Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H2O2 under Acidic Conditions

Electrosynthesis of hydrogen peroxide (H2O2) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth‐abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cob...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 60; no. 52; pp. 26922 - 26931
Main Authors Zhang, Xiao‐Long, Su, Xiaozhi, Zheng, Ya‐Rong, Hu, Shao‐Jin, Shi, Lei, Gao, Fei‐Yue, Yang, Peng‐Peng, Niu, Zhuang‐Zhuang, Wu, Zhi‐Zheng, Qin, Shuai, Wu, Rui, Duan, Yu, Gu, Chao, Zheng, Xu‐Sheng, Zhu, Jun‐Fa, Gao, Min‐Rui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.12.2021
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrosynthesis of hydrogen peroxide (H2O2) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth‐abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cobalt diselenide (CoSe2), which creates high‐performance catalyst to selectively drive two‐electron oxygen reduction toward H2O2 in an acidic electrolyte. The enhancement of the interlayer coupling between CoSe2 atomic layers offers a favorable surface electronic structure that weakens the critical *OOH adsorption, promoting the energetics for H2O2 production. Consequently, on the strongly coupled CoSe2 catalyst, we achieved Faradaic efficiency of 96.7 %, current density of 50.04 milliamperes per square centimeter, and product rate of 30.60 mg cm−2 h−1. Moreover, this catalyst shows no sign of degradation when operating at −63 milliamperes per square centimeter over 100 hours. A strategy that narrows the interlayer distance of cobalt diselenide (CoSe2) is reported, which enables strong coupling between CoSe2 monolayers. The strongly coupled CoSe2 can catalyze electrosynthesis of H2O2 in acidic media efficiently, which yields Faradaic efficiency of 96.7 %, current density of 50.04 mA cm−2, and product rate of 30.60 mg cm−2 h−1, outperforming all catalysts reported previously in acidic environments.
AbstractList Electrosynthesis of hydrogen peroxide (H2O2) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth‐abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cobalt diselenide (CoSe2), which creates high‐performance catalyst to selectively drive two‐electron oxygen reduction toward H2O2 in an acidic electrolyte. The enhancement of the interlayer coupling between CoSe2 atomic layers offers a favorable surface electronic structure that weakens the critical *OOH adsorption, promoting the energetics for H2O2 production. Consequently, on the strongly coupled CoSe2 catalyst, we achieved Faradaic efficiency of 96.7 %, current density of 50.04 milliamperes per square centimeter, and product rate of 30.60 mg cm−2 h−1. Moreover, this catalyst shows no sign of degradation when operating at −63 milliamperes per square centimeter over 100 hours.
Electrosynthesis of hydrogen peroxide (H2O2) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that constitute entirely earth‐abundant elements are lacking. Here we report the experimental demonstration of narrowing the interlayer gap of metallic cobalt diselenide (CoSe2), which creates high‐performance catalyst to selectively drive two‐electron oxygen reduction toward H2O2 in an acidic electrolyte. The enhancement of the interlayer coupling between CoSe2 atomic layers offers a favorable surface electronic structure that weakens the critical *OOH adsorption, promoting the energetics for H2O2 production. Consequently, on the strongly coupled CoSe2 catalyst, we achieved Faradaic efficiency of 96.7 %, current density of 50.04 milliamperes per square centimeter, and product rate of 30.60 mg cm−2 h−1. Moreover, this catalyst shows no sign of degradation when operating at −63 milliamperes per square centimeter over 100 hours. A strategy that narrows the interlayer distance of cobalt diselenide (CoSe2) is reported, which enables strong coupling between CoSe2 monolayers. The strongly coupled CoSe2 can catalyze electrosynthesis of H2O2 in acidic media efficiently, which yields Faradaic efficiency of 96.7 %, current density of 50.04 mA cm−2, and product rate of 30.60 mg cm−2 h−1, outperforming all catalysts reported previously in acidic environments.
Author Qin, Shuai
Zheng, Xu‐Sheng
Zhu, Jun‐Fa
Gao, Min‐Rui
Hu, Shao‐Jin
Gao, Fei‐Yue
Yang, Peng‐Peng
Gu, Chao
Wu, Rui
Zheng, Ya‐Rong
Zhang, Xiao‐Long
Shi, Lei
Wu, Zhi‐Zheng
Niu, Zhuang‐Zhuang
Su, Xiaozhi
Duan, Yu
Author_xml – sequence: 1
  givenname: Xiao‐Long
  surname: Zhang
  fullname: Zhang, Xiao‐Long
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Xiaozhi
  surname: Su
  fullname: Su, Xiaozhi
  organization: Shanghai Advanced Research Institute, CAS
– sequence: 3
  givenname: Ya‐Rong
  surname: Zheng
  fullname: Zheng, Ya‐Rong
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Shao‐Jin
  surname: Hu
  fullname: Hu, Shao‐Jin
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Fei‐Yue
  surname: Gao
  fullname: Gao, Fei‐Yue
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Peng‐Peng
  surname: Yang
  fullname: Yang, Peng‐Peng
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Zhuang‐Zhuang
  surname: Niu
  fullname: Niu, Zhuang‐Zhuang
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Zhi‐Zheng
  surname: Wu
  fullname: Wu, Zhi‐Zheng
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Shuai
  surname: Qin
  fullname: Qin, Shuai
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Rui
  surname: Wu
  fullname: Wu, Rui
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Yu
  surname: Duan
  fullname: Duan, Yu
  organization: University of Science and Technology of China
– sequence: 13
  givenname: Chao
  surname: Gu
  fullname: Gu, Chao
  organization: University of Science and Technology of China
– sequence: 14
  givenname: Xu‐Sheng
  surname: Zheng
  fullname: Zheng, Xu‐Sheng
  organization: University of Science and Technology of China
– sequence: 15
  givenname: Jun‐Fa
  surname: Zhu
  fullname: Zhu, Jun‐Fa
  organization: University of Science and Technology of China
– sequence: 16
  givenname: Min‐Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min‐Rui
  email: mgao@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNo9kM1LAzEQxYMoWKtXzwHPq_noNtljqdUK1YLVc0g2k5KyJjW7q-7B_90UxdN7M-8xA78zdBxiAIQuKbmmhLAbHTxcM8IopUSUR2hES0YLLgQ_zn7CeSFkSU_RWdvucl9KMh2h702XYtg2A57Hft-AzWp00-Fb30IDwVvAjzHERg-QWuxiwpu8rzv_AXhxMCnWutPN0Pkar7-GLQT8DLbPjRhwF_GSrRnug4WEZ7W3uTWPwfpD3J6jE6ebFi7-dIxe7xYv82WxWt8_zGerYsukKAurp9wZ4yrroKwrXTJja-uIlcJWxgmglktHjJhYagwFqEjpJM9RybQUho_R1e_dfYrvPbSd2sU-hfxSsSmpmGAy8xmj6rf16RsY1D75N50GRYk68FUHvuqfr5o9PSz-J_4DuaZ2LQ
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7TM
K9.
DOI 10.1002/anie.202111075
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 26931
ExternalDocumentID ANIE202111075
Genre article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
ID FETCH-LOGICAL-g2875-da63fbbf9dfe5c9a52bdcdf0d87d9bf7e1d38f0b74d1bb1ee905f839bf52a87b3
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Sat Jul 12 03:05:05 EDT 2025
Wed Jan 22 16:26:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 52
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2875-da63fbbf9dfe5c9a52bdcdf0d87d9bf7e1d38f0b74d1bb1ee905f839bf52a87b3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7805-803X
PQID 2609272843
PQPubID 946352
PageCount 10
ParticipantIDs proquest_journals_2609272843
wiley_primary_10_1002_anie_202111075_ANIE202111075
PublicationCentury 2000
PublicationDate December 20, 2021
PublicationDateYYYYMMDD 2021-12-20
PublicationDate_xml – month: 12
  year: 2021
  text: December 20, 2021
  day: 20
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 1
2004; 126
1973; 13
2019; 10
2013; 61
2019; 567
2019; 366
1999; 44
2020; 13
1998; 81
2020; 11
1969; 244
2020; 19
2018; 9
2018; 8
2020; 3
2012; 134
2010; 1
2018; 4
2001
2018; 1
2013; 12
2018 2018; 57 130
2002; 106
2020; 49
2014; 14
2015 2015; 54 127
2008; 350
1996; 23
2015; 162
2014; 118
2002; 36
2019; 9
2019; 3
2019; 5
2016; 10
2009; 131
2019; 141
2014; 114
2011; 133
2006 2006; 45 118
2016; 6
2016; 7
2018; 17
1988; 27
2021 2021; 60 133
1963
2011 2011; 50 123
2009; 109
References_xml – volume: 19
  start-page: 436
  year: 2020
  end-page: 442
  publication-title: Nat. Mater.
– volume: 9
  start-page: 2533
  year: 2018
  publication-title: Nat. Commun.
– volume: 23
  start-page: 403
  year: 1996
  end-page: 408
  publication-title: Phys. Chem. Miner.
– volume: 13
  start-page: 4189
  year: 2020
  end-page: 4203
  publication-title: Energy Environ. Sci.
– year: 2001
– volume: 45 118
  start-page: 6962 7116
  year: 2006 2006
  end-page: 6984 7139
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 4072
  year: 2012
  end-page: 4075
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1297
  year: 1973
  end-page: 1301
  publication-title: Solid State Commun.
– volume: 141
  start-page: 8516
  year: 2019
  end-page: 8526
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 5338
  year: 2019
  publication-title: Nat. Commun.
– volume: 49
  start-page: 6605
  year: 2020
  end-page: 6631
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 125
  year: 2020
  end-page: 134
  publication-title: Nat. Catal.
– volume: 61
  start-page: 236
  year: 2013
  end-page: 244
  publication-title: Carbon
– volume: 1
  start-page: 1316
  year: 2010
  end-page: 1320
  publication-title: J. Phys. Chem. Lett.
– volume: 244
  start-page: 6049
  year: 1969
  end-page: 6055
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 442
  year: 2019
  end-page: 458
  publication-title: Nat. Rev. Chem.
– volume: 7
  start-page: 10922
  year: 2016
  publication-title: Nat. Commun.
– volume: 50 123
  start-page: 4905 5007
  year: 2011 2011
  end-page: 4908 5010
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 45 118
  start-page: 1397 1425
  year: 2006 2006
  end-page: 1401 1429
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 156
  year: 2018
  end-page: 162
  publication-title: Nat. Catal.
– volume: 350
  start-page: 133
  year: 2008
  end-page: 149
  publication-title: Appl. Catal. A
– volume: 36
  start-page: 85
  year: 2002
  end-page: 94
  publication-title: Water Res.
– volume: 8
  start-page: 4064
  year: 2018
  end-page: 4081
  publication-title: ACS Catal.
– volume: 1
  start-page: 0098
  year: 2017
  publication-title: Nat. Rev. Chem.
– volume: 162
  start-page: H403
  year: 2015
  end-page: H414
  publication-title: J. Electrochem. Soc.
– volume: 109
  start-page: 6570
  year: 2009
  end-page: 6631
  publication-title: Chem. Rev.
– volume: 10
  start-page: 3997
  year: 2019
  publication-title: Nat. Commun.
– volume: 10
  start-page: 7039
  year: 2016
  end-page: 7046
  publication-title: ACS Nano
– volume: 57 130
  start-page: 3612 3674
  year: 2018 2018
  end-page: 3616 3678
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 81
  start-page: 2819
  year: 1998
  end-page: 2822
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 4181
  year: 2020
  publication-title: Nat. Commun.
– volume: 118
  start-page: 30063
  year: 2014
  end-page: 30070
  publication-title: J. Phys. Chem. C
– volume: 17
  start-page: 249
  year: 2018
  end-page: 252
  publication-title: Nat. Mater.
– volume: 114
  start-page: 3854
  year: 2014
  end-page: 3918
  publication-title: Chem. Rev.
– volume: 44
  start-page: 2653
  year: 1999
  end-page: 2661
  publication-title: Electrochim. Acta
– volume: 134
  start-page: 2930
  year: 2012
  end-page: 2933
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 1137
  year: 2013
  end-page: 1143
  publication-title: Nat. Mater.
– volume: 133
  start-page: 19432
  year: 2011
  end-page: 19441
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 106
  year: 2018
  end-page: 123
  publication-title: Chem
– volume: 54 127
  start-page: 6837 6941
  year: 2015 2015
  end-page: 6841 6945
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 2099
  year: 2019
  end-page: 2110
  publication-title: Chem
– volume: 126
  start-page: 15326
  year: 2004
  end-page: 15327
  publication-title: J. Am. Chem. Soc.
– volume: 567
  start-page: 81
  year: 2019
  end-page: 86
  publication-title: Nature
– year: 1963
– volume: 60 133
  start-page: 6553 6627
  year: 2021 2021
  end-page: 6560 6634
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 8433
  year: 2019
  end-page: 8442
  publication-title: ACS Catal.
– volume: 131
  start-page: 7486
  year: 2009
  end-page: 7487
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 2526
  year: 2002
  end-page: 2532
  publication-title: J. Phys. Chem. B
– volume: 14
  start-page: 1603
  year: 2014
  end-page: 1608
  publication-title: Nano Lett.
– volume: 366
  start-page: 226
  year: 2019
  end-page: 231
  publication-title: Science
– volume: 1
  start-page: 282
  year: 2018
  end-page: 290
  publication-title: Nat. Catal.
– volume: 6
  start-page: 33091
  year: 2016
  publication-title: Sci. Rep.
– volume: 27
  start-page: 4249
  year: 1988
  end-page: 4253
  publication-title: Inorg. Chem.
SSID ssj0028806
Score 2.623892
Snippet Electrosynthesis of hydrogen peroxide (H2O2) in the acidic environment could largely prevent its decomposition to water, but efficient catalysts that...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 26922
SubjectTerms acidic environment
Catalysts
Cobalt
cobalt diselenide monolayers
Electronic structure
Hydrogen peroxide
interlayer coupling
Interlayers
Oxygen
two-electron oxygen reduction
Title Strongly Coupled Cobalt Diselenide Monolayers for Selective Electrocatalytic Oxygen Reduction to H2O2 under Acidic Conditions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202111075
https://www.proquest.com/docview/2609272843
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG6MF73424ii6cHrYLQbpUcyIWgiJCAJt6WlLSESRmAkYuL_7nsbIHjU07Zky7b2vfb7Xvu-R8gjYHLlKkBLhDDWC7gFn4OZ3BOh0FUZGMDoGO94bVdb_eBlEA52svhzfYhtwA09Ixuv0cGVXpR_REMxAxv4HRAYYDCYZY4bthAVdbf6UQyMM08v4tzDKvQb1Uaflfcf38OXuyg1m2aap0RtPjDfXfJeWqa6NPz8pd34nz84IydrDErrudGckwM7vSBH0ab02yX56mGAfDRZ0ShZzibWwFGrSUqfsuJM07GxFAYDYMUI2CngXtrL6unA0EkbeWGdLC60gjfQzscKrJR2USQWzYCmCW2xDqOYvzan9eHYwF1Rgovn6ARXpN9svEUtb12nwRsB3wo9o6rcae2kcTYcShUybYbG-dDRRmonbMXwmvO1CExF64q10g8dADPtQqZqQvNrcjhNpvaGUKGFNNwZaZgMFK7SBsB4NC7-cWaYK5Dipp_itbMtYqBkkgmYZ3mBsKzB41ku1RHnoswsxqaOt00d19vPje3V7V8euiPHeI4bW5hfJIfpfGnvAZ6k-iEzwW9y_t8I
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT4MwFG90HvTit_HbHryi0MK6Hhecwa-ZbDPxRihtF-PCjLLEmfi_-x4MdB71RCAQoH2v_f1e-36PkFPA5In1gJYIoY3jcwM-BzO5IwKhmtLXgNEx3nHXbUYP_vVjUO0mxFyYUh-iDrihZxTjNTo4BqTPv1VDMQUbCB4wGKAwwSJZwrLeKJ9_0asVpBiYZ5lgxLmDdegr3UaXnc8_P4cwf-LUYqK5XCOq-sRyf8nz2SRXZ-nHL_XGf_3DOlmdwVDaLu1mgyyYbJMsh1X1ty3y2ccY-XA0peF48jIyGo4qGeX0oqjPlD1pQ2E8AGKMmJ0C9KX9oqQOjJ60U9bWKUJDU3gDvX-fgqHSHurEoiXQfEwjds8oprC90nb6pOGucIzr5-gH2-ThsjMII2dWqsEZAuUKHJ00uVXKSm1NkMokYEqn2rrQ11oqK4ynecu6SvjaU8ozRrqBBWymbMCSllB8hzSycWZ2CRVKSM2tlppJP8GFWh9Ij8L1P840s3vksOqoeOZvbzGwMskETLV8j7CixeOXUq0jLnWZWYxNHddNHbe7V536bP8vD52Q5WhwdxvfXnVvDsgKXsd9Lsw9JI38dWKOAK3k6riwxy9tmuMk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJODCjtjxgWtoaic1PlZdVLYWtSD1FsUdu6qo2gpSiSLx78wkbSkc4RQlSpTEnrHfG3veMHaJmDx2eaQlSoH1AmnR53Am91SoTEEHgBid4h0P9ULtObhth-2FLP5MH2IecCPPSMdrcvARuNy3aChlYCO_QwKDDCZcZqtBwddUvKHcnAtICbTOLL9ISo_K0M9kG32R-_n8D4C5CFPTeaa6xeLZF2bbS16uxom56nz8Em_8zy9ss80pCOXFzGp22JId7LL10qz22x77bFGEvNuf8NJwPOpbwKOJ-wkvp9WZBj2wHEcDpMWE2DkCX95KC-rg2MkrWWWdNDA0wTfwxvsEzZQ3SSWW7IAnQ14TDcEpge2VFzs9wLtKQ1o9Jy_YZ8_VylOp5k0LNXhdJFyhB3FBOmOcBmfDjo5DYaADzseeBm2csnmQ1843KoC8MXlrtR86RGbGhSK-VkYesJXBcGAPGVdGaZAONAgdxLRMGyDlMbT6JwUId8ROZ_0UTb3tLUJOpoXCiVYeMZE2eDTKtDqiTJVZRNTU0bypo2L9pjI_O_7LQxds7bFcje5v6ncnbIMu0yYX4Z-yleR1bM8QqiTmPLXGL9-B4dM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strongly+Coupled+Cobalt+Diselenide+Monolayers+for+Selective+Electrocatalytic+Oxygen+Reduction+to+H2O2+under+Acidic+Conditions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Xiao%E2%80%90Long&rft.au=Su%2C+Xiaozhi&rft.au=Zheng%2C+Ya%E2%80%90Rong&rft.au=Hu%2C+Shao%E2%80%90Jin&rft.date=2021-12-20&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=60&rft.issue=52&rft.spage=26922&rft.epage=26931&rft_id=info:doi/10.1002%2Fanie.202111075&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon