Zwitterion Coordination Induced Highly Orientational Order of CH3NH3PbI3 Perovskite Film Delivers a High Open Circuit Voltage Exceeding 1.2 V

The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PC...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 29; no. 23
Main Authors Zhou, Weiran, Li, Dan, Xiao, Zhengguo, Wen, Zhilin, Zhang, Mengmeng, Hu, Wanpei, Wu, Xiaojun, Wang, Mingtai, Zhang, Wen‐Hua, Lu, Yalin, Yang, Shihe, Yang, Shangfeng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 06.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I– ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer. A bifunctional zwitterion additive affords efficiency enhancement of perovskite solar cells: an imidazole sulfonate zwitterion is doped into a CH3NH3PbI3 precursor solution as a bifunctional additive, enabling regulation of crystalline grain orientation and passivation of trap states. As a result, a significant efficiency enhancement and a high open circuit voltage (Voc) of 1.208 V are achieved.
AbstractList The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I– ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer.
The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however, solution‐processed MAPbI3 films usually suffer from random crystal orientation and high trap density, resulting in inferior power conversion efficiency (PCE) with open circuit voltage (Voc) being typically below 1.2 V for PSC devices. Herein, for the first time an imidazole sulfonate zwitterion, 4‐(1H‐imidazol‐3‐ium‐3‐yl)butane‐1‐sulfonate (IMS), is applied as a bifunctional additive in regular‐structure planar heterojunction PSC devices to regulate the crystal orientation, yielding highly ordered MAPbI3 film and passivating the trap states of the film. Such a dual effect of IMS is fulfilled via coordination interactions between the sulfonate moiety of IMS with the Pb2+ ion and the electrostatic interaction between the imidazole of IMS with the I– ion of MAPbI3. As a result, under a optimized IMS doping ratio of 0.5 wt%, the PSC device exhibits a significant increase in PCE from 18.77% to 20.84%, with suppressed current–voltage hysteresis and promoted ambient stability. Moreover, a high Voc of 1.208 V is achieved under a higher IMS doping ratio of 1.2 wt%, which is the highest Voc for regular‐structure MAPbI3 planar PSC devices based on TiO2 electron transport layer. A bifunctional zwitterion additive affords efficiency enhancement of perovskite solar cells: an imidazole sulfonate zwitterion is doped into a CH3NH3PbI3 precursor solution as a bifunctional additive, enabling regulation of crystalline grain orientation and passivation of trap states. As a result, a significant efficiency enhancement and a high open circuit voltage (Voc) of 1.208 V are achieved.
Author Zhou, Weiran
Li, Dan
Zhang, Wen‐Hua
Yang, Shangfeng
Lu, Yalin
Hu, Wanpei
Yang, Shihe
Wu, Xiaojun
Wang, Mingtai
Wen, Zhilin
Zhang, Mengmeng
Xiao, Zhengguo
Author_xml – sequence: 1
  givenname: Weiran
  surname: Zhou
  fullname: Zhou, Weiran
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Zhengguo
  surname: Xiao
  fullname: Xiao, Zhengguo
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Zhilin
  surname: Wen
  fullname: Wen, Zhilin
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Mengmeng
  surname: Zhang
  fullname: Zhang, Mengmeng
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Wanpei
  surname: Hu
  fullname: Hu, Wanpei
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Xiaojun
  surname: Wu
  fullname: Wu, Xiaojun
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Mingtai
  surname: Wang
  fullname: Wang, Mingtai
  organization: Chinese Academy of Sciences
– sequence: 9
  givenname: Wen‐Hua
  surname: Zhang
  fullname: Zhang, Wen‐Hua
  organization: China Academy of Engineering Physics
– sequence: 10
  givenname: Yalin
  surname: Lu
  fullname: Lu, Yalin
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Shihe
  surname: Yang
  fullname: Yang, Shihe
  email: yangsh@pkusz.edu.cn
  organization: The Hong Kong University of Science and Technology
– sequence: 12
  givenname: Shangfeng
  orcidid: 0000-0002-6931-9613
  surname: Yang
  fullname: Yang, Shangfeng
  email: sfyang@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNo9UE1PwkAU3BhMBPTqeRPP4Ntd2m6PhA8hQeGgxHhptt3Xuli6uC0gP8L_bAHDad7kTWYy0yKNwhZIyD2DLgPgj0qn6y4HFgID7l-RJvOZ3xHAZeNys_cb0irLFQALAtFrkt-PvakqdMYWdGCt06ZQ1ZFMC71NUNOJyT7zA507g0V1eqm8ZhodtSkdTMTLRCziqaALdHZXfpkK6djkazrE3OzQlVSdPOh8g3WEccnWVHRp80plSEc_CWKdmVHW5XR5S65TlZd4949t8jYevQ4mndn8aTrozzoZD7jfYcBED1UgOZMaUAY6lSz2vCRJagQppBfqJE595XsJhzCIPQ29ABToEJT0RJs8nH03zn5vsayild26ulkZcS56oScZF7UqPKv2JsdDtHFmrdwhYhAd946Oe0eXvaP-cPx8YeIPC8t3eg
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201901026
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM201901026
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 51572254
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0402800
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g2726-10134ea78218d0e87df81b55ccc81b083859dcbf6a65c2097b5d0470a0d90a853
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 06:21:17 EDT 2025
Wed Jan 22 16:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2726-10134ea78218d0e87df81b55ccc81b083859dcbf6a65c2097b5d0470a0d90a853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6931-9613
PQID 2234958123
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2234958123
wiley_primary_10_1002_adfm_201901026_ADFM201901026
PublicationCentury 2000
PublicationDate June 6, 2019
PublicationDateYYYYMMDD 2019-06-06
PublicationDate_xml – month: 06
  year: 2019
  text: June 6, 2019
  day: 06
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2018; 361
2018; 28
2017; 1
2015; 5
2017; 2
2017; 3
2017; 27
2017; 29
2016; 18
2018; 45
2015; 8
2017; 139
2018; 9
2009; 2009
2018; 8
2016; 7
2018; 3
2016; 1
2015; 27
2011; 348
2014; 2
2015; 179
2017; 10
2016; 354
2014; 14
2018; 30
2016; 138
2018; 11
2018; 10
2016; 27
2016; 8
2014; 345
References_xml – volume: 18
  start-page: 6543
  year: 2016
  publication-title: CrystEngComm
– volume: 8
  start-page: 1703519
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 1909
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1501310
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1803428
  year: 2018
  publication-title: Adv. Mater.
– volume: 27
  start-page: 3424
  year: 2015
  publication-title: Adv. Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 348
  start-page: 77
  year: 2011
  publication-title: J. Mol. Catal. A: Chem.
– volume: 10
  start-page: 2224
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 14503
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 1703670
  year: 2018
  publication-title: Adv. Mater.
– volume: 8
  start-page: 15333
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 139
  start-page: 7504
  year: 2017
  publication-title: J. Am. Chem. Soc.
– volume: 2009
  start-page: 167
  year: 2009
  publication-title: J. Chem. Res.
– volume: 8
  start-page: 1800275
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 151
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 30
  start-page: 1704208
  year: 2018
  publication-title: Adv. Mater.
– volume: 354
  start-page: 206
  year: 2016
  publication-title: Science
– volume: 14
  start-page: 4158
  year: 2014
  publication-title: Nano Lett.
– volume: 27
  start-page: 175
  year: 2016
  publication-title: Nano Energy
– volume: 138
  start-page: 5410
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 1706576
  year: 2018
  publication-title: Adv. Mater.
– volume: 179
  start-page: 269
  year: 2015
  publication-title: Faraday Discuss.
– volume: 45
  start-page: 28
  year: 2018
  publication-title: Nano Energy
– volume: 5
  start-page: 12602
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 286
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 11
  start-page: 1432
  year: 2018
  publication-title: ChemSusChem
– volume: 29
  start-page: 1701073
  year: 2017
  publication-title: Adv. Mater.
– volume: 8
  start-page: 2725
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 32471
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 27
  start-page: 1703061
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1207
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2411
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 20454
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1724
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 290
  year: 2017
  publication-title: Chem
– volume: 30
  start-page: 1706275
  year: 2018
  publication-title: Adv. Mater.
– volume: 1
  start-page: 371
  year: 2017
  publication-title: Joule
– volume: 2
  start-page: 17135
  year: 2017
  publication-title: Nat. Energy
– volume: 5
  start-page: 1400812
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 438
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 34464
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 828
  year: 2018
  publication-title: Nat. Energy
– volume: 1
  start-page: 119
  year: 2017
  publication-title: Sustainable Energy Fuels
– volume: 30
  start-page: 1706924
  year: 2018
  publication-title: Adv. Mater.
– volume: 28
  start-page: 1706073
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: e1700106
  year: 2017
  publication-title: Sci. Adv.
– volume: 361
  start-page: eaat8235
  year: 2018
  publication-title: Science
– volume: 7
  start-page: 905
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 293
  year: 2018
  publication-title: Nat. Commun.
– volume: 10
  start-page: 1897
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
SSID ssj0017734
Score 2.6212692
Snippet The organic–inorganic halide CH3NH3PbI3 (MAPbI3) has been the most commonly used light absorber layer of perovskite solar cells (PSCs); however,...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms additive engineering
Coordination
Crystal structure
crystalline grain orientation
Doping
Electron transport
Energy conversion efficiency
Heterojunctions
Imidazole
Materials science
Open circuit voltage
perovskite solar cells
Perovskites
Photovoltaic cells
Solar cells
Titanium dioxide
trap passivation
zwitterion
Zwitterions
Title Zwitterion Coordination Induced Highly Orientational Order of CH3NH3PbI3 Perovskite Film Delivers a High Open Circuit Voltage Exceeding 1.2 V
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201901026
https://www.proquest.com/docview/2234958123
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9tAEF0huMChUNqqFIrmwNWwa6_X8TFKiNKqAUQLirhY-2VkNY2rxGmh_6H_uTO2k4Yey8nrw67W-zH7ZvzmLWMnSnvrrI0CGxseSKPToCOJNB4l0kiX-lBTHHJ0oYY38uM4Hq9l8Tf6EKuAG-2M2l7TBtdmfvZXNFS7nDLJ6UBDPwKNMBG2CBVdr_SjRJI0v5WVIIKXGC9VG3l49rT6E3y5jlLrY2awy_Sygw275OvpojKn9tc_2o3P-YI99qLFoNBtFs1LtuGn-2xnTZnwFft997OgPB-cNeiV6KAWTdQQ6KoP6x0QP2TyCJezok1eohYvSccTyhx6w-hiGF2ZDxFc-Vn5Y04xYhgUk2_Qx04TFQR03QYQowV6xcwuigpuy0mFBg7OH9pTFdC5htvX7GZw_qU3DNqbG4L7MAkV2nYRSa8RfYiO476TuBzhcRxba_GJqK8Tp86aXGkV25CniYkdlwnX3KVcI4J4wzan5dS_ZeByIVKfGiW8kJZLkzhlDDpNWOROqgN2tJy5rN1-8wwxDzp-iF2iAxbWU5B9b8Q7skamOcxo8LPV4Gfd_mC0env3P5UO2TaVaxqZOmKb1Wzh3yNgqcwx2-r2R58-H9eL8w81guRK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LU9RAEJ5COKgHBdQSRe0D18BMMplsjtQuW0HYhaKAoryk5hUrxbKxlqyg_8H_bHeSXcGjnvKomqnJ9Dy-7nz9DWM7SnvrrI0CGxseSKPToCeJNB4l0kiX-lBTHHI0VtmF_HwVL9iElAvT6kMsA240M5r1miY4BaT3_qiGaldQKjntaOhIPGFrdKw3yecPzpYKUiJJ2h_LShDFS1wtdBt5uPe4_COE-RCnNhvN8CUziya2_JLr3Xltdu3Pv9Qb_-sb1tmLDobCfjtuNtiKn26y5w_ECV-xX1_uSkr1QcNBv0IftWwDh0CnfVjvgCgikx9wMiu7_CWq8YSkPKEqoJ9F4yw6NYcRnPpZ9f2WwsQwLCc3MMBWExsEdFMHEKkF-uXMzssaLqtJjWscHNx3Gyugfw2Xr9nF8OC8nwXd4Q3B1zAJFS7vIpJeIwARPcd9L3EFIuQ4ttbiFYFfL06dNYXSKrYhTxMTOy4TrrlLuUYQ8YatTqupf8vAFUKkPjVKeCEtlyZxyhj0m_CWO6m22PbCdHk3A29zhD3o-yF8ibZY2Ngg_9bqd-StUnOYU-fny87P9wfD0fLp3b8U-sSeZuej4_z4cHz0nj2j9w2rTG2z1Xo29x8Qv9TmYzNCfwNXPebS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF5BkRAcgPIQhVLm0KvbXXu9jo9VUistNI2qtoq4WPtyZRHiKnWA9j_wn5mxnZByhJMf0q7WO_v4ZvzNt4ztKu2tszYKbGx4II1Og54k0niUSCNd6kNNcciTkRpeyONJPFnL4m_1IVYBN5oZzXpNE_zaFft_REO1KyiTnDY09CMeskdS8ZQObxicrQSkRJK0_5WVIIaXmCxlG3m4f7_8PYC5DlObfSZ7zvSyhS295OveojZ79u4v8cb_-YQX7FkHQuGgHTWb7IGfvWRP16QJX7FfX36UlOiDZoN-hR5q2YYNgc76sN4BEUSmt3A6L7vsJarxlIQ8oSqgP4xGw2hsjiIY-3n1_YaCxJCV028wwEYTFwR0UwcQpQX65dwuyhouq2mNKxwc_uy2VUDvGi5fs4vs8Lw_DLqjG4KrMAkVLu4ikl4j_BA9x30vcQXi4zi21uIVYV8vTp01hdIqtiFPExM7LhOuuUu5Rgjxhm3Mqpl_y8AVQqQ-NUp4IS2XJnHKGPSa8JY7qbbY9tJyeTf_bnIEPej5IXiJtljYmCC_btU78lanOcyp8_NV5-cHg-xk9fTuXwp9ZI_Hgyz_fDT69J49odcNpUxts416vvAfELzUZqcZn78BsdzlgQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Zwitterion+Coordination+Induced+Highly+Orientational+Order+of+CH3NH3PbI3+Perovskite+Film+Delivers+a+High+Open+Circuit+Voltage+Exceeding+1.2+V&rft.jtitle=Advanced+functional+materials&rft.au=Zhou%2C+Weiran&rft.au=Li%2C+Dan&rft.au=Xiao%2C+Zhengguo&rft.au=Wen%2C+Zhilin&rft.date=2019-06-06&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=29&rft.issue=23&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.201901026&rft.externalDBID=10.1002%252Fadfm.201901026&rft.externalDocID=ADFM201901026
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon