High‐Capacity and Stable Li‐O2 Batteries Enabled by a Trifunctional Soluble Redox Mediator

Li‐O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by‐products. Here, a trifunctional ether‐based redox mediator, 2,5‐di‐tert‐bu...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 43; pp. 19311 - 19319
Main Authors Xiong, Qi, Huang, Gang, Zhang, Xin‐Bo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.10.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Li‐O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by‐products. Here, a trifunctional ether‐based redox mediator, 2,5‐di‐tert‐butyl‐1,4‐dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2− and alleviate the rigorous oxidative environment of Li‐O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2−, it not only reduces the formation of by‐products (a high Li2O2 yield of 96.6 %), but also promotes the solution growth of large‐sized Li2O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2O2 and the decomposition of main by‐products (Li2CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li‐O2 batteries (243 cycles at 1000 mAh g−1 and 1000 mA g−1). A trifunctional ether‐based redox mediator, DBDMB, is introduced into the electrolyte to capture reactive discharge intermediates (O2−) with reduced formation of by‐products, regulate solution growth of Li2O2, and co‐oxidize Li2O2 and by‐products (Li2CO3 and LiOH). Li‐O2 batteries with large capacity and long cycling stability have been achieved.
AbstractList Li‐O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by‐products. Here, a trifunctional ether‐based redox mediator, 2,5‐di‐tert‐butyl‐1,4‐dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2− and alleviate the rigorous oxidative environment of Li‐O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2−, it not only reduces the formation of by‐products (a high Li2O2 yield of 96.6 %), but also promotes the solution growth of large‐sized Li2O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2O2 and the decomposition of main by‐products (Li2CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li‐O2 batteries (243 cycles at 1000 mAh g−1 and 1000 mA g−1). A trifunctional ether‐based redox mediator, DBDMB, is introduced into the electrolyte to capture reactive discharge intermediates (O2−) with reduced formation of by‐products, regulate solution growth of Li2O2, and co‐oxidize Li2O2 and by‐products (Li2CO3 and LiOH). Li‐O2 batteries with large capacity and long cycling stability have been achieved.
Li‐O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by‐products. Here, a trifunctional ether‐based redox mediator, 2,5‐di‐tert‐butyl‐1,4‐dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2− and alleviate the rigorous oxidative environment of Li‐O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2−, it not only reduces the formation of by‐products (a high Li2O2 yield of 96.6 %), but also promotes the solution growth of large‐sized Li2O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2O2 and the decomposition of main by‐products (Li2CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li‐O2 batteries (243 cycles at 1000 mAh g−1 and 1000 mA g−1).
Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 - and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2 - , it not only reduces the formation of by-products (a high Li2 O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2 O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2 O2 and the decomposition of main by-products (Li2 CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g-1 and 1000 mA g-1 ).Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the cathode passivation caused by insulating discharge products and by-products. Here, a trifunctional ether-based redox mediator, 2,5-di-tert-butyl-1,4-dimethoxybenzene (DBDMB), is introduced into the electrolyte to capture reactive O2 - and alleviate the rigorous oxidative environment of Li-O2 batteries. Thanks to the strong solvation effect of DBDMB towards Li+ and O2 - , it not only reduces the formation of by-products (a high Li2 O2 yield of 96.6 %), but also promotes the solution growth of large-sized Li2 O2 particles, avoiding the passivation of cathode as well as enabling a large discharge capacity. Moreover, DBDMB makes the oxidization of Li2 O2 and the decomposition of main by-products (Li2 CO3 and LiOH) proceed in a highly effective manner, prolonging the stability of Li-O2 batteries (243 cycles at 1000 mAh g-1 and 1000 mA g-1 ).
Author Xiong, Qi
Zhang, Xin‐Bo
Huang, Gang
Author_xml – sequence: 1
  givenname: Qi
  surname: Xiong
  fullname: Xiong, Qi
  organization: Jilin University
– sequence: 2
  givenname: Gang
  surname: Huang
  fullname: Huang, Gang
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Xin‐Bo
  orcidid: 0000-0002-5806-159X
  surname: Zhang
  fullname: Zhang, Xin‐Bo
  email: xbzhang@ciac.ac.cn
  organization: University of Science and Technology of China
BookMark eNpdkD1PwzAQhi1UJEphZbbEwpLij8Sxx1IVWqlQiZaVyHEuxVVql3wIuvET-I38EhIVdWC6O73PnXTPOeo57wChK0qGlBB2q52FISOMEEVEeIL6NGI04HHMe20fch7EMqJn6LyqNi0vJRF99Dq167efr--x3mlj6z3WLsPLWqcF4LltgwXDd7quobRQ4YnrggynLYdXpc0bZ2rrnS7w0hdNt_QMmf_Ej5BZXfvyAp3muqjg8q8O0Mv9ZDWeBvPFw2w8mgdrJsMwoJmWnAmRE8Y0UxFLY6MzFQKIWJks5cSQSADVkJk8IiZXMqSQizjlKWNM8QG6Odzdlf69gapOtrYyUBTagW-qhIUskkoIQlr0-h-68U3ZvtBRoVI0kkS2lDpQH7aAfbIr7VaX-4SSpHOddK6To-tk9DSbHCf-C0PYd54
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202009064
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 19319
ExternalDocumentID ANIE202009064
Genre article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g2844-1da83266f022a2952b7cad94ee679cdb30c056e1aedcf50cf9841ef67b3b22293
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 02:38:04 EDT 2025
Sun Jul 13 03:25:42 EDT 2025
Wed Jan 22 16:33:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2844-1da83266f022a2952b7cad94ee679cdb30c056e1aedcf50cf9841ef67b3b22293
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5806-159X
PQID 2449915808
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2425896600
proquest_journals_2449915808
wiley_primary_10_1002_anie_202009064_ANIE202009064
PublicationCentury 2000
PublicationDate October 19, 2020
PublicationDateYYYYMMDD 2020-10-19
PublicationDate_xml – month: 10
  year: 2020
  text: October 19, 2020
  day: 19
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2018; 361
2015; 1
2013; 4
2013; 25
1984; 26
2019; 11
2015; 10
2020 2020; 59 132
1983; 97
2014; 26
2019; 18
1996; 143
2017; 29
2017 2017; 56 129
1985; 83
2019; 141
2013; 5
2015; 7
2016; 15
2013; 6
2012; 33
2014; 136
2019 2019; 58 131
2013 2013; 52 125
2018; 6
2016; 6
2016; 7
2013; 15
2016; 1
2016 2016; 55 128
2012; 3
2015; 112
2018; 555
2019; 29
2013; 135
2018; 30
2016; 138
2011 2011; 50 123
2012; 28
2016; 28
2006; 128
2012; 337
2016; 8
2016; 9
References_xml – volume: 4
  start-page: 3494
  year: 2013
  end-page: 3499
  publication-title: J. Phys. Chem. Lett.
– volume: 58 131
  start-page: 12553 12683
  year: 2019 2019
  end-page: 12557 12687
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 17782 17946
  year: 2019 2019
  end-page: 17787 17951
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 5201 5287
  year: 2016 2016
  end-page: 5205 5291
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 135
  start-page: 494
  year: 2013
  end-page: 500
  publication-title: J. Am. Chem. Soc.
– volume: 58 131
  start-page: 16411 16563
  year: 2019 2019
  end-page: 16415 16567
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 25
  start-page: 3129
  year: 2013
  end-page: 3133
  publication-title: Adv. Mater.
– volume: 59 132
  start-page: 5376 5414
  year: 2020 2020
  end-page: 5380 5418
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 19021 19197
  year: 2019 2019
  end-page: 19026 19202
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 138
  start-page: 7574
  year: 2016
  end-page: 7583
  publication-title: J. Am. Chem. Soc.
– volume: 18
  start-page: 390
  year: 2019
  end-page: 396
  publication-title: Nat. Mater.
– volume: 136
  start-page: 8941
  year: 2014
  end-page: 8946
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 1650
  year: 2016
  end-page: 1654
  publication-title: Energy Environ. Sci.
– volume: 112
  start-page: 9293
  year: 2015
  end-page: 9298
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 83
  start-page: 735
  year: 1985
  end-page: 746
  publication-title: J. Chem. Phys.
– volume: 50 123
  start-page: 8609 8768
  year: 2011 2011
  end-page: 8613 8772
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 58 131
  start-page: 18240 18408
  year: 2019 2019
  end-page: 18245 18413
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 6539 6639
  year: 2017 2017
  end-page: 6543 6643
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 15
  start-page: 882
  year: 2016
  end-page: 888
  publication-title: Nat. Mater.
– volume: 143
  start-page: 1
  year: 1996
  end-page: 5
  publication-title: J. Electrochem. Soc.
– volume: 1
  start-page: 510
  year: 2015
  end-page: 515
  publication-title: ACS Cent. Sci.
– volume: 7
  start-page: 50
  year: 2015
  end-page: 56
  publication-title: Nat. Chem.
– volume: 5
  start-page: 489
  year: 2013
  end-page: 494
  publication-title: Nat. Chem.
– volume: 6
  start-page: 7221
  year: 2018
  end-page: 7226
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 9620
  year: 2016
  end-page: 9628
  publication-title: Adv. Mater.
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  publication-title: J. Comput. Chem.
– volume: 97
  start-page: 270
  year: 1983
  end-page: 274
  publication-title: Chem. Phys. Lett.
– volume: 6
  start-page: 51
  year: 2013
  end-page: 55
  publication-title: ChemSusChem
– volume: 25
  start-page: 77
  year: 2013
  end-page: 84
  publication-title: Chem. Mater.
– volume: 9
  start-page: 1783
  year: 2016
  end-page: 1793
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 2182
  year: 2015
  end-page: 2189
  publication-title: Chem. Asian J.
– volume: 52 125
  start-page: 392 410
  year: 2013 2013
  end-page: 396 414
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 4
  start-page: 2989
  year: 2013
  end-page: 2993
  publication-title: J. Phys. Chem. Lett.
– volume: 118
  start-page: 26591
  year: 2014
  end-page: 26598
  publication-title: J. Phys. Chem. C
– volume: 26
  start-page: 151
  year: 1984
  end-page: 154
  publication-title: Int. J. Quantum Chem.
– volume: 9
  start-page: 2334
  year: 2016
  end-page: 2345
  publication-title: Energy Environ. Sci.
– volume: 361
  start-page: 777
  year: 2018
  end-page: 781
  publication-title: Science
– volume: 56 129
  start-page: 4960 5042
  year: 2017 2017
  end-page: 4964 5046
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 16128
  year: 2016
  publication-title: Nat. Energy
– volume: 337
  start-page: 563
  year: 2012
  end-page: 566
  publication-title: Science
– volume: 28
  start-page: 1
  year: 2012
  end-page: 18
  publication-title: Acta Phys. Chim. Sin.
– volume: 555
  start-page: 502
  year: 2018
  end-page: 506
  publication-title: Nature
– volume: 8
  start-page: 5300
  year: 2016
  end-page: 5307
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1204
  year: 2016
  end-page: 1212
  publication-title: J. Phys. Chem. Lett.
– volume: 26
  start-page: 2952
  year: 2014
  end-page: 2959
  publication-title: Chem. Mater.
– volume: 128
  start-page: 1390
  year: 2006
  end-page: 1393
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 6263
  year: 2019
  end-page: 6270
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 64
  year: 2019
  end-page: 70
  publication-title: Nat. Chem.
– volume: 15
  start-page: 11025
  year: 2013
  end-page: 11037
  publication-title: Phys. Chem. Chem. Phys.
– volume: 136
  start-page: 15054
  year: 2014
  end-page: 15064
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 11478
  year: 2013
  end-page: 11493
  publication-title: Phys. Chem. Chem. Phys.
– volume: 3
  start-page: 997
  year: 2012
  end-page: 1001
  publication-title: J. Phys. Chem. Lett.
SSID ssj0028806
Score 2.5666955
Snippet Li‐O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the...
Li-O2 batteries with ultrahigh theoretical energy densities usually suffer from low practical discharge capacities and inferior cycling stability owing to the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 19311
SubjectTerms 2,5-di-tert-butyl-1,4-dimethoxybenzene
Cathodes
DFT calculations
Discharge
Passivity
Rechargeable batteries
redox mediators
solution mechanism
Solvation
Stability
trifunctional mediators
Title High‐Capacity and Stable Li‐O2 Batteries Enabled by a Trifunctional Soluble Redox Mediator
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202009064
https://www.proquest.com/docview/2449915808
https://www.proquest.com/docview/2425896600
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF6kF734FqtVVvCaNt3NJt1jKS1VtEJpoSfDviJFSaUPEE_-BH-jv8SZpI2tR70l7C4kk5mdbycz3xByLZhIpEuMF2mZeIHRwpM8CTyhuUEKq1C6LEG2F3aHwe1IjNaq-HN-iCLghpaR7ddo4ErPaj-koViBDec7jO6DW4VNGBO2EBX1C_4oBsqZlxdx7mEX-hVro89qm8s38OU6Ss3cTGePqNUD5tklz9XFXFfN-y_uxv-8wT7ZXWJQ2syV5oBsufSQbLdWrd-OyCNmf3x9fLbAkxqA6VSllgIs1S-O3o1h4IHRnJgTztm0nZVfWaphHh1Mx-gq8wgjxaAbLuo7O3mj91lbkMn0mAw77UGr6y0bMXhP4L0Cr24VGH4YJuDwFZOC6cgoKwPnwkgaq7lvAEe5unLWJMI3iWwEdZeEkeYa-4XzE1JKJ6k7JdRKI7hQSJzmYO-Q0joVKaeYhrOn5aJMKqsPES-taRYDBAEYKxp-o0yuimGQCf7cUKmbLHAOEw2kGvXLhGVSj19zvo44Z2ZmMco7LuQdN3s37eLu7C-LzskOXqMrq8sKKc2nC3cBGGWuLzM9_AYnVOA9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtNAEB6VcigX_hGBAosER7fOrtfOHjhUaaqEpkGqUqknzP6MUQRyUH7Ez4lH4FV4FR6BJ2HGjg3liNQDR3t3LXtnZ_eb8cw3AM-01IXBwkeZM0WUeKcjo4ok0k55prBKDVYBspN0eJa8PNfnW_C9yYWp-SFahxtrRrVfs4KzQ3r_N2sop2CTgcfufTpXN3GVx_j5I1ltyxejQxLxcymPBtP-MNoUFoje0m6cRN1gaSGnaUEHmJVGS5d5G0yCmGbGB6diT7gAuxaDL3TsC9NLulikmVOO618reu4VuMplxJmu__C0ZaySpA51QpNSEde9b3giY7l_8X0vINo_cXF1sB3dgB_NlNTxLO_21iu357_8xRb5X83ZTbi-gdnioNaLW7CF5W3Y6TfV7e7Aaw5w-fn1W5_AgidLRNgyCELe7j2K8YwaXklRc4_OcCkGVYZZEI76ielixmigdqIK9ivyoFMM80_ipKp8Ml_chbNL-bx7sF3OS7wPIhivlbbMDYe0PRoT0GYWrXRkXgelO7DbSD7fbBjLnFAWIXXdi3sdeNo205zw_xtb4nzNfaTuMZtq3AFZiTn_UFOS5DX5tMxZvnkr3_xgMhq0Vw_-ZdAT2BlOT8b5eDQ5fgjX-D6f3F2zC9urxRofESRbuceVEgh4c9kr6BcXkz6p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JbtRAEC2FIAEX9ogJARoJjk48bbc9feAQTWaUIWFAUSLlhOmlGo2IPNEsYjnxCXwKv8Iv8CVU2WNDOCLlwNF2t5eurupX7apXAM-UVEFjcFFudYhSZ1Wkk5BGyiaOKawyjVWA7DjbP0lfnqrTNfje5MLU_BDthhtrRmWvWcHPfdj5TRrKGdjk3_HuPi2rq7DKA_z8kZy2-YvRHkn4uZTDwXF_P1rVFYjekzFOo643NI-zLND6ZaRW0ubOeJ0iZrl23iaxI1iAXYPeBRW7oHtpF0OW28Ry-euE7nsFrqYZPZlh2FFLWCVJG-p8piSJuOx9QxMZy52L73sB0P4Ji6t1bXgLfjQjUoezfNheLuy2-_IXWeT_NGS34eYKZIvdWivuwBqWd-F6v6ltdw_ecnjLz6_f-gQVHPkhwpReEO62ZygOJ3ThtRQ18-gE52JQ5Zd5YamdOJ5NGAvUW6iCdxW50xH66Sfxqqp7Mp3dh5NL-bwNWC-nJT4A4bVTiTLMDIdkHLX2aHKDRlpyrn2iOrDVCL5YmYt5QRiLcLrqxb0OPG0v05jw3xtT4nTJbaTqMZdq3AFZSbk4rwlJipp6WhYs36KVb7E7Hg3ao81_6fQErr3ZGxaHo_HBQ7jBp3nZ7uotWF_MlviI8NjCPq5UQMC7y55AvwD9Pz1Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High%E2%80%90Capacity+and+Stable+Li%E2%80%90O2+Batteries+Enabled+by+a+Trifunctional+Soluble+Redox+Mediator&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Xiong%2C+Qi&rft.au=Huang%2C+Gang&rft.au=Zhang%2C+Xin%E2%80%90Bo&rft.date=2020-10-19&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=59&rft.issue=43&rft.spage=19311&rft.epage=19319&rft_id=info:doi/10.1002%2Fanie.202009064&rft.externalDBID=10.1002%252Fanie.202009064&rft.externalDocID=ANIE202009064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon