The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH3NH3PbI3: Time‐Domain Ab Initio Analysis

The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 32; pp. 13347 - 13353
Main Authors Qiao, Lu, Fang, Wei‐Hai, Long, Run
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 03.08.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text
ISSN1433-7851
1521-3773
DOI10.1002/anie.202004192

Cover

Loading…
Abstract The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity. The interplay between lead vacancy and water rationalizes the positive and negative effects of water on the charge carrier lifetimes in the organic–inorganic perovskite MAPbI3. The obtained results provide a theoretical understanding of how the complex charge dynamics in perovskites are affected by defects and water.
AbstractList The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity. The interplay between lead vacancy and water rationalizes the positive and negative effects of water on the charge carrier lifetimes in the organic–inorganic perovskite MAPbI3. The obtained results provide a theoretical understanding of how the complex charge dynamics in perovskites are affected by defects and water.
The perovskite excited-state lifetimes exhibit the conflicting experimental results exposure to humidity, which should correlate with defects because they inevitably present in perovskite films. Nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory calculations demonstrate that the formation energy of a lead vacancy decreases from 0.29 eV in pristine MAPbI 3 (MA= CH 3 NH 3 + ) to over -2 eV in the perovskite in the presence water regardless of its oxidation states, indicating that the lead vacancy is a major defect and which can spontaneously form in the moist environment. The lead vacancy reduces NA coupling by localizing hole for decreasing the overlap with electron, slowing electron-hole recombination by a factor of 2. By creating a deep electron trap state due to formation of an iodine dimer in presence of the lead vacancy interacting strongly with water molecules, the electron gets rapidly trapped on 4 ps and then recombines with the valence band free hole within sub-1 ns. The over 3 times acceleration relative to the pristine system is owing to enhanced NA couplings. By eliminating the mid-gap state due to dissociation of the iodine dimer with accepting two photoexcited electrons, the electron-hole recombination reduces by a factor of over 2 compared to the pristine MAPbI 3 , arising due to the reduced overlap between electron and hole. The calculated recombination time scales show excellent agreement with experiment. These phenomena arise due to a complex interplay of the unusual chemical, structural, electrostatic and quantum properties of halide perovskites. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity. The detailed mechanistic understanding of the complex charge-phonon dynamics of perovskite in the presence of defects and water molecules provides key insights for a broad range of solar and electro-optic applications.
The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity.
Author Long, Run
Fang, Wei‐Hai
Qiao, Lu
Author_xml – sequence: 1
  givenname: Lu
  surname: Qiao
  fullname: Qiao, Lu
  organization: Beijing Normal University
– sequence: 2
  givenname: Wei‐Hai
  surname: Fang
  fullname: Fang, Wei‐Hai
  organization: Beijing Normal University
– sequence: 3
  givenname: Run
  orcidid: 0000-0003-3912-8899
  surname: Long
  fullname: Long, Run
  email: runlong@bnu.edu.cn
  organization: Beijing Normal University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32337808$$D View this record in MEDLINE/PubMed
BookMark eNo9kc9OwzAMxiM0BGNw5YgicS7kT5sm3EYZbNIECA04VmnmQqYuHW2nqTvxCHtGnoRMg53i2D9_tvydoI4rHSB0TskVJYRda2fhihFGSEgVO0BdGjEa8DjmHR-HnAexjOgxOqnrmeelJOIIHXPGeSyJ7KLN5BPwyDVQLQrd4ltoVgAOj0FP8Zs22pkWazfF79oj-EU3tnS6sGuoceM7n5frdQG4zHHyqasPwImuKuvJsc2hsXOPWYeTIX8c8udsxG_wxCd_vjd35Vz7Sj_zw60XxX0v29a2PkWHuS5qOPt7e-j1fjBJhsH46WGU9MfBB1OcBUrEWmYiCnOIIGOS6WlsDOXEKJPFwrCI5pAJMLkQijAWRxk1EYCIhOKUS95DlzvdRVV-LaFu0lm5rPwSdcpCJpUKacg8dfFHLbM5TNNFZee6atP_A3pA7YCVLaDd1ylJt_akW3vSvT1p_3E02P_4L80EhUA
ContentType Journal Article
Copyright 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
7TM
K9.
DOI 10.1002/anie.202004192
DatabaseName PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 13353
ExternalDocumentID 32337808
ANIE202004192
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21573022, 51861135101; 21688102, 21590801, 21703222
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
ABJNI
NPM
YIN
7TM
ABDBF
AEYWJ
AGHNM
AGYGG
K9.
ID FETCH-LOGICAL-g2932-967a8b654fe5eb282ad7cc130c9cb76c251feb6ecf66902275b1c5ee656931383
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Jul 25 10:14:17 EDT 2025
Wed Feb 19 02:30:37 EST 2025
Wed Jan 22 16:32:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Keywords lead vacancy and humidity
charge trapping and recombination
time-dependent density functional theory
Hybrid organic-inorganic perovskites
nonadiabatic molecular dynamics
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2932-967a8b654fe5eb282ad7cc130c9cb76c251feb6ecf66902275b1c5ee656931383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3912-8899
PMID 32337808
PQID 2428994142
PQPubID 946352
PageCount 7
ParticipantIDs proquest_journals_2428994142
pubmed_primary_32337808
wiley_primary_10_1002_anie_202004192_ANIE202004192
PublicationCentury 2000
PublicationDate August 3, 2020
PublicationDateYYYYMMDD 2020-08-03
PublicationDate_xml – month: 08
  year: 2020
  text: August 3, 2020
  day: 03
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 122
2019; 9
2015; 6
2015; 5
2015; 347
2019; 52
2019; 11
2019; 10
2006; 39
1995
2009; 131
2017 2017; 56 129
2016; 18
2015; 9
2019; 141
2018; 20
2017; 356
2011; 134
2014; 136
2019 2019; 58 131
2019; 123
1964; 40
2018; 9
2016; 7
2014; 5
2016 2016; 55 128
2015; 27
2015; 137
2013; 52
2005; 95
2013; 499
2015 2015; 54 127
2014; 14
2014; 8
2014; 345
2014; 104
2016; 9
References_xml – volume: 122
  start-page: 5216
  year: 2018
  end-page: 5226
  publication-title: J. Phys. Chem. C
– volume: 18
  start-page: 27051
  year: 2016
  end-page: 27066
  publication-title: Phys. Chem. Chem. Phys.
– volume: 499
  start-page: 316
  year: 2013
  end-page: 319
  publication-title: Nature
– volume: 6
  start-page: 7305
  year: 2015
  end-page: 7310
  publication-title: Chem. Sci.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 3215
  year: 2016
  end-page: 3222
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 6281
  year: 2014
  end-page: 6286
  publication-title: Nano Lett.
– volume: 9
  start-page: 9380
  year: 2015
  end-page: 9393
  publication-title: ACS Nano
– volume: 40
  start-page: 3249
  year: 1964
  end-page: 3258
  publication-title: J. Chem. Phys.
– volume: 136
  start-page: 14570
  year: 2014
  end-page: 14575
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 6050
  year: 2009
  end-page: 6051
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 3240 3288
  year: 2015 2015
  end-page: 3248 3297
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 347
  start-page: 519
  year: 2015
  end-page: 522
  publication-title: Science
– volume: 104
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 5
  start-page: 3397
  year: 2015
  end-page: 3407
  publication-title: Adv. Energy Mater.
– volume: 9
  start-page: 6489
  year: 2018
  end-page: 6495
  publication-title: J. Phys. Chem. Lett.
– volume: 141
  start-page: 5798
  year: 2019
  end-page: 5807
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 3397
  year: 2015
  end-page: 3407
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1421
  year: 2014
  end-page: 1426
  publication-title: J. Phys. Chem. Lett.
– volume: 52
  start-page: 3188
  year: 2019
  end-page: 3198
  publication-title: ACS Chem. Res.
– volume: 5
  start-page: 279
  year: 2014
  end-page: 284
  publication-title: J. Phys. Chem. Lett.
– volume: 27
  start-page: 7835
  year: 2015
  end-page: 7841
  publication-title: Chem. Mater.
– volume: 347
  start-page: 967
  year: 2015
  end-page: 970
  publication-title: Science
– volume: 39
  start-page: 101
  year: 2006
  end-page: 108
  publication-title: Acc. Chem. Res.
– volume: 6
  start-page: 3289
  year: 2015
  end-page: 3295
  publication-title: J. Phys. Chem. Lett.
– volume: 56 129
  start-page: 12486 12660
  year: 2017 2017
  end-page: 12491 12665
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 10
  start-page: 10079
  year: 2019
  end-page: 10088
  publication-title: Chem. Sci.
– volume: 55 128
  start-page: 10686 10844
  year: 2016 2016
  end-page: 10690 10848
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 20
  start-page: 6800
  year: 2018
  end-page: 6804
  publication-title: Phys. Chem. Chem. Phys.
– volume: 137
  start-page: 1530
  year: 2015
  end-page: 1538
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 2196
  year: 2018
  end-page: 2201
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 3472
  year: 2016
  end-page: 3481
  publication-title: Energy Environ. Sci.
– year: 1995
– volume: 345
  start-page: 542
  year: 2014
  end-page: 546
  publication-title: Science
– volume: 134
  year: 2011
  publication-title: J. Chem. Phys.
– volume: 8
  start-page: 250
  year: 2014
  end-page: 255
  publication-title: Nat. Photonics
– volume: 58 131
  start-page: 4466 4512
  year: 2019 2019
  end-page: 4483 4530
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 23174
  year: 2016
  end-page: 23183
  publication-title: Phys. Chem. Chem. Phys.
– volume: 123
  start-page: 14144
  year: 2019
  end-page: 14151
  publication-title: J. Phys. Chem. C
– volume: 54 127
  start-page: 7905 8016
  year: 2015 2015
  end-page: 7910 8021
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 356
  start-page: 1376
  year: 2017
  end-page: 1379
  publication-title: Science
– volume: 9
  year: 2019
  publication-title: AIP Adv.
– volume: 11
  start-page: 25474
  year: 2019
  end-page: 25482
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 9019
  year: 2013
  end-page: 9038
  publication-title: Inorg. Chem.
SSID ssj0028806
Score 2.4737682
Snippet The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA)...
The perovskite excited-state lifetimes exhibit the conflicting experimental results exposure to humidity, which should correlate with defects because they...
SourceID proquest
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 13347
SubjectTerms Carrier lifetime
charge trapping and recombination
Coupling (molecular)
Current carriers
lead vacancy
Molecular dynamics
nonadiabatic molecular dynamics
organic–inorganic perovskites
Perovskites
Photovoltaic cells
Recombination
Solar cells
time-dependent DFT
Vacancies
Water chemistry
Title The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH3NH3PbI3: Time‐Domain Ab Initio Analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202004192
https://www.ncbi.nlm.nih.gov/pubmed/32337808
https://www.proquest.com/docview/2428994142
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7iUR1vY8tAceg1k7cRJuG0X0ILoCiGg3CLbsVcrIFvt48Ce-hP4jf0lnYk3aak4wS2R4zw04_E3k5lvGPtKHPuyKOKgrXREoRuyg6EJ0iJziVA61hVl_ve-7N1E53fx3T9V_J4fogm40cqo7DUtcKUnh39JQ6kCG_07kjKiFDTClLBFqOiq4Y_iqJy-vEiIgLrQ16yNIT98Of01fPkSrlb7zekaU_Wb-jST-4PZVB-Y-X8kju_5lHX2YQFGoeO1Z4Mt2XKTrXTrHnAf2TNqEfi8xAf1BN98UhdQX064VYYsM6iygB-IWMdwtQgsDud2Aggs4XI2nz9YGDmgv_oDC101pg55cDF0tupqD8MSuj3R74lLfSaOgCpSfv96Ph49KhzpaHw45ZRBzZ3yid2cnlx3e8Gih0MwQCDBg0wmKtUyjpyN0YlPuSoSY3DjNJnRiTQIr5zV0hon0U_nPIl128TWIszMRBvd589suRyVdpuSsFzootQ4J8NIG5VmKivwSiMc3l1mLbZbyzBfLMRJjggEPcqoHfEW2_JyzX96Ho9ccCGSNExbjFfSaQY8lTPPSS55I5e80z87ac6-vGXSDlul4yqBUOyy5el4ZvcQ1Ez1fqW4fwDHcO8L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9swENZQONBLS1-QAu0eejU4ki3bvYUA47QhwzDQ9uaRZInJQJ1OSA7NqT-B38gvYdeKzcD01B5tWX7M6vHtevf7GPtEHPuyLOOgq3REoRtaB0MTpGXmEqF0rGvK_JORzC-iLz_iJpuQamE8P0QbcKOZUa_XNMEpIL3_wBpKJdjo4JGZEaY8Y2sk600iBodnLYMUx-HpC4yECEiHvuFtDPn-4_5_Q5iPAWu94xy_ZLp5V59ocrU3n-k9s3hC4_hfH7PBXizxKPT8AHrFVmz1mq33Gxm4N-wWBxL41MRr9RsOfF4XkDQnfFOGFmdQVQnfEbRO4WwZWxwv7A0gtoTT-WJxbWHigH7sX1roqymJ5MFw7GwtbA_jCvq5GOXiVA_EZ6CilLs_t4eTnwpbehofTmll0NCnvGUXx0fn_TxYyjgEl4gleJDJRKVaxpGzMfrxKVdlYgzunSYzOpEGEZazWlrjJLrqnCex7prYWkSameiiB_2OrVaTym5RHpYLXZQa52QYaaPSTGUlXmmEw7vLrMN2GiMWy7l4UyAIQacy6ka8wza9YYtfnsqjEFyIJA3TDuO1edoGz-bMC7JL0dql6I0GR-3R-3_p9JGt5-cnw2I4GH3dZs_pfJ1PKHbY6mw6t7uIcWb6Qz2K7wG8gPMl
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NUtswENZQmGm5tNAfCKVlD70aHMmW7d5CIJO0NJNhSsvNI8kSkyk4TEgOzamPwDPyJOxasVuYntqjLcs_s7vSt-vdbxn7QBz7sijioK10RKEbWgdDE6RF5hKhdKwryvwvQ9k_iz6dx-d_VPF7fogm4EaWUa3XZODXhTv4TRpKFdjo35GUEaU8YWuRRIshWHTaEEhx1E5fXyREQG3oa9rGkB88nP83gPkQr1YbTu8FU_Wr-jyTH_vzmd43i0csjv_zLRvs-RKNQserzyZbseVL9qxbN4F7xW5RjcAnJl6qn3Dos7qAGnPCN2VoaQZVFvAdIesUTpeRxfHC3gAiSxjNF4tLCxMH9Fv_wkJXTalFHpyMna3a2sO4hG5fDPtipAfiI1BJyt2v26PJlcKRjsaHU1IZ1OQpr9lZ7_hrtx8smzgEF4gkeJDJRKVaxpGzMXrxKVdFYgzunCYzOpEG8ZWzWlrjJDrqnCexbpvYWsSZmWij__yGrZaT0m5TFpYLXZQa52QYaaPSTGUFXmmEw7vLrMV2axnmS0u8yRGCoEsZtSPeYltervm1J_LIBRciScO0xXglnWbAcznznOSSN3LJO8PBcXO08y-T9tjT0VEvPxkMP79l63S6SiYUu2x1Np3bdwhwZvp9pcP3BLrx3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interplay+Between+Lead+Vacancy+and+Water+Rationalizes+the+Puzzle+of+Charge+Carrier+Lifetimes+in+CH3NH3PbI3%3A+Time%E2%80%90Domain+Ab+Initio+Analysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Qiao%2C+Lu&rft.au=Fang%2C+Wei%E2%80%90Hai&rft.au=Long%2C+Run&rft.date=2020-08-03&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=32&rft.spage=13347&rft.epage=13353&rft_id=info:doi/10.1002%2Fanie.202004192&rft.externalDBID=10.1002%252Fanie.202004192&rft.externalDocID=ANIE202004192
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon