How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies?
In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number...
Saved in:
Published in | Inductive Logic Programming Vol. 11105; pp. 38 - 53 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number of experiments performed. We study in this article how the cost of experimentation can be reduced with active learning to learn efficient agent strategies. We consider an extension of the meta-interpretive learning framework that allocates a Bayesian posterior distribution over the hypothesis space. At each iteration, the learner queries the label of the instance with maximum entropy. This produces the maximal discriminative over the remaining competing hypotheses, and thus achieves the highest shrinkage of the version space. We study the theoretical framework and evaluate the gain on the cost of experimentation for the task of learning regular grammars and agent strategies: our results demonstrate the number of experiments to perform to reach an arbitrary accuracy level can at least be halved. |
---|---|
AbstractList | In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number of experiments performed. We study in this article how the cost of experimentation can be reduced with active learning to learn efficient agent strategies. We consider an extension of the meta-interpretive learning framework that allocates a Bayesian posterior distribution over the hypothesis space. At each iteration, the learner queries the label of the instance with maximum entropy. This produces the maximal discriminative over the remaining competing hypotheses, and thus achieves the highest shrinkage of the version space. We study the theoretical framework and evaluate the gain on the cost of experimentation for the task of learning regular grammars and agent strategies: our results demonstrate the number of experiments to perform to reach an arbitrary accuracy level can at least be halved. |
Author | Hocquette, Céline Muggleton, Stephen |
Author_xml | – sequence: 1 givenname: Céline surname: Hocquette fullname: Hocquette, Céline email: celine.hocquette16@imperial.ac.uk organization: Department of Computing, Imperial College London, London, UK – sequence: 2 givenname: Stephen surname: Muggleton fullname: Muggleton, Stephen email: s.muggleton@imperial.ac.uk organization: Department of Computing, Imperial College London, London, UK |
BookMark | eNpNkNtOwzAMhsNRDNgTcJMXCDhx0iZXaEycpCHE6ToKqTsKox1NBzw-4XCBZMnS__u37G-XbbZdS4wdSDiUAOWRK61AgdIJ51wBwnlcY-OsYtZ-JLfORrKQUiBqt_HfMw432QgQlHClxm22K8GAlFJrs8PGKT0DgAKbTRixm4vug1-t4hOfhpaffi6pb16pHcKCT7s08BPit1StIlW8afkkDs078RmFvm3aOe9qPpnnaX439GGgeUPpeJ9t1WGRaPzX99jD2en99ELMrs8vp5OZmCuHgyhAGlvWEigYHTFWJqIJ-EiqUqghVg7JGgqqoFo7a01ZOCujKsGGGquAe0z-7k3LPt9CvX_supfkJfhvhj4T8egzE_8DzGeGOaN-M8u-e1tRGjx9h2J-oQ-L-BSWA_XJF8oWGo3PpS1-AXx1b14 |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2018 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2018 |
DBID | FFUUA |
DEWEY | 5.1150000000000002 |
DOI | 10.1007/978-3-319-99960-9_3 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 9783319999609 3319999605 |
EISSN | 1611-3349 |
Editor | Riguzzi, Fabrizio Zese, Riccardo Bellodi, Elena |
Editor_xml | – sequence: 1 fullname: Riguzzi, Fabrizio – sequence: 2 fullname: Zese, Riccardo – sequence: 3 fullname: Bellodi, Elena |
EndPage | 53 |
ExternalDocumentID | EBC6286435_35_48 |
GroupedDBID | 0D6 0DA 38. AABBV ACOUV AEDXK AEJLV AEKFX AEZAY ALMA_UNASSIGNED_HOLDINGS ANXHU BBABE BICGV BJAWL BUBNW CVGDX CZZ EDOXC FFUUA FOYMO I4C IEZ NQNQZ OEBZI SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-g293t-601587f10ea54c3cd5c35a3be2d2340cd93e85ea26ef4988576981c2708af3da3 |
ISBN | 9783319999593 3319999591 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:11:26 EDT 2025 Thu Apr 10 11:11:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g293t-601587f10ea54c3cd5c35a3be2d2340cd93e85ea26ef4988576981c2708af3da3 |
Notes | A correction to this publication are available online at 10.1007/978-3-319-99960-9_11 The original version of this chapter was revised: The authors affiliation was corrected. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-99960-9_11 |
OCLC | 1050111445 |
PQID | EBC6286435_35_48 |
PageCount | 16 |
ParticipantIDs | springer_books_10_1007_978_3_319_99960_9_3 proquest_ebookcentralchapters_6286435_35_48 |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 28th International Conference, ILP 2018, Ferrara, Italy, September 2-4, 2018, Proceedings |
PublicationTitle | Inductive Logic Programming |
PublicationYear | 2018 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Weikum, Gerhard Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, Lancaster, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, Stanford, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology Madras, Chennai, India – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: TU Dortmund University, Dortmund, Germany – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: University of California, Los Angeles, USA – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug organization: University of California, Berkeley, USA – sequence: 12 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max Planck Institute for Informatics, Saarbrücken, Germany |
SSID | ssj0002089740 ssj0002792 |
Score | 2.098445 |
Snippet | In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 38 |
SubjectTerms | Active learning Agent-based modelling Bayesian meta-interpretive learning |
Title | How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies? |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6286435&ppg=48 http://link.springer.com/10.1007/978-3-319-99960-9_3 |
Volume | 11105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pa9swFBdpdtl22NZtrPuHDutlwcO2JEc-jNGGjlKaHko7ehOyJIfC5sDiwNin2WfZJ9t7lpQ43i4dBBOMiZX3fkjv7-8R8s7qsi4yKxJZcZtw7vKktLpKROlcnfFM62582_yiOL3mZzfiZjT60ataWrfVB_Pzn30l_6NVuAd6xS7ZO2h286NwA76DfuEKGobrwPjdDbOGckGkasXCH5yXbLDkHyutvsWzqKuJNbDtt34C3sznxL_2Eunz9WIBevOJ91Dv1ccQzpubrw12KTWBFDnMApgtV-3k2B3O8sOj9BLpX53tQidhRTHggnYuNm9NIgsuluD5UkKUkFt9PA9JjItl29WGTeKcibjt9OMSmRzEJWJcchDZ3AbXdhxZxpAOAUmSe_sfg80a3B1_y_n9uUDWReZZTsOe69lhwuntmYf_Ohf6pSDYtoVuXpqUiu2RvakUY3Lv6OTs_MsmOpenEt6cbs50pFn0-Si_JOwSikvOPI_T9i9syK08f_HgjTuuzCD73hk1V4_JQ2x0odiBArJ7Qkau2SePovhpEP8-edDjrHxKLgEUFEFBARS0DwqKoKDH7vevAAh621APCBoBQZc17QBBt4D49Ixcfz65mp0mYTBHsgDrsE3AiRdyWmep04IbZqwwTGhWudzmjKfGlsxJ4XReuJqXUoJPW8rM5NNU6ppZzZ6TcbNs3AtC4QDQvONwcg7sqVrmzIETXkyrFFxrKw7IJEpLdeUDoWbZeNmsFLZWg8mv4MPlAXkfBarw4ZWKrNygCMUUKEJ1ilCgiJd3efgVub8F-Wsybr-v3RswR9vqbcDOH5xLgTI |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inductive+Logic+Programming&rft.au=Hocquette%2C+C%C3%A9line&rft.au=Muggleton%2C+Stephen&rft.atitle=How+Much+Can+Experimental+Cost+Be%C2%A0Reduced+in+Active+Learning+of+Agent+Strategies%3F&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319999593&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=38&rft.epage=53&rft_id=info:doi/10.1007%2F978-3-319-99960-9_3 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6286435-l.jpg |