The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH3NH3PbI3: Time‐Domain Ab Initio Analysis
The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 32; pp. 13347 - 13353 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
03.08.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 |
DOI | 10.1002/anie.202004192 |
Cover
Loading…
Abstract | The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity.
The interplay between lead vacancy and water rationalizes the positive and negative effects of water on the charge carrier lifetimes in the organic–inorganic perovskite MAPbI3. The obtained results provide a theoretical understanding of how the complex charge dynamics in perovskites are affected by defects and water. |
---|---|
AbstractList | The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity.
The interplay between lead vacancy and water rationalizes the positive and negative effects of water on the charge carrier lifetimes in the organic–inorganic perovskite MAPbI3. The obtained results provide a theoretical understanding of how the complex charge dynamics in perovskites are affected by defects and water. The perovskite excited-state lifetimes exhibit the conflicting experimental results exposure to humidity, which should correlate with defects because they inevitably present in perovskite films. Nonadiabatic (NA) molecular dynamics combined with time-domain density functional theory calculations demonstrate that the formation energy of a lead vacancy decreases from 0.29 eV in pristine MAPbI 3 (MA= CH 3 NH 3 + ) to over -2 eV in the perovskite in the presence water regardless of its oxidation states, indicating that the lead vacancy is a major defect and which can spontaneously form in the moist environment. The lead vacancy reduces NA coupling by localizing hole for decreasing the overlap with electron, slowing electron-hole recombination by a factor of 2. By creating a deep electron trap state due to formation of an iodine dimer in presence of the lead vacancy interacting strongly with water molecules, the electron gets rapidly trapped on 4 ps and then recombines with the valence band free hole within sub-1 ns. The over 3 times acceleration relative to the pristine system is owing to enhanced NA couplings. By eliminating the mid-gap state due to dissociation of the iodine dimer with accepting two photoexcited electrons, the electron-hole recombination reduces by a factor of over 2 compared to the pristine MAPbI 3 , arising due to the reduced overlap between electron and hole. The calculated recombination time scales show excellent agreement with experiment. These phenomena arise due to a complex interplay of the unusual chemical, structural, electrostatic and quantum properties of halide perovskites. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity. The detailed mechanistic understanding of the complex charge-phonon dynamics of perovskite in the presence of defects and water molecules provides key insights for a broad range of solar and electro-optic applications. The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA) molecular dynamics, we demonstrate that the interplay between lead vacancy and water can rationalize the puzzle. The lead vacancy reduces NA coupling by localizing holes, slowing electron–hole recombination. By creating a deep electron trap state, the coexistence of a neutral lead vacancy and water molecules enhances NA coupling, accelerating charge recombination by a factor of over 3. By eliminating the mid‐gap state by accepting two photoexcited electrons, the negatively charged lead vacancy interacting with water molecules increases the carrier lifetime over 2 times longer than in the pristine system. The simulations rationalize the positive and negative effects of water on the solar cell performance exposure to humidity. |
Author | Long, Run Fang, Wei‐Hai Qiao, Lu |
Author_xml | – sequence: 1 givenname: Lu surname: Qiao fullname: Qiao, Lu organization: Beijing Normal University – sequence: 2 givenname: Wei‐Hai surname: Fang fullname: Fang, Wei‐Hai organization: Beijing Normal University – sequence: 3 givenname: Run orcidid: 0000-0003-3912-8899 surname: Long fullname: Long, Run email: runlong@bnu.edu.cn organization: Beijing Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32337808$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kc9OwzAMxiM0BGNw5YgicS7kT5sm3EYZbNIECA04VmnmQqYuHW2nqTvxCHtGnoRMg53i2D9_tvydoI4rHSB0TskVJYRda2fhihFGSEgVO0BdGjEa8DjmHR-HnAexjOgxOqnrmeelJOIIHXPGeSyJ7KLN5BPwyDVQLQrd4ltoVgAOj0FP8Zs22pkWazfF79oj-EU3tnS6sGuoceM7n5frdQG4zHHyqasPwImuKuvJsc2hsXOPWYeTIX8c8udsxG_wxCd_vjd35Vz7Sj_zw60XxX0v29a2PkWHuS5qOPt7e-j1fjBJhsH46WGU9MfBB1OcBUrEWmYiCnOIIGOS6WlsDOXEKJPFwrCI5pAJMLkQijAWRxk1EYCIhOKUS95DlzvdRVV-LaFu0lm5rPwSdcpCJpUKacg8dfFHLbM5TNNFZee6atP_A3pA7YCVLaDd1ylJt_akW3vSvT1p_3E02P_4L80EhUA |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | NPM 7TM K9. |
DOI | 10.1002/anie.202004192 |
DatabaseName | PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) |
DatabaseTitle | PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts |
DatabaseTitleList | PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 13353 |
ExternalDocumentID | 32337808 ANIE202004192 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21573022, 51861135101; 21688102, 21590801, 21703222 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT ABJNI NPM YIN 7TM ABDBF AEYWJ AGHNM AGYGG K9. |
ID | FETCH-LOGICAL-g2932-967a8b654fe5eb282ad7cc130c9cb76c251feb6ecf66902275b1c5ee656931383 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Jul 25 10:14:17 EDT 2025 Wed Feb 19 02:30:37 EST 2025 Wed Jan 22 16:32:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Keywords | lead vacancy and humidity charge trapping and recombination time-dependent density functional theory Hybrid organic-inorganic perovskites nonadiabatic molecular dynamics |
Language | English |
License | 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2932-967a8b654fe5eb282ad7cc130c9cb76c251feb6ecf66902275b1c5ee656931383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3912-8899 |
PMID | 32337808 |
PQID | 2428994142 |
PQPubID | 946352 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2428994142 pubmed_primary_32337808 wiley_primary_10_1002_anie_202004192_ANIE202004192 |
PublicationCentury | 2000 |
PublicationDate | August 3, 2020 |
PublicationDateYYYYMMDD | 2020-08-03 |
PublicationDate_xml | – month: 08 year: 2020 text: August 3, 2020 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 122 2019; 9 2015; 6 2015; 5 2015; 347 2019; 52 2019; 11 2019; 10 2006; 39 1995 2009; 131 2017 2017; 56 129 2016; 18 2015; 9 2019; 141 2018; 20 2017; 356 2011; 134 2014; 136 2019 2019; 58 131 2019; 123 1964; 40 2018; 9 2016; 7 2014; 5 2016 2016; 55 128 2015; 27 2015; 137 2013; 52 2005; 95 2013; 499 2015 2015; 54 127 2014; 14 2014; 8 2014; 345 2014; 104 2016; 9 |
References_xml | – volume: 122 start-page: 5216 year: 2018 end-page: 5226 publication-title: J. Phys. Chem. C – volume: 18 start-page: 27051 year: 2016 end-page: 27066 publication-title: Phys. Chem. Chem. Phys. – volume: 499 start-page: 316 year: 2013 end-page: 319 publication-title: Nature – volume: 6 start-page: 7305 year: 2015 end-page: 7310 publication-title: Chem. Sci. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 3215 year: 2016 end-page: 3222 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 6281 year: 2014 end-page: 6286 publication-title: Nano Lett. – volume: 9 start-page: 9380 year: 2015 end-page: 9393 publication-title: ACS Nano – volume: 40 start-page: 3249 year: 1964 end-page: 3258 publication-title: J. Chem. Phys. – volume: 136 start-page: 14570 year: 2014 end-page: 14575 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 6050 year: 2009 end-page: 6051 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 3240 3288 year: 2015 2015 end-page: 3248 3297 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 347 start-page: 519 year: 2015 end-page: 522 publication-title: Science – volume: 104 year: 2014 publication-title: Appl. Phys. Lett. – volume: 5 start-page: 3397 year: 2015 end-page: 3407 publication-title: Adv. Energy Mater. – volume: 9 start-page: 6489 year: 2018 end-page: 6495 publication-title: J. Phys. Chem. Lett. – volume: 141 start-page: 5798 year: 2019 end-page: 5807 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 3397 year: 2015 end-page: 3407 publication-title: Chem. Mater. – volume: 5 start-page: 1421 year: 2014 end-page: 1426 publication-title: J. Phys. Chem. Lett. – volume: 52 start-page: 3188 year: 2019 end-page: 3198 publication-title: ACS Chem. Res. – volume: 5 start-page: 279 year: 2014 end-page: 284 publication-title: J. Phys. Chem. Lett. – volume: 27 start-page: 7835 year: 2015 end-page: 7841 publication-title: Chem. Mater. – volume: 347 start-page: 967 year: 2015 end-page: 970 publication-title: Science – volume: 39 start-page: 101 year: 2006 end-page: 108 publication-title: Acc. Chem. Res. – volume: 6 start-page: 3289 year: 2015 end-page: 3295 publication-title: J. Phys. Chem. Lett. – volume: 56 129 start-page: 12486 12660 year: 2017 2017 end-page: 12491 12665 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 10 start-page: 10079 year: 2019 end-page: 10088 publication-title: Chem. Sci. – volume: 55 128 start-page: 10686 10844 year: 2016 2016 end-page: 10690 10848 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 20 start-page: 6800 year: 2018 end-page: 6804 publication-title: Phys. Chem. Chem. Phys. – volume: 137 start-page: 1530 year: 2015 end-page: 1538 publication-title: J. Am. Chem. Soc. – volume: 9 start-page: 2196 year: 2018 end-page: 2201 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 3472 year: 2016 end-page: 3481 publication-title: Energy Environ. Sci. – year: 1995 – volume: 345 start-page: 542 year: 2014 end-page: 546 publication-title: Science – volume: 134 year: 2011 publication-title: J. Chem. Phys. – volume: 8 start-page: 250 year: 2014 end-page: 255 publication-title: Nat. Photonics – volume: 58 131 start-page: 4466 4512 year: 2019 2019 end-page: 4483 4530 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 23174 year: 2016 end-page: 23183 publication-title: Phys. Chem. Chem. Phys. – volume: 123 start-page: 14144 year: 2019 end-page: 14151 publication-title: J. Phys. Chem. C – volume: 54 127 start-page: 7905 8016 year: 2015 2015 end-page: 7910 8021 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 356 start-page: 1376 year: 2017 end-page: 1379 publication-title: Science – volume: 9 year: 2019 publication-title: AIP Adv. – volume: 11 start-page: 25474 year: 2019 end-page: 25482 publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 9019 year: 2013 end-page: 9038 publication-title: Inorg. Chem. |
SSID | ssj0028806 |
Score | 2.4737682 |
Snippet | The perovskite CH3NH3PbI3 excited‐state lifetimes exhibit conflicting experimental results under humid environments. Using ab initio nonadiabatic (NA)... The perovskite excited-state lifetimes exhibit the conflicting experimental results exposure to humidity, which should correlate with defects because they... |
SourceID | proquest pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 13347 |
SubjectTerms | Carrier lifetime charge trapping and recombination Coupling (molecular) Current carriers lead vacancy Molecular dynamics nonadiabatic molecular dynamics organic–inorganic perovskites Perovskites Photovoltaic cells Recombination Solar cells time-dependent DFT Vacancies Water chemistry |
Title | The Interplay Between Lead Vacancy and Water Rationalizes the Puzzle of Charge Carrier Lifetimes in CH3NH3PbI3: Time‐Domain Ab Initio Analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202004192 https://www.ncbi.nlm.nih.gov/pubmed/32337808 https://www.proquest.com/docview/2428994142 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQF7iUR1vY8tAceg1k7cRJuG0X0ILoCiGg3CLbsVcrIFvt48Ce-hP4jf0lnYk3aak4wS2R4zw04_E3k5lvGPtKHPuyKOKgrXREoRuyg6EJ0iJziVA61hVl_ve-7N1E53fx3T9V_J4fogm40cqo7DUtcKUnh39JQ6kCG_07kjKiFDTClLBFqOiq4Y_iqJy-vEiIgLrQ16yNIT98Of01fPkSrlb7zekaU_Wb-jST-4PZVB-Y-X8kju_5lHX2YQFGoeO1Z4Mt2XKTrXTrHnAf2TNqEfi8xAf1BN98UhdQX064VYYsM6iygB-IWMdwtQgsDud2Aggs4XI2nz9YGDmgv_oDC101pg55cDF0tupqD8MSuj3R74lLfSaOgCpSfv96Ph49KhzpaHw45ZRBzZ3yid2cnlx3e8Gih0MwQCDBg0wmKtUyjpyN0YlPuSoSY3DjNJnRiTQIr5zV0hon0U_nPIl128TWIszMRBvd589suRyVdpuSsFzootQ4J8NIG5VmKivwSiMc3l1mLbZbyzBfLMRJjggEPcqoHfEW2_JyzX96Ho9ccCGSNExbjFfSaQY8lTPPSS55I5e80z87ac6-vGXSDlul4yqBUOyy5el4ZvcQ1Ez1fqW4fwDHcO8L |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9swENZQONBLS1-QAu0eejU4ki3bvYUA47QhwzDQ9uaRZInJQJ1OSA7NqT-B38gvYdeKzcD01B5tWX7M6vHtevf7GPtEHPuyLOOgq3REoRtaB0MTpGXmEqF0rGvK_JORzC-iLz_iJpuQamE8P0QbcKOZUa_XNMEpIL3_wBpKJdjo4JGZEaY8Y2sk600iBodnLYMUx-HpC4yECEiHvuFtDPn-4_5_Q5iPAWu94xy_ZLp5V59ocrU3n-k9s3hC4_hfH7PBXizxKPT8AHrFVmz1mq33Gxm4N-wWBxL41MRr9RsOfF4XkDQnfFOGFmdQVQnfEbRO4WwZWxwv7A0gtoTT-WJxbWHigH7sX1roqymJ5MFw7GwtbA_jCvq5GOXiVA_EZ6CilLs_t4eTnwpbehofTmll0NCnvGUXx0fn_TxYyjgEl4gleJDJRKVaxpGzMfrxKVdlYgzunSYzOpEGEZazWlrjJLrqnCex7prYWkSameiiB_2OrVaTym5RHpYLXZQa52QYaaPSTGUlXmmEw7vLrMN2GiMWy7l4UyAIQacy6ka8wza9YYtfnsqjEFyIJA3TDuO1edoGz-bMC7JL0dql6I0GR-3R-3_p9JGt5-cnw2I4GH3dZs_pfJ1PKHbY6mw6t7uIcWb6Qz2K7wG8gPMl |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NUtswENZQmGm5tNAfCKVlD70aHMmW7d5CIJO0NJNhSsvNI8kSkyk4TEgOzamPwDPyJOxasVuYntqjLcs_s7vSt-vdbxn7QBz7sijioK10RKEbWgdDE6RF5hKhdKwryvwvQ9k_iz6dx-d_VPF7fogm4EaWUa3XZODXhTv4TRpKFdjo35GUEaU8YWuRRIshWHTaEEhx1E5fXyREQG3oa9rGkB88nP83gPkQr1YbTu8FU_Wr-jyTH_vzmd43i0csjv_zLRvs-RKNQserzyZbseVL9qxbN4F7xW5RjcAnJl6qn3Dos7qAGnPCN2VoaQZVFvAdIesUTpeRxfHC3gAiSxjNF4tLCxMH9Fv_wkJXTalFHpyMna3a2sO4hG5fDPtipAfiI1BJyt2v26PJlcKRjsaHU1IZ1OQpr9lZ7_hrtx8smzgEF4gkeJDJRKVaxpGzMXrxKVdFYgzunCYzOpEG8ZWzWlrjJDrqnCexbpvYWsSZmWij__yGrZaT0m5TFpYLXZQa52QYaaPSTGUFXmmEw7vLrMV2axnmS0u8yRGCoEsZtSPeYltervm1J_LIBRciScO0xXglnWbAcznznOSSN3LJO8PBcXO08y-T9tjT0VEvPxkMP79l63S6SiYUu2x1Np3bdwhwZvp9pcP3BLrx3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interplay+Between+Lead+Vacancy+and+Water+Rationalizes+the+Puzzle+of+Charge+Carrier+Lifetimes+in+CH3NH3PbI3%3A+Time%E2%80%90Domain+Ab+Initio+Analysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Qiao%2C+Lu&rft.au=Fang%2C+Wei%E2%80%90Hai&rft.au=Long%2C+Run&rft.date=2020-08-03&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=32&rft.spage=13347&rft.epage=13353&rft_id=info:doi/10.1002%2Fanie.202004192&rft.externalDBID=10.1002%252Fanie.202004192&rft.externalDocID=ANIE202004192 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |