How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies?

In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number...

Full description

Saved in:
Bibliographic Details
Published inInductive Logic Programming Vol. 11105; pp. 38 - 53
Main Authors Hocquette, Céline, Muggleton, Stephen
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number of experiments performed. We study in this article how the cost of experimentation can be reduced with active learning to learn efficient agent strategies. We consider an extension of the meta-interpretive learning framework that allocates a Bayesian posterior distribution over the hypothesis space. At each iteration, the learner queries the label of the instance with maximum entropy. This produces the maximal discriminative over the remaining competing hypotheses, and thus achieves the highest shrinkage of the version space. We study the theoretical framework and evaluate the gain on the cost of experimentation for the task of learning regular grammars and agent strategies: our results demonstrate the number of experiments to perform to reach an arbitrary accuracy level can at least be halved.
AbstractList In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at learning an agent strategy, performing experiments involves costs. To that extent, the efficiency of a learning process relies on the number of experiments performed. We study in this article how the cost of experimentation can be reduced with active learning to learn efficient agent strategies. We consider an extension of the meta-interpretive learning framework that allocates a Bayesian posterior distribution over the hypothesis space. At each iteration, the learner queries the label of the instance with maximum entropy. This produces the maximal discriminative over the remaining competing hypotheses, and thus achieves the highest shrinkage of the version space. We study the theoretical framework and evaluate the gain on the cost of experimentation for the task of learning regular grammars and agent strategies: our results demonstrate the number of experiments to perform to reach an arbitrary accuracy level can at least be halved.
Author Hocquette, Céline
Muggleton, Stephen
Author_xml – sequence: 1
  givenname: Céline
  surname: Hocquette
  fullname: Hocquette, Céline
  email: celine.hocquette16@imperial.ac.uk
  organization: Department of Computing, Imperial College London, London, UK
– sequence: 2
  givenname: Stephen
  surname: Muggleton
  fullname: Muggleton, Stephen
  email: s.muggleton@imperial.ac.uk
  organization: Department of Computing, Imperial College London, London, UK
BookMark eNpNkNtOwzAMhsNRDNgTcJMXCDhx0iZXaEycpCHE6ToKqTsKox1NBzw-4XCBZMnS__u37G-XbbZdS4wdSDiUAOWRK61AgdIJ51wBwnlcY-OsYtZ-JLfORrKQUiBqt_HfMw432QgQlHClxm22K8GAlFJrs8PGKT0DgAKbTRixm4vug1-t4hOfhpaffi6pb16pHcKCT7s08BPit1StIlW8afkkDs078RmFvm3aOe9qPpnnaX439GGgeUPpeJ9t1WGRaPzX99jD2en99ELMrs8vp5OZmCuHgyhAGlvWEigYHTFWJqIJ-EiqUqghVg7JGgqqoFo7a01ZOCujKsGGGquAe0z-7k3LPt9CvX_supfkJfhvhj4T8egzE_8DzGeGOaN-M8u-e1tRGjx9h2J-oQ-L-BSWA_XJF8oWGo3PpS1-AXx1b14
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 5.1150000000000002
DOI 10.1007/978-3-319-99960-9_3
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783319999609
3319999605
EISSN 1611-3349
Editor Riguzzi, Fabrizio
Zese, Riccardo
Bellodi, Elena
Editor_xml – sequence: 1
  fullname: Riguzzi, Fabrizio
– sequence: 2
  fullname: Zese, Riccardo
– sequence: 3
  fullname: Bellodi, Elena
EndPage 53
ExternalDocumentID EBC6286435_35_48
GroupedDBID 0D6
0DA
38.
AABBV
ACOUV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-g293t-601587f10ea54c3cd5c35a3be2d2340cd93e85ea26ef4988576981c2708af3da3
ISBN 9783319999593
3319999591
ISSN 0302-9743
IngestDate Tue Jul 29 20:11:26 EDT 2025
Thu Apr 10 11:11:10 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g293t-601587f10ea54c3cd5c35a3be2d2340cd93e85ea26ef4988576981c2708af3da3
Notes A correction to this publication are available online at 10.1007/978-3-319-99960-9_11
The original version of this chapter was revised: The authors affiliation was corrected. The correction to this chapter is available at https://doi.org/10.1007/978-3-319-99960-9_11
OCLC 1050111445
PQID EBC6286435_35_48
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_319_99960_9_3
proquest_ebookcentralchapters_6286435_35_48
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 28th International Conference, ILP 2018, Ferrara, Italy, September 2-4, 2018, Proceedings
PublicationTitle Inductive Logic Programming
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, Lancaster, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, Stanford, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Dept Applied Math & Computer Science, Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology Madras, Chennai, India
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: TU Dortmund University, Dortmund, Germany
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: University of California, Los Angeles, USA
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
  organization: University of California, Berkeley, USA
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max Planck Institute for Informatics, Saarbrücken, Germany
SSID ssj0002089740
ssj0002792
Score 2.098445
Snippet In science, experiments are empirical observations allowing for the arbitration of competing hypotheses and knowledge acquisition. For a scientist that aims at...
SourceID springer
proquest
SourceType Publisher
StartPage 38
SubjectTerms Active learning
Agent-based modelling
Bayesian meta-interpretive learning
Title How Much Can Experimental Cost Be Reduced in Active Learning of Agent Strategies?
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6286435&ppg=48
http://link.springer.com/10.1007/978-3-319-99960-9_3
Volume 11105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pa9swFBdpdtl22NZtrPuHDutlwcO2JEc-jNGGjlKaHko7ehOyJIfC5sDiwNin2WfZJ9t7lpQ43i4dBBOMiZX3fkjv7-8R8s7qsi4yKxJZcZtw7vKktLpKROlcnfFM62582_yiOL3mZzfiZjT60ataWrfVB_Pzn30l_6NVuAd6xS7ZO2h286NwA76DfuEKGobrwPjdDbOGckGkasXCH5yXbLDkHyutvsWzqKuJNbDtt34C3sznxL_2Eunz9WIBevOJ91Dv1ccQzpubrw12KTWBFDnMApgtV-3k2B3O8sOj9BLpX53tQidhRTHggnYuNm9NIgsuluD5UkKUkFt9PA9JjItl29WGTeKcibjt9OMSmRzEJWJcchDZ3AbXdhxZxpAOAUmSe_sfg80a3B1_y_n9uUDWReZZTsOe69lhwuntmYf_Ohf6pSDYtoVuXpqUiu2RvakUY3Lv6OTs_MsmOpenEt6cbs50pFn0-Si_JOwSikvOPI_T9i9syK08f_HgjTuuzCD73hk1V4_JQ2x0odiBArJ7Qkau2SePovhpEP8-edDjrHxKLgEUFEFBARS0DwqKoKDH7vevAAh621APCBoBQZc17QBBt4D49Ixcfz65mp0mYTBHsgDrsE3AiRdyWmep04IbZqwwTGhWudzmjKfGlsxJ4XReuJqXUoJPW8rM5NNU6ppZzZ6TcbNs3AtC4QDQvONwcg7sqVrmzIETXkyrFFxrKw7IJEpLdeUDoWbZeNmsFLZWg8mv4MPlAXkfBarw4ZWKrNygCMUUKEJ1ilCgiJd3efgVub8F-Wsybr-v3RswR9vqbcDOH5xLgTI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Inductive+Logic+Programming&rft.au=Hocquette%2C+C%C3%A9line&rft.au=Muggleton%2C+Stephen&rft.atitle=How+Much+Can+Experimental+Cost+Be%C2%A0Reduced+in+Active+Learning+of+Agent+Strategies%3F&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319999593&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=38&rft.epage=53&rft_id=info:doi/10.1007%2F978-3-319-99960-9_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6286435-l.jpg