Multi‐Phase Heterostructure of CoNiP/CoxP for Enhanced Hydrogen Evolution Under Alkaline and Seawater Conditions by Promoting H2O Dissociation

Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble‐metal‐free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/Cox...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 17; no. 17
Main Authors Liu, Dong, Ai, Haoqiang, Chen, Mingpeng, Zhou, Pengfei, Li, Bowen, Liu, Di, Du, Xinyu, Lo, Kin Ho, Ng, Kar‐Wei, Wang, Shuang‐Peng, Chen, Shi, Xing, Guichuan, Hu, Jinsong, Pan, Hui
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.04.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble‐metal‐free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/CoxP multi‐phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra‐highly catalytic activity for HER. The optimized CoNiP/CoxP multi‐phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm−2, superior to commercial Pt/C. Importantly, the multi‐phase heterostructure shows exceptional stability as confirmed by the long‐term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth‐abundant, cost‐effective electrocatalysts with superior HER activity for practical applications. The CoNiP/CoxP multi‐phase heterostructure with 3D porous hierarchical morphology optimizes the electronic structure, thereby reducing the energy barrier for water dissociation, increasing the adsorption energy of H2O and OH−, and achieving near‐zero Gibbs free energy of hydrogen adsorption. A novel HER mechanism on CoNiP/CoxP multi‐phase heterostructure is proposed to be the water dissociation on heterointerface and H2 production on CoNiP.
AbstractList Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble‐metal‐free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/CoxP multi‐phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra‐highly catalytic activity for HER. The optimized CoNiP/CoxP multi‐phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm−2, superior to commercial Pt/C. Importantly, the multi‐phase heterostructure shows exceptional stability as confirmed by the long‐term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth‐abundant, cost‐effective electrocatalysts with superior HER activity for practical applications. The CoNiP/CoxP multi‐phase heterostructure with 3D porous hierarchical morphology optimizes the electronic structure, thereby reducing the energy barrier for water dissociation, increasing the adsorption energy of H2O and OH−, and achieving near‐zero Gibbs free energy of hydrogen adsorption. A novel HER mechanism on CoNiP/CoxP multi‐phase heterostructure is proposed to be the water dissociation on heterointerface and H2 production on CoNiP.
Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble‐metal‐free electrocatalysts for HER is promising for the application of hydrogen technology. Herein, it is reported that 3D porous hierarchical CoNiP/CoxP multi‐phase heterostructure on Ni foam via an electrodeposition method followed by phosphorization exhibits ultra‐highly catalytic activity for HER. The optimized CoNiP/CoxP multi‐phase heterostructure achieves an excellent HER performance with an ultralow overpotential of 36 mV at 10 mA cm−2, superior to commercial Pt/C. Importantly, the multi‐phase heterostructure shows exceptional stability as confirmed by the long‐term potential cycles (30,000 cycles) and extended electrocatalysis (up to 500 h) in alkaline solution and natural seawater. Experimental characterizations and DFT calculations demonstrate that the strong electronic interaction at the heterointerface of CoNiP/CoP is achieved via the electron transfer from CoNiP to the heterointerface, which directly promotes the dissociation of water at heterointerface and desorption of hydrogen on CoNiP. These findings may provide deep understanding on the HER mechanism of heterostructure electrocatalysts and guidance on the design of earth‐abundant, cost‐effective electrocatalysts with superior HER activity for practical applications.
Author Pan, Hui
Ng, Kar‐Wei
Lo, Kin Ho
Chen, Mingpeng
Hu, Jinsong
Li, Bowen
Liu, Dong
Ai, Haoqiang
Wang, Shuang‐Peng
Du, Xinyu
Liu, Di
Chen, Shi
Zhou, Pengfei
Xing, Guichuan
Author_xml – sequence: 1
  givenname: Dong
  surname: Liu
  fullname: Liu, Dong
  organization: University of Macau
– sequence: 2
  givenname: Haoqiang
  surname: Ai
  fullname: Ai, Haoqiang
  organization: University of Macau
– sequence: 3
  givenname: Mingpeng
  surname: Chen
  fullname: Chen, Mingpeng
  organization: University of Macau
– sequence: 4
  givenname: Pengfei
  surname: Zhou
  fullname: Zhou, Pengfei
  organization: University of Macau
– sequence: 5
  givenname: Bowen
  surname: Li
  fullname: Li, Bowen
  organization: University of Macau
– sequence: 6
  givenname: Di
  surname: Liu
  fullname: Liu, Di
  organization: University of Macau
– sequence: 7
  givenname: Xinyu
  surname: Du
  fullname: Du, Xinyu
  organization: University of Macau
– sequence: 8
  givenname: Kin Ho
  surname: Lo
  fullname: Lo, Kin Ho
  organization: University of Macau
– sequence: 9
  givenname: Kar‐Wei
  surname: Ng
  fullname: Ng, Kar‐Wei
  organization: University of Macau
– sequence: 10
  givenname: Shuang‐Peng
  surname: Wang
  fullname: Wang, Shuang‐Peng
  email: spwang@um.edu.mo
  organization: University of Macau
– sequence: 11
  givenname: Shi
  surname: Chen
  fullname: Chen, Shi
  email: shichen@um.edu.mo
  organization: University of Macau
– sequence: 12
  givenname: Guichuan
  surname: Xing
  fullname: Xing, Guichuan
  email: gcxing@um.edu.mo
  organization: University of Macau
– sequence: 13
  givenname: Jinsong
  surname: Hu
  fullname: Hu, Jinsong
  organization: Chinese Academy of Sciences
– sequence: 14
  givenname: Hui
  orcidid: 0000-0002-6515-4970
  surname: Pan
  fullname: Pan, Hui
  email: huipan@um.edu.mo
  organization: University of Macau
BookMark eNo9kM1OwkAURidGEwHdup7EdWF-aKcsSUUxASFB1s1tZwqDZQZnWrE7H4Fn9EmEYFjde_OdfDc5bXRtrFEIPVDSpYSwnt-WZZcRRogIQ3GFWjSiPIhiNri-7JTcorb3G0I4ZX3RQodpXVb69-cwX4NXeKwq5ayvXJ1XtVPYFjixb3reS-z3HBfW4ZFZg8mVxONGOrtSBo--bFlX2hq8NFI5PCw_oNRGYTASLxTs4dh5rDFSnyiPswbPnd3aSpsVHrMZftLe21zDKb5DNwWUXt3_zw5aPo_ek3Ewmb28JsNJsGKCiaAf54IwLgsJMS1oIaXkYdYPKVDFcgkZZJzHIhcFCQdKUuhHgnIIFeFcAgXeQY_n3p2zn7XyVbqxtTPHlykLaRxFJGTRkRqcqb0uVZPunN6Ca1JK0pPy9KQ8vShPF9PJ5HLxP0wZfPs
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/smll.202007557
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL202007557
Genre article
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g2727-48c7023dfda81f1fddd35b451a1e2cdabab3387c7f059ed1a46713a5e033da1a3
IEDL.DBID DR2
ISSN 1613-6810
IngestDate Sun Jul 20 05:10:24 EDT 2025
Wed Jan 22 16:29:35 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2727-48c7023dfda81f1fddd35b451a1e2cdabab3387c7f059ed1a46713a5e033da1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6515-4970
PQID 2518660526
PQPubID 1046358
PageCount 10
ParticipantIDs proquest_journals_2518660526
wiley_primary_10_1002_smll_202007557_SMLL202007557
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2017; 41
2019; 9
2017; 8
2018; 140
2006; 51
2018 2016; 47 9
2020; 262
2000; 113
2019 2020 2020; 56 10
2019; 11
2019 2019; 13 58
2019 2016; 31 55
2015; 164
2020; 269
1964 1965; 136 140
2020; 10
2020 2020 2021 2021; 512 279 536 282
2020 2020 2019; 267 142 15
2018 2018; 281 6
1994 1996; 50 54
1996; 77
2018; 6
2018 2016; 12 3
2017 2017; 50 29
2016; 7
2018 2019 2018; 30 9 14
2018 2021; 3 286
1976; 13
2017 2020 2018 2016; 7 56 6 16
2021; 55
2020 2019 2019; 32 10 7
2017 2019; 7 3
2017; 10
2010; 132
2020 2016 2020 2019 2020; 67 1 59 29 59
2013; 135
2020; 68
2018; 30
2019; 437
2018; 12
2017 2017; 7 29
2018; 11
2019 2020 2020; 259 10 71
2018; 57
References_xml – volume: 164
  start-page: 144
  year: 2015
  publication-title: Appl. Catal., B
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 788
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 7
  start-page: 3399
  year: 2016
  publication-title: Chem. Sci.
– volume: 262
  year: 2020
  publication-title: Appl. Catal., B
– volume: 7 29
  start-page: 98
  year: 2017 2017
  publication-title: ACS Catal. Adv. Mater.
– volume: 267 142 15
  start-page: 7161
  year: 2020 2020 2019
  publication-title: Appl. Catal., B J. Am. Chem. Soc. Small
– volume: 50 54
  year: 1994 1996
  publication-title: Phys. Rev. B Phys. Rev. B
– volume: 7 56 6 16
  start-page: 4131 90 7420 7718
  year: 2017 2020 2018 2016
  publication-title: ACS Catal. Chem. Commun. J. Mater. Chem. A Nano Lett.
– volume: 6
  start-page: 833
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 32 10 7
  start-page: 4875 27
  year: 2020 2019 2019
  publication-title: Adv. Mater. Nat. Commun. Natl. Sci. Rev.
– volume: 30 9 14
  year: 2018 2019 2018
  publication-title: Adv. Mater. Adv. Energy Mater. Small
– volume: 3 286
  start-page: 1360
  year: 2018 2021
  publication-title: ACS Energy Lett. Appl. Catal., B
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 140
  start-page: 2610
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 12
  year: 2018
  publication-title: ACS Nano
– volume: 512 279 536 282
  year: 2020 2020 2021 2021
  publication-title: Appl. Surf. Sci. Appl. Catal., B Appl. Surf. Sci. Appl. Catal., B
– volume: 56 10
  start-page: 411
  year: 2019 2020 2020
  publication-title: Nano Energy Adv. Funct. Mater. Adv. Energy Mater.
– volume: 437
  year: 2019
  publication-title: J. Power Sources
– volume: 31 55
  start-page: 6702
  year: 2019 2016
  publication-title: Adv. Mater. Angew. Chem., Int. Ed.
– volume: 12 3
  start-page: 158
  year: 2018 2016
  publication-title: ACS Nano Adv. Mater. Interfaces
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 135
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 259 10 71
  year: 2019 2020 2020
  publication-title: Appl. Catal., B Adv. Energy Mater. Nano Energy
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 51
  start-page: 5468
  year: 2006
  publication-title: Electrochim. Acta
– volume: 7 3
  start-page: 494
  year: 2017 2019
  publication-title: ACS Catal. Small Methods
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 68
  year: 2020
  publication-title: Nano Energy
– volume: 281 6
  start-page: 540
  year: 2018 2018
  publication-title: Electrochim. Acta J. Mater. Chem. A
– volume: 11
  start-page: 2246
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 136 140
  start-page: B864
  year: 1964 1965
  publication-title: Phys. Rev. Phys. Rev.
– volume: 13
  start-page: 5188
  year: 1976
  publication-title: Phys. Rev. B
– volume: 269
  year: 2020
  publication-title: Appl. Catal., B
– volume: 67 1 59 29 59
  start-page: 1192 4154 8181
  year: 2020 2016 2020 2019 2020
  publication-title: Nano Energy ACS Energy Lett. Angew. Chem., Int. Ed. Adv. Funct. Mater. Angew. Chem., Int. Ed.
– volume: 57
  start-page: 7568
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 47 9
  start-page: 2251
  year: 2018 2016
  publication-title: Dalton Trans. Nano Res.
– volume: 41
  start-page: 583
  year: 2017
  publication-title: Nano Energy
– volume: 113
  start-page: 9901
  year: 2000
  publication-title: J. Chem. Phys.
– volume: 50 29
  start-page: 915 4738
  year: 2017 2017
  publication-title: Acc. Chem. Res. Chem. Mater.
– volume: 13 58
  start-page: 7975 870
  year: 2019 2019
  publication-title: ACS Nano Nano Energy
– volume: 55
  start-page: 92
  year: 2021
  publication-title: J. Energy Chem.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
SSID ssj0031247
Score 2.6406796
Snippet Hydrogen evolution reaction (HER) is a key step for electrochemical energy conversion and storage. Developing well defined nanostructures as noble‐metal‐free...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Catalytic activity
electrocatalysis
Electrocatalysts
Electron transfer
Energy conversion
Energy storage
heterostructure
Heterostructures
Hydrogen
Hydrogen evolution reactions
hydrogen generation
interface engineering
Metal foams
Nanotechnology
Phosphating (coating)
Seawater
transition metal phosphide
Title Multi‐Phase Heterostructure of CoNiP/CoxP for Enhanced Hydrogen Evolution Under Alkaline and Seawater Conditions by Promoting H2O Dissociation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202007557
https://www.proquest.com/docview/2518660526
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQEwy8EW_dwBpa23GTjqgURYhHRanEFl1ih1aUBLW8J34Cv5FfwtlpS2GEIUMGW47v7Ptif_cdY_vKBKlM_dTTNWk8v26EV9cKPUK2JpVJ1aAr33Z2Xos6_sm1up7K4i_1ISYHbnZluP3aLnBMhpVv0dDhXd9eHdizNqVsOrklbFlUdDnRj5IUvFx1FYpZnhXeGqs2VkXlZ_Mf-HIapbowc7zIcDzAkl1ye_D4kBykb7-0G__zBUtsYYRB4bB0mmU2Y_IVNj-lTLjKPlxi7uf7R6tLYQ4iS5opSq3Zx4GBIoNGcd5rVRrFSwsI90Iz7zouAUSvelCQV0LzaeTV4GorwWH_Fu2YAXMNbYPPhHIH1I29M7e-D8krtEpyYH4DkbiAo96376yxznHzqhF5o-IN3o0gTOT5YRoQHtCZxpBnPNNaS5X4iiM3ItWYYEJ_x0EaZATwjOZIOzaXqExVSo0c5TqbzYvcbDAQmTEhVnmmkPva9zGkJwi5w0uirjfZzth48WgFDmPCbWGtZtVsNplwVojvS_2OuFRqFrGd_3gy_3H77PR08rb1l0bbbE5Yyosj9uywWbKK2SXM8pDsOb_8Ah_r6HQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV25UsMwENVwFEDBzRDOLWhNIsmKnTITwhhIQoZjhs4jWzJkEmwmnKHiE_hGvoSVnISjhMKFC3lk7a72SXp6S8ie0F7MYzd2VJlrx61o5lSUkA4iWx3zqKSlLd_WbJWDS_f4SozYhOYuTK4PMd5wM5Fh52sT4GZDuvilGnp_2zNnB2azTQhvkkybst52VXU2VpDimL5sfRXMWo6R3hrpNpZY8Wf7HwjzO061ieZwgUSjLub8ku7-40O0H7_-Um_81z8skvkhDIVq7jdLZEKny2TumzjhCnm3d3M_3t7bN5jpIDC8mSyXm33sa8gSqGWtTrtYy17agNAX6umNpRNAMFD9DB0T6k9DxwZbXgmqva40nQaZKjjX8hmBbh8_Y47NjftDNIB2zg9MryFgp3DQ-XKfVXJ5WL-oBc6wfoNzzRAWOa4fewgJVKKkTxOaKKW4iFxBJdUsVjKSES6QvdhLEONpRSVO2pRLoUucK0klXyNTaZbqdQIs0dqXJZoISV3lutLHx_OphUysogpka2S9cBiE9yFCN79cNoI2BcKsGcK7XMIjzMWaWWjGPxyPf3jebDTGbxt_abRLZoKLZiNsHLVONsksMwwYy_PZIlNoIb2NEOYh2rFO-gmmNuyP
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoSFV7aOlL5VE6h17Dxq8ke0T7UFqWbVSKxC2axA4gaIKWR0tP_AR-Y39Jx87usvRIDznkYMvxfOP5Yo-_YeyTtnEpS1UGJpI2UF0rgq7RGBCztaUsQou-fNveOEoP1JdDfbhwi7_Vh5hvuDnP8Ou1c_BzU3XuRUMvfpy5owO316Z1_IStqChMHK773-YCUpKily-vQkErcMpbM9nGUHQetn9AMBdpqo8zw5cMZyNs00tOt68ui-3y9z_ijf_zCavsxZSEwk6Lmldsydav2fMFacI37M7fzP1ze5cdU5yD1GXNNK3Y7NXEQlNBrxmfZJ1e8ysDIr4wqI99MgGkN2bSECxhcD2FNfjiSrBzdopuzIC1gX2LP4nmTqgbd2juwA_FDWRtdmB9BKn4Cv2Te_C8ZQfDwfdeGkyrNwRHgkhRoJIyJkJgKoMJr3hljJG6UJojt6I0WGBBv8dxGVfE8KzhSEs2l6htKKVBjvIdW66b2r5nICprEwx5pZEroxQm9MQJ94RJdM0a25wZL5-64EVOxC2JIidns8aEt0J-3gp45K1Us8jd_Ofz-c_390aj-dv6Yxp9ZE-z_jAffR7vbrBnwqW_-CSfTbZMBrIfiL9cFlseon8BD9vrRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90Phase+Heterostructure+of+CoNiP%2FCoxP+for+Enhanced+Hydrogen+Evolution+Under+Alkaline+and+Seawater+Conditions+by+Promoting+H2O+Dissociation&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Liu%2C+Dong&rft.au=Ai%2C+Haoqiang&rft.au=Chen%2C+Mingpeng&rft.au=Zhou%2C+Pengfei&rft.date=2021-04-01&rft.issn=1613-6810&rft.eissn=1613-6829&rft.volume=17&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsmll.202007557&rft.externalDBID=10.1002%252Fsmll.202007557&rft.externalDocID=SMLL202007557
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon