Zwitterion Coordination Induced Highly Orientational Order of CH3NH3PbI3 Perovskite Film Delivers a High Open Circuit Voltage Exceeding 1.2 V
The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PC...
Saved in:
Published in | Advanced functional materials Vol. 29; no. 23 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
06.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I– ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer.
A bifunctional zwitterion additive affords efficiency enhancement of perovskite solar cells: an imidazole sulfonate zwitterion is doped into a CH3NH3PbI3 precursor solution as a bifunctional additive, enabling regulation of crystalline grain orientation and passivation of trap states. As a result, a significant efficiency enhancement and a high open circuit voltage (Voc) of 1.208 V are achieved. |
---|---|
AbstractList | The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I– ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer. The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I– ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer. A bifunctional zwitterion additive affords efficiency enhancement of perovskite solar cells: an imidazole sulfonate zwitterion is doped into a CH3NH3PbI3 precursor solution as a bifunctional additive, enabling regulation of crystalline grain orientation and passivation of trap states. As a result, a significant efficiency enhancement and a high open circuit voltage (Voc) of 1.208 V are achieved. |
Author | Zhou, Weiran Li, Dan Zhang, Wen‐Hua Yang, Shangfeng Lu, Yalin Hu, Wanpei Yang, Shihe Wu, Xiaojun Wang, Mingtai Wen, Zhilin Zhang, Mengmeng Xiao, Zhengguo |
Author_xml | – sequence: 1 givenname: Weiran surname: Zhou fullname: Zhou, Weiran organization: University of Science and Technology of China – sequence: 2 givenname: Dan surname: Li fullname: Li, Dan organization: University of Science and Technology of China – sequence: 3 givenname: Zhengguo surname: Xiao fullname: Xiao, Zhengguo organization: University of Science and Technology of China – sequence: 4 givenname: Zhilin surname: Wen fullname: Wen, Zhilin organization: University of Science and Technology of China – sequence: 5 givenname: Mengmeng surname: Zhang fullname: Zhang, Mengmeng organization: University of Science and Technology of China – sequence: 6 givenname: Wanpei surname: Hu fullname: Hu, Wanpei organization: University of Science and Technology of China – sequence: 7 givenname: Xiaojun surname: Wu fullname: Wu, Xiaojun organization: University of Science and Technology of China – sequence: 8 givenname: Mingtai surname: Wang fullname: Wang, Mingtai organization: Chinese Academy of Sciences – sequence: 9 givenname: Wen‐Hua surname: Zhang fullname: Zhang, Wen‐Hua organization: China Academy of Engineering Physics – sequence: 10 givenname: Yalin surname: Lu fullname: Lu, Yalin organization: University of Science and Technology of China – sequence: 11 givenname: Shihe surname: Yang fullname: Yang, Shihe email: yangsh@pkusz.edu.cn organization: The Hong Kong University of Science and Technology – sequence: 12 givenname: Shangfeng orcidid: 0000-0002-6931-9613 surname: Yang fullname: Yang, Shangfeng email: sfyang@ustc.edu.cn organization: University of Science and Technology of China |
BookMark | eNo9UE1PwkAU3BhMBPTqeRPP4Ntd2m6PhA8hQeGgxHhptt3Xuli6uC0gP8L_bAHDad7kTWYy0yKNwhZIyD2DLgPgj0qn6y4HFgID7l-RJvOZ3xHAZeNys_cb0irLFQALAtFrkt-PvakqdMYWdGCt06ZQ1ZFMC71NUNOJyT7zA507g0V1eqm8ZhodtSkdTMTLRCziqaALdHZXfpkK6djkazrE3OzQlVSdPOh8g3WEccnWVHRp80plSEc_CWKdmVHW5XR5S65TlZd4949t8jYevQ4mndn8aTrozzoZD7jfYcBED1UgOZMaUAY6lSz2vCRJagQppBfqJE595XsJhzCIPQ29ABToEJT0RJs8nH03zn5vsayild26ulkZcS56oScZF7UqPKv2JsdDtHFmrdwhYhAd946Oe0eXvaP-cPx8YeIPC8t3eg |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201901026 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM201901026 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51572254 – fundername: National Key Research and Development Program of China funderid: 2017YFA0402800 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g2726-10134ea78218d0e87df81b55ccc81b083859dcbf6a65c2097b5d0470a0d90a853 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Jul 25 06:21:17 EDT 2025 Wed Jan 22 16:40:33 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2726-10134ea78218d0e87df81b55ccc81b083859dcbf6a65c2097b5d0470a0d90a853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6931-9613 |
PQID | 2234958123 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2234958123 wiley_primary_10_1002_adfm_201901026_ADFM201901026 |
PublicationCentury | 2000 |
PublicationDate | June 6, 2019 |
PublicationDateYYYYMMDD | 2019-06-06 |
PublicationDate_xml | – month: 06 year: 2019 text: June 6, 2019 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2018; 361 2018; 28 2017; 1 2015; 5 2017; 2 2017; 3 2017; 27 2017; 29 2016; 18 2018; 45 2015; 8 2017; 139 2018; 9 2009; 2009 2018; 8 2016; 7 2018; 3 2016; 1 2015; 27 2011; 348 2014; 2 2015; 179 2017; 10 2016; 354 2014; 14 2018; 30 2016; 138 2018; 11 2018; 10 2016; 27 2016; 8 2014; 345 |
References_xml | – volume: 18 start-page: 6543 year: 2016 publication-title: CrystEngComm – volume: 8 start-page: 1703519 year: 2018 publication-title: Adv. Energy Mater. – volume: 10 start-page: 1909 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 1501310 year: 2015 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1803428 year: 2018 publication-title: Adv. Mater. – volume: 27 start-page: 3424 year: 2015 publication-title: Adv. Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 348 start-page: 77 year: 2011 publication-title: J. Mol. Catal. A: Chem. – volume: 10 start-page: 2224 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 14503 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 1703670 year: 2018 publication-title: Adv. Mater. – volume: 8 start-page: 15333 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 139 start-page: 7504 year: 2017 publication-title: J. Am. Chem. Soc. – volume: 2009 start-page: 167 year: 2009 publication-title: J. Chem. Res. – volume: 8 start-page: 1800275 year: 2018 publication-title: Adv. Energy Mater. – volume: 11 start-page: 151 year: 2018 publication-title: Energy Environ. Sci. – volume: 30 start-page: 1704208 year: 2018 publication-title: Adv. Mater. – volume: 354 start-page: 206 year: 2016 publication-title: Science – volume: 14 start-page: 4158 year: 2014 publication-title: Nano Lett. – volume: 27 start-page: 175 year: 2016 publication-title: Nano Energy – volume: 138 start-page: 5410 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 1706576 year: 2018 publication-title: Adv. Mater. – volume: 179 start-page: 269 year: 2015 publication-title: Faraday Discuss. – volume: 45 start-page: 28 year: 2018 publication-title: Nano Energy – volume: 5 start-page: 12602 year: 2017 publication-title: J. Mater. Chem. A – volume: 11 start-page: 286 year: 2018 publication-title: Energy Environ. Sci. – volume: 11 start-page: 1432 year: 2018 publication-title: ChemSusChem – volume: 29 start-page: 1701073 year: 2017 publication-title: Adv. Mater. – volume: 8 start-page: 2725 year: 2015 publication-title: Energy Environ. Sci. – volume: 10 start-page: 32471 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 27 start-page: 1703061 year: 2017 publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1207 year: 2017 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2411 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 20454 year: 2014 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1724 year: 2017 publication-title: J. Mater. Chem. A – volume: 3 start-page: 290 year: 2017 publication-title: Chem – volume: 30 start-page: 1706275 year: 2018 publication-title: Adv. Mater. – volume: 1 start-page: 371 year: 2017 publication-title: Joule – volume: 2 start-page: 17135 year: 2017 publication-title: Nat. Energy – volume: 5 start-page: 1400812 year: 2015 publication-title: Adv. Energy Mater. – volume: 1 start-page: 438 year: 2016 publication-title: ACS Energy Lett. – volume: 8 start-page: 34464 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 3 start-page: 828 year: 2018 publication-title: Nat. Energy – volume: 1 start-page: 119 year: 2017 publication-title: Sustainable Energy Fuels – volume: 30 start-page: 1706924 year: 2018 publication-title: Adv. Mater. – volume: 28 start-page: 1706073 year: 2018 publication-title: Adv. Funct. Mater. – volume: 3 start-page: e1700106 year: 2017 publication-title: Sci. Adv. – volume: 361 start-page: eaat8235 year: 2018 publication-title: Science – volume: 7 start-page: 905 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 293 year: 2018 publication-title: Nat. Commun. – volume: 10 start-page: 1897 year: 2018 publication-title: ACS Appl. Mater. Interfaces |
SSID | ssj0017734 |
Score | 2.6212692 |
Snippet | The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however,... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | additive engineering Coordination Crystal structure crystalline grain orientation Doping Electron transport Energy conversion efficiency Heterojunctions Imidazole Materials science Open circuit voltage perovskite solar cells Perovskites Photovoltaic cells Solar cells Titanium dioxide trap passivation zwitterion Zwitterions |
Title | Zwitterion Coordination Induced Highly Orientational Order of CH3NH3PbI3 Perovskite Film Delivers a High Open Circuit Voltage Exceeding 1.2 V |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901026 https://www.proquest.com/docview/2234958123 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEF0huMChUNqqFIrmwNWwa6_X8TFKiNKqAUQLirhY-2VkNY2rxGmh_6H_uTO2k4Yey8nrw67W-zH7ZvzmLWMnSnvrrI0CGxseSKPToCOJNB4l0kiX-lBTHHJ0oYY38uM4Hq9l8Tf6EKuAG-2M2l7TBtdmfvZXNFS7nDLJ6UBDPwKNMBG2CBVdr_SjRJI0v5WVIIKXGC9VG3l49rT6E3y5jlLrY2awy_Sygw275OvpojKn9tc_2o3P-YI99qLFoNBtFs1LtuGn-2xnTZnwFft997OgPB-cNeiV6KAWTdQQ6KoP6x0QP2TyCJezok1eohYvSccTyhx6w-hiGF2ZDxFc-Vn5Y04xYhgUk2_Qx04TFQR03QYQowV6xcwuigpuy0mFBg7OH9pTFdC5htvX7GZw_qU3DNqbG4L7MAkV2nYRSa8RfYiO476TuBzhcRxba_GJqK8Tp86aXGkV25CniYkdlwnX3KVcI4J4wzan5dS_ZeByIVKfGiW8kJZLkzhlDDpNWOROqgN2tJy5rN1-8wwxDzp-iF2iAxbWU5B9b8Q7skamOcxo8LPV4Gfd_mC0env3P5UO2TaVaxqZOmKb1Wzh3yNgqcwx2-r2R58-H9eL8w81guRK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9RAEJ5COKgHBdQSRe0D18BMMplsjtQuW0HYhaKAoryk5hUrxbKxlqyg_8H_bHeSXcGjnvKomqnJ9Dy-7nz9DWM7SnvrrI0CGxseSKPToCeJNB4l0kiX-lBTHHI0VtmF_HwVL9iElAvT6kMsA240M5r1miY4BaT3_qiGaldQKjntaOhIPGFrdKw3yecPzpYKUiJJ2h_LShDFS1wtdBt5uPe4_COE-RCnNhvN8CUziya2_JLr3Xltdu3Pv9Qb_-sb1tmLDobCfjtuNtiKn26y5w_ECV-xX1_uSkr1QcNBv0IftWwDh0CnfVjvgCgikx9wMiu7_CWq8YSkPKEqoJ9F4yw6NYcRnPpZ9f2WwsQwLCc3MMBWExsEdFMHEKkF-uXMzssaLqtJjWscHNx3Gyugfw2Xr9nF8OC8nwXd4Q3B1zAJFS7vIpJeIwARPcd9L3EFIuQ4ttbiFYFfL06dNYXSKrYhTxMTOy4TrrlLuUYQ8YatTqupf8vAFUKkPjVKeCEtlyZxyhj0m_CWO6m22PbCdHk3A29zhD3o-yF8ibZY2Ngg_9bqd-StUnOYU-fny87P9wfD0fLp3b8U-sSeZuej4_z4cHz0nj2j9w2rTG2z1Xo29x8Qv9TmYzNCfwNXPebS |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkRAcgPIQhVLm0KvbXXu9jo9VUistNI2qtoq4WPtyZRHiKnWA9j_wn5mxnZByhJMf0q7WO_v4ZvzNt4ztKu2tszYKbGx4II1Og54k0niUSCNd6kNNcciTkRpeyONJPFnL4m_1IVYBN5oZzXpNE_zaFft_REO1KyiTnDY09CMeskdS8ZQObxicrQSkRJK0_5WVIIaXmCxlG3m4f7_8PYC5DlObfSZ7zvSyhS295OveojZ79u4v8cb_-YQX7FkHQuGgHTWb7IGfvWRP16QJX7FfX36UlOiDZoN-hR5q2YYNgc76sN4BEUSmt3A6L7vsJarxlIQ8oSqgP4xGw2hsjiIY-3n1_YaCxJCV028wwEYTFwR0UwcQpQX65dwuyhouq2mNKxwc_uy2VUDvGi5fs4vs8Lw_DLqjG4KrMAkVLu4ikl4j_BA9x30vcQXi4zi21uIVYV8vTp01hdIqtiFPExM7LhOuuUu5Rgjxhm3Mqpl_y8AVQqQ-NUp4IS2XJnHKGPSa8JY7qbbY9tJyeTf_bnIEPej5IXiJtljYmCC_btU78lanOcyp8_NV5-cHg-xk9fTuXwp9ZI_Hgyz_fDT69J49odcNpUxts416vvAfELzUZqcZn78BsdzlgQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zwitterion+Coordination+Induced+Highly+Orientational+Order+of+CH3NH3PbI3+Perovskite+Film+Delivers+a+High+Open+Circuit+Voltage+Exceeding+1.2+V&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Weiran&rft.au=Li%2C+Dan&rft.au=Xiao%2C+Zhengguo&rft.au=Wen%2C+Zhilin&rft.date=2019-06-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901026&rft.externalDBID=10.1002%252Fadfm.201901026&rft.externalDocID=ADFM201901026 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |