23(1):33-40. – reference: Guan X, Liu WHE, Papalexopoulos AD. Application of a fuzzy set method in an optimal power flow. Elec. Power Syst. Res., July 1995; vol. 34(1):11-18. – reference: Amjady N, Fatemi H, Zareipour H. Solution of optimal power flow subject to security constraints by a New improved bacterial foraging method. IEEE Trans. Power Syst., Aug. 2012; 27(3):1311-1323. – reference: Condren J, Gedra TW. Expected-security-cost optimal power flow with small-signal stability constraints. IEEE Trans. Power Syst., Nov. 2006; 21(4):1736-1743. – reference: Sayah S, Zehar K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Conversion and Management, Nov. 2008; 49(11):3036-3042. – reference: Sivasubramani S, Swarup KS. Sequential quadratic programming based differential evolution algorithm for optimal power flow problem. IET Generation, Transmission and Distribution, Nov. 2011; 5(11):1149-1154. – reference: Abido MA. Optimal power flow using particle swarm optimization. Elec. Power Energy Syst., Oct. 2002; 24(7):563-571. – reference: Abido MA. Optimal power flow using tabu search algorithm. Elec. Power Comp. Syst., May. 2002; 30(5):469-83. – reference: Thitithamrongchai C, Eua-arporn B. Self-adaptive differential evolution based optimal power flow for units with non-smooth fuel cost functions. Journal of Electrical Systems, June 2007, 3(2):88-99. – reference: Amorim EA, Hoshimoto SHM, Lima FGM, Mantovani JRS. Multi objective evolutionary algorithm applied to the optimal power flow problem. Latin America Transactions, IEEE (Revista IEEE America Latina), June 2010; 8(3):236-244. – reference: Aoki K, Kanesashi H. A Modified Newton Method For Optimal Power Flow Using Quadratic Approximated Power Flow. Electrical Engineering in Japan, Sept. 1984; 104(5):115-122. – reference: Ongsakul W, Tantimaporn T. Optimal power flow by improved evolutionary programming. Elec. Power Comp. Syst., Jan. 2006; 34(1):79-95. – reference: Mahdad B, Srairi K, Bouktir T. Optimal power flow for large-scale power system with shunt FACTS using efficient parallel GA. Int. J. Elec. Power Energy Syst., June 2010; 32(5):507-517. – volume: 81 start-page: 1731 issue: 8 year: 2011 end-page: 1741 article-title: State‐of‐the‐art, challenges, and future trends in security constrained optimal power flow publication-title: Elec. Power Syst. Res. – volume: 1 start-page: 243 year: June 2005 end-page: 250 article-title: Constrained optimal power flow by mixed‐integer particle swarm optimization publication-title: Proc. IEEE Power Eng. Soc. General Meeting, San Francisco, CA – volume: 3 start-page: 323 year: 2004 end-page: 326 – volume: 152 start-page: 899 issue: 6 year: 2005 end-page: 905 article-title: Genetic‐algorithm‐based optimal power flow for security enhancement publication-title: IEE Proc. ‐Gener. Transm. Distrib. – volume: 22 start-page: 2030 issue: 4 year: 2007 end-page: 2038 article-title: Hybrid particle swarm optimization approach for solving the discrete OPF problem considering the valve loading effects publication-title: IEEE Trans. Power Syst. – volume: 17 start-page: 229 issue: 2 year: 2002 end-page: 236 article-title: Optimal power flow by enhanced genetic algorithm publication-title: IEEE Trans. Power Syst. – volume: 151 start-page: 8 issue: 1 year: 2004 end-page: 18 article-title: Approach for optimal power flow with transient stability constraints publication-title: IEE Proc. Gener. Transm. Distrib. – volume: 49 start-page: 3036 issue: 11 year: 2008 end-page: 3042 article-title: Modified differential evolution algorithm for optimal power flow with non‐smooth cost functions publication-title: Energy Conversion and Management – volume: 22 start-page: 887 issue: 2 year: 2007 end-page: 889 article-title: Improving the statement of the corrective security‐constrained optimal power‐flow problem publication-title: IEEE Trans. Power Syst. – volume: 27 start-page: 1311 issue: 3 year: 2012 end-page: 1323 article-title: Solution of optimal power flow subject to security constraints by a New improved bacterial foraging method publication-title: IEEE Trans. Power Syst. – volume: 5 start-page: 1149 issue: 11 year: 2011 end-page: 1154 article-title: Sequential quadratic programming based differential evolution algorithm for optimal power flow problem publication-title: IET Generation, Transmission and Distribution – volume: 21 start-page: 480 issue: 2 year: 2006 end-page: 487 article-title: An initialization procedure in solving optimal power flow by genetic algorithm publication-title: IEEE Trans. Power Syst. – volume: 1 start-page: 97 year: 2003 end-page: 102 – volume: 8 start-page: 246 issue: 1 year: Feb. 1993 end-page: 254 article-title: Reserve constrained economic dispatch with prohibited operating zones publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 79 issue: 1 year: 2006 end-page: 95 article-title: Optimal power flow by improved evolutionary programming publication-title: Elec. Power Comp. Syst. – volume: 153 start-page: 16 issue: 1 year: 2006 end-page: 24 article-title: Comparison of two metaheuristics with mathematical programming methods for the solution of OPF publication-title: IEE Proc. Gener. Transm. Distrib. – volume: 21 start-page: 1736 issue: 4 year: 2006 end-page: 1743 article-title: Expected‐security‐cost optimal power flow with small‐signal stability constraints publication-title: IEEE Trans. Power Syst. – volume: 3 start-page: 88 issue: 2 year: 2007 end-page: 99 article-title: Self‐adaptive differential evolution based optimal power flow for units with non‐smooth fuel cost functions publication-title: Journal of Electrical Systems – volume: 28 start-page: 118 issue: 2 year: 2008 end-page: 127 article-title: Optimal power dispatch for large‐scale power system using stochastic search algorithms publication-title: Int. J. Power & Energy Syst. – volume: 23 start-page: 33 issue: 1 year: 2008 end-page: 40 article-title: Optimal power flow subject to security constraints solved with a particle swarm optimizer publication-title: IEEE Trans. Power Syst. – volume: 81 start-page: 740 issue: 2 year: 2011 end-page: 749 article-title: Security constrained optimal power flow considering detailed generator model by a new robust differential evolution algorithm publication-title: Elec. Power Syst. Res. – volume: 24 start-page: 1489 issue: 3 year: Aug. 2009 end-page: 1502 article-title: Non‐convex economic dispatch with AC constraints by a new real coded genetic algorithm publication-title: IEEE Trans. Power Syst. – volume: 104 start-page: 115 issue: 5 year: 1984 end-page: 122 publication-title: Electrical Engineering in Japan – volume: 24 start-page: 563 issue: 7 year: 2002 end-page: 571 article-title: Optimal power flow using particle swarm optimization publication-title: Elec. Power Energy Syst. – volume: 79 start-page: 694 issue: 4 year: 2009 end-page: 702 article-title: Applications of computational intelligence techniques for solving the revived optimal power flow problem publication-title: Elec. Power Syst. Res. – volume: 22 start-page: 1690 issue: 4 year: 2007 end-page: 1697 article-title: Contingency filtering techniques for preventive security‐constrained optimal power flow publication-title: IEEE Trans. Power Syst. – start-page: 447 year: 1970 end-page: 454 – volume: 19 start-page: 1365 issue: 3 year: Aug. 2004 end-page: 1372 article-title: Security‐constrained optimal generation scheduling for GENCOs publication-title: IEEE Trans. Power Syst. – volume: 24 start-page: 293 issue: 4 year: 2005 end-page: 300 article-title: A trust region interior point algorithm for optimal power flow problems publication-title: Int. J. Elec. Power Energy Syst. – volume: 55 start-page: 2433 issue: 8 year: 2008 end-page: 2442 article-title: Bacterial foraging algorithm for optimal power flow in dynamic environments publication-title: IEEE Transactions on Circuits and Systems I: Regular Papers – volume: 8 start-page: 236 issue: 3 year: 2010 end-page: 244 article-title: Multi objective evolutionary algorithm applied to the optimal power flow problem publication-title: Latin America Transactions, IEEE (Revista IEEE America Latina) – volume: 78 start-page: 815 issue: 5 year: 2008 end-page: 823 article-title: Network loss minimization with voltage security using differential evolution publication-title: Elec. Power Syst. Res. – volume: 30 start-page: 469 issue: 5 year: 2002 end-page: 83 article-title: Optimal power flow using tabu search algorithm publication-title: Elec. Power Comp. Syst. – year: 2008 – start-page: 1 year: 2006 end-page: 8 article-title: Security‐constrained optimal power flow by mixed‐integer genetic algorithm with arithmetic operators publication-title: IEEE Power Eng. Soc. General Meeting – volume: 25 start-page: 47 issue: 1 year: 2003 end-page: 57 article-title: A solution to the optimal power flow using simulated annealing publication-title: Elec. Power Energy Syst. – volume: 23 start-page: 1533 issue: 4 year: 2008 end-page: 1541 article-title: A new iterative approach to the corrective security‐constrained optimal power flow problem publication-title: IEEE Trans. Power Syst. – volume: 32 start-page: 507 issue: 5 year: 2010 end-page: 517 article-title: Optimal power flow for large‐scale power system with shunt FACTS using efficient parallel GA publication-title: Int. J. Elec. Power Energy Syst. – volume: 20 start-page: 1690 issue: 4 year: 2005 end-page: 1699 article-title: Improved genetic algorithm for power economic dispatch of units with valve‐point effects and multiple fuels publication-title: IEEE Trans. Power Syst. – volume: 34 start-page: 11 issue: 1 year: 1995 end-page: 18 article-title: Application of a fuzzy set method in an optimal power flow publication-title: Elec. Power Syst. Res. – volume: 10 start-page: 1691 issue: 3 year: 1995 end-page: 1697 article-title: Linear programming based optimal power flow using second order sensitivities publication-title: IEEE Trans. Power Syst. |
SSID | ssj0000941178 |
Score | 2.0882878 |
Snippet | SUMMARYThis paper presents a comprehensive formulation for the security constrained optimal power flow (SCOPF) problem considering valve loading effect,... SUMMARY This paper presents a comprehensive formulation for the security constrained optimal power flow (SCOPF) problem considering valve loading effect,... |
SourceID | proquest wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 842 |
SubjectTerms | Benders decomposition Decomposition mixed integer non-convex nonlinear SCOPF special order set |
Title | Non-convex security constrained optimal power flow by a new solution method composed of Benders decomposition and special ordered sets |
URI | https://api.istex.fr/ark:/67375/WNG-ZXBJNGF4-G/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetep.1742 https://www.proquest.com/docview/1638253350 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXWBAfIpCqW5AiCWidZyvCVHUD3WIKlRExWIlscMAJKUpovwBfjd3TlpgQVmSKPHg5_M920_3GDt3RWBHtnCthLeFJYQTWX5k46NAwLmnMYMZgWzoDu_FaOpMqw23opJVruZEM1GrPKE98iviDRy5idO-nr1Z5BpFp6uVhcYmq3cw09A49_uD9R4LLl06Hc9fFRRq8yskojPS8HDkotSNyz_E8jc9Nfmlv8t2KmIINyWSe2xDZ_ts-1e5wAP2FeaZZWTiSygq3zlIiOCRz4NWkGP8v2IjM7I-g_Ql_4D4EyJA6gyrMQalZzSQljwv6KcUusZPrgCly7dGxgVRpqAo7enBVOjEjwu9KA7Zfb83uR1alY-C9cQDJNDcVQIvCuY4ju0kSBE5hI7HGJy2EiLSCrN2ausAl9a2Vq6TpJjScOnhqyDR9hGrZXmmjxloN-CewowWU200roPIT2OtvFThpMr9ToNdmG6Vs7JWhozmzyQd8xz5EA7k47Q7Cgd9IQcN1lz1u6yippA_GDfYpcFi3U5ZXZlLAlASgLI36Y3p5uT_lk7ZFnIcUaq7mqy2mL_rM-QRi7hlBkuL1bu9cHz3DVFtzD0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7QE4ICggtpQyB1pxibrrOK9DhVi6j76iCm3FioubxA4H2mTbbNX2D_Bz-I3MOEkfF25VLkmUWLLny8xn5_MMwCdfRm7iSt_JRE86UnqJEyYuXUoyuAgMRTArkI39ybHcm3mzJfjb7oVhWWXrE62j1mXGa-RbzBsEcROv92V-7nDVKP672pbQqGGxb26uaMpWbe_ukH03hBgNp98mTlNVwPklIqKTwteSDoZ2mqZuFuXUD-qISAmqrpYyMZpiWO6aiCaartG-l-Xk4ImIhzrKjEvtPoFlyTtaO7A8GMZH329XdWiy1O8HYZvCqCe2iPrOWTUkiP2y4a4fUNn7hNhGtNFLeNFQUfxaY-cVLJliBZ7fS1D4Gv7EZeFYYfo1Vk2lO8yYUnJlCaOxJI9zRo3Mudga5qflFaY3mCCRdWxRjXWVamT1elnxSzkObAW7CrWp71rhGCaFRt76Sd8E2pyg9HBlFtUbOH6UMX4LnaIszDtA40ci0BRDU87GJkyUhHlqdJBrcuMi7Hdh0w6rmtfZOVRy8ZvFaoGnfsRj9XM22IvHI6nGXVhrx10132ml7lDVhc_WFrft1PmchWIDKjagGk6HR3yy-v-WPsLTyfTwQB3sxvvv4RkxLFlry9ags7i4NB-IxSzS9QY6CCePjdZ_0UUKnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non%E2%80%90convex+security+constrained+optimal+power+flow+by+a+new+solution+method+composed+of+Benders+decomposition+and+special+ordered+sets&rft.jtitle=International+transactions+on+electrical+energy+systems&rft.au=Amjady%2C+Nima&rft.au=Ansari%2C+Mohammad+Reza&rft.date=2014-06-01&rft.issn=2050-7038&rft.eissn=2050-7038&rft.volume=24&rft.issue=6&rft.spage=842&rft.epage=857&rft_id=info:doi/10.1002%2Fetep.1742&rft.externalDBID=10.1002%252Fetep.1742&rft.externalDocID=ETEP1742 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7038&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7038&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7038&client=summon |