Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability
A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 31; no. 23 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
06.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.
The efficiency and photostability of all‐inorganic mixed‐halide perovskite solar cells (PVSCs) can be simultaneously enhanced by introducing an amino‐functionalized polymer PN4N as a novel cathode interlayer and dopant‐free PDCBT hole‐transporting layer. The favorable interaction between perovskite crystal and PN4N/PDCBT can effectively improve CsPbI2Br film quality, with power conversion efficiency over 16%. |
---|---|
AbstractList | A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h. A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h. The efficiency and photostability of all‐inorganic mixed‐halide perovskite solar cells (PVSCs) can be simultaneously enhanced by introducing an amino‐functionalized polymer PN4N as a novel cathode interlayer and dopant‐free PDCBT hole‐transporting layer. The favorable interaction between perovskite crystal and PN4N/PDCBT can effectively improve CsPbI2Br film quality, with power conversion efficiency over 16%. |
Author | Li, Ning Chen, Yuxuan Hu, Zhicheng Huang, Fei Cao, Yong Wang, Xin Tang, Xiaofeng Brabec, Christoph J. Tian, Jingjing Shi, Tingting Yip, Hin‐Lap Xue, Qifan |
Author_xml | – sequence: 1 givenname: Jingjing surname: Tian fullname: Tian, Jingjing organization: South China University of Technology – sequence: 2 givenname: Qifan surname: Xue fullname: Xue, Qifan email: qfxue@scut.edu.cn organization: South China University of Technology – sequence: 3 givenname: Xiaofeng surname: Tang fullname: Tang, Xiaofeng organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg – sequence: 4 givenname: Yuxuan surname: Chen fullname: Chen, Yuxuan organization: South China Normal University – sequence: 5 givenname: Ning surname: Li fullname: Li, Ning organization: Zhengzhou University – sequence: 6 givenname: Zhicheng surname: Hu fullname: Hu, Zhicheng organization: South China University of Technology – sequence: 7 givenname: Tingting surname: Shi fullname: Shi, Tingting organization: Jinan University – sequence: 8 givenname: Xin surname: Wang fullname: Wang, Xin organization: South China Normal University – sequence: 9 givenname: Fei surname: Huang fullname: Huang, Fei organization: South China University of Technology – sequence: 10 givenname: Christoph J. surname: Brabec fullname: Brabec, Christoph J. organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg – sequence: 11 givenname: Hin‐Lap orcidid: 0000-0002-5750-9751 surname: Yip fullname: Yip, Hin‐Lap email: msangusyip@scut.edu.cn organization: South China Institute of Collaborative Innovation – sequence: 12 givenname: Yong surname: Cao fullname: Cao, Yong organization: South China University of Technology |
BookMark | eNo9kEtPAjEQxxuDiYBePTfxvNjHbkuPuKBugpFEPTfd0kJx2cW2SPj2lmBIJvPI_DOP3wD02q41ANxjNMIIkUe13KoRQVggjAtyBfrJ4yxHouiBPhK0yATLxzdgEMIGISQYYn1QT_eqgVUbjbdKu5RPTXCrFtrOw5m1TjvTRliGRV2RJw8Xxne_4dtFAz-6RnlYmqYJ8ODiGlbbXWqaJVysu9iFqGrXuHi8BddWNcHc_cch-HqefZav2fz9pSon82xFOCEZ0xZjy_Nac2O1EIoRPc5Zbhhnxo6FyAk1nDKECkZweoVbrZkpkmlEl4wOwcN5brriZ29ClJtu79u0UhJCKc8FxyipxFl1cI05yp13W-WPEiN5gihPEOUFopxM3yaXiv4BDm9pVw |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 8BQ 8FD JG9 |
DOI | 10.1002/adma.201901152 |
DatabaseName | Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | ADMA201901152 |
Genre | article |
GrantInformation_xml | – fundername: Science and Technology Program of Guangzhou funderid: 201607020010; 2017A050503002 – fundername: Natural Science Foundation of China funderid: 51803060; 21761132001; 51573057 – fundername: Ministry of Science and Technology funderid: 2017YF0206600 – fundername: Science and Technology Program of Guangdong Province funderid: 2018A030313045 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT 7SR 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 |
ID | FETCH-LOGICAL-g2722-6cf11f74bc7efc99a62c8464e676ef899423e7360056219647fcc6e56e5c03d63 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 |
IngestDate | Fri Jul 25 03:08:13 EDT 2025 Wed Jan 22 16:40:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2722-6cf11f74bc7efc99a62c8464e676ef899423e7360056219647fcc6e56e5c03d63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5750-9751 |
PQID | 2233749710 |
PQPubID | 2045203 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2233749710 wiley_primary_10_1002_adma_201901152_ADMA201901152 |
PublicationCentury | 2000 |
PublicationDate | June 6, 2019 |
PublicationDateYYYYMMDD | 2019-06-06 |
PublicationDate_xml | – month: 06 year: 2019 text: June 6, 2019 day: 06 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2007; 101 2017; 8 2017; 1 2013; 4 2017; 2 2017; 3 2014; 24 2015; 348 2013; 7 2017; 356 2014; 136 2017; 358 2018; 9 2018; 8 2014; 5 2018; 2 2014; 2 2013; 13 2013; 52 2016; 354 2014; 14 2018; 30 2014; 8 2014; 7 2012; 338 2015; 6 2019; 3 2018; 140 2015; 3 2013; 501 2013; 342 2005; 87 2017; 29 2009; 131 2015; 9 2016; 6 2018; 18 2016; 7 2018; 17 2016; 1 2015; 27 2016; 3 2018 2013; 499 2005; 94 2018; 11 2016; 28 2018; 54 2012; 5 2014; 104 |
References_xml | – volume: 8 start-page: 3213 year: 2014 publication-title: ACS Nano – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 136 start-page: 758 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8094 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 1703246 year: 2018 publication-title: Adv. Energy Mater. – volume: 356 start-page: 1376 year: 2017 publication-title: Science – volume: 7 start-page: 4569 year: 2013 publication-title: ACS Nano – volume: 6 start-page: 1502458 year: 2016 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1600502 year: 2016 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1605290 year: 2017 publication-title: Adv. Mater. – volume: 6 start-page: 7497 year: 2015 publication-title: Nat. Commun. – volume: 6 start-page: 7747 year: 2015 publication-title: Nat. Commun. – volume: 14 start-page: 3247 year: 2014 publication-title: Nano Lett. – volume: 9 start-page: 106 year: 2015 publication-title: Nat. Photonics – volume: 9 start-page: 1076 year: 2018 publication-title: Nat. Commun. – volume: 140 start-page: 12345 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 3 start-page: e1700841 year: 2017 publication-title: Sci. Adv. – year: 2018 – volume: 17 start-page: 261 year: 2018 publication-title: Nat. Mater. – volume: 140 start-page: 10504 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 358 start-page: 1192 year: 2017 publication-title: Science – volume: 27 start-page: 1837 year: 2015 publication-title: Adv. Mater. – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 2 start-page: 1356 year: 2018 publication-title: Joule – volume: 7 start-page: 1889 year: 2014 publication-title: Energy Environ. Sci. – volume: 8 start-page: 9815 year: 2014 publication-title: ACS Nano – volume: 18 start-page: 2172 year: 2018 publication-title: Nano Lett. – volume: 2 start-page: 17291 year: 2014 publication-title: J. Mater. Chem. A – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 284 year: 2016 publication-title: Chem. Mater. – volume: 13 start-page: 1764 year: 2013 publication-title: Nano Lett. – volume: 7 start-page: 1602333 year: 2017 publication-title: Adv. Energy Mater. – volume: 7 start-page: 982 year: 2014 publication-title: Energy Environ. Sci. – volume: 9 start-page: 2225 year: 2018 publication-title: Nat. Commun. – volume: 354 start-page: 92 year: 2016 publication-title: Science – volume: 5 start-page: 5784 year: 2014 publication-title: Nat. Commun. – volume: 11 start-page: 286 year: 2018 publication-title: Energy Environ. Sci. – volume: 4 start-page: 3623 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 2 start-page: 1700188 year: 2018 publication-title: Sol. RRL – volume: 5 start-page: 5994 year: 2012 publication-title: Energy Environ. Sci. – volume: 104 start-page: 063903 year: 2014 publication-title: Appl. Phys. Lett. – volume: 54 start-page: 9809 year: 2018 publication-title: Chem. Commun. – volume: 2 start-page: 19598 year: 2014 publication-title: J. Mater. Chem. A – volume: 11 start-page: 1688 year: 2018 publication-title: Energy Environ. Sci. – volume: 94 start-page: 126602 year: 2005 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 9098 year: 2015 publication-title: J. Mater. Chem. A – volume: 24 start-page: 7357 year: 2014 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 371 year: 2017 publication-title: Joule – volume: 2 start-page: 1507 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 191 year: 2019 publication-title: Joule – volume: 1 start-page: 1199 year: 2016 publication-title: ACS Energy Lett. – volume: 6 start-page: 1501534 year: 2016 publication-title: Adv. Energy Mater. – volume: 30 start-page: 1705393 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 7348 year: 2015 publication-title: Nat. Commun. – volume: 1 start-page: 1700086 year: 2017 publication-title: Sol. RRL – volume: 3 start-page: eaao4204 year: 2017 publication-title: Sci. Adv. – volume: 8 start-page: 2936 year: 2017 publication-title: J. Phys. Chem. Lett. – volume: 7 start-page: 746 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 87 start-page: 203502 year: 2005 publication-title: Appl. Phys. Lett. – volume: 52 start-page: 9019 year: 2013 publication-title: Inorg. Chem. – volume: 6 start-page: 613 year: 2015 publication-title: Chem. Sci. – volume: 1 start-page: 1700048 year: 2017 publication-title: Sol. RRL – volume: 3 start-page: 19688 year: 2015 publication-title: J. Mater. Chem. A – volume: 6 start-page: 1502021 year: 2016 publication-title: Adv. Energy Mater. – volume: 101 start-page: 114503 year: 2007 publication-title: J. Appl. Phys. – volume: 348 start-page: 683 year: 2015 publication-title: Science – volume: 3 start-page: 1500301 year: 2016 publication-title: Adv. Sci. – volume: 501 start-page: 395 year: 2013 publication-title: Nature |
SSID | ssj0009606 |
Score | 2.6783907 |
Snippet | A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | all‐inorganic perovskite solar cells Anodes Cathodes Dipoles Grain size high efficiency interface modification Interlayers Materials science Molecular orbitals Perovskites photoinduced halide segregation Photovoltaic cells Polymers Solar cells surface passivation Tin dioxide Wetting |
Title | Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901152 https://www.proquest.com/docview/2233749710 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKTl47dalSdoc534wBWWog91KkiYKjlXWTdC_3pd0Pz0q9NBCA2mSl_d5j5dvEboxVHPGLAsktSqgImKB4BJCFZaENsnAusoq30feH9L7ERttnOIv9SFWCTdnGX6_dgYuVdFYi4bKzOsGOYcGPgg2YVew5ajoaa0f5fDci-35LtBkqdoYksZ28y2-3KRU72Z6B0guO1hWl7zX5zNV19-_tBv_8wWHaH_BoLhVLpojtGMmx2hvQ5nwBKnOHN7w6UIrXVYdd3ypBwbGxV0vOwHeCreLgbojt1M8MNP8s3CZYPzsgmXcNuNxgV2WF5d5C5PhwVs-y4FGfT3u1yka9rov7X6w-B1D8EpiCFm5ts2mjanSsbFaCMmJBnqhhsfcWIjbgMxMHHGnLkqczldsteaGwaXDKOPRGapM8ok5R9gIoSmzYcaJoDJLlDsQqwAdFfCQErKKasvpSBc2VaQAMlFMBSBRFRE_rulHqciRltrLJHUjmq5GNG11Hlqrp4u_NLpEu-7e14bxGqrMpnNzBRQyU9d-pf0AIITTkA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO2LHBzgGiuM49YFDaVq1QKuKReIWYscGCdSipgXBX_ErfBFjpy3LEYkDUi6Jkij2eDxvXsbPALuaKR4EJvASZqTHhB94gieYqgTFgimm6F15lW-T167YyXVwPQZvw7UwuT7EiHCznuHma-vglpA--FQNTVInHGQjGgahQV3lqX55xqwtO6pHaOI9SquVy3LNG2ws4N3SEJMvrszhoQmZVKE2SoiEU4VxmGkecm0wA0GMoUOfW51MahWrQqMU1wEequCn3Mf3jsOk3UbcyvVH55-KVTYhcPJ-rtGsONSJLNCD79_7DdF-xcUusFXn4H3YJXk9y_1-vyf31esPtch_1WfzMDuA2aSU-8UCjOn2Isx8EV9cAhn18Q7HiJrE_jggkatmIQjjScUpa2BAJuWsJev0uEtautt5yizZTS4sH0DK-uEhI5bIJjk1o1PSuuv0Ogi4XcnxyzJc_UkjV2Ci3WnrVSBaCMUCU0g5FSxJi9Ku-ZWIjiVCPimSNdgc2j8eTBtZjFjND5lA1LcG1BkyfsxFR-JcXprG1oLxyIJxKWqURmfrv3loB6Zql42z-KzePN2AaXvdlcLxTZjodft6C0FXT267YU7g5q_HyAfmzC-t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSAgO7IilgA9wDATHceoDh9K0omyqWCRuIXZskEAtaloQfBW_wh8xdtqyHJE4IOWSKIlij8fz5mX8DLClmeJhaEIvZUZ6TAShJ3iKqUpY9k05Q-8qqnzP-OEVO7oOr0fgbbAWptCHGBJu1jPcfG0d_DEzu5-ioWnmdINsQMMY1C-rPNYvz5i05fuNGC28TWm9dlk99Pr7Cni3NMLciyuzt2ciJlWkjRIi5VRhGGaaR1wbTEAQYugo4FYmk1rBqsgoxXWIh_KDjAf43lEYZ9wXdrOI-PxTsMrmA07dz7WZlQcykT7d_f693wDtV1js4lp9Bt4HPVKUs9zv9LpyR73-EIv8T102C9N9kE0qhVfMwYhuzcPUF-nFBZBxD-9wfKhJ7W8DErtaFoIgntScrgaGY1LNm7JBDzqkqTvtp9xS3eTCsgGkqh8ecmJpbFIQMzojzbt2t41w2xUcvyzC1Z80cgnGWu2WXgaihVAsNH7GqWBpVpZ2xa9EbCwR8EmRrkBpYP6kP2nkCSK1IGICMd8KUGfH5LGQHEkKcWmaWAsmQwsmlfi0Mjxb_c1DmzDRjOvJSePseA0m7WVXB8dLMNbt9PQ6Iq6u3HCDnMDNXw-RD_mVLlw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Interfacial+Design+for+Efficient+CsPbI2Br+Perovskite+Solar+Cells+with+Improved+Photostability&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tian%2C+Jingjing&rft.au=Xue%2C+Qifan&rft.au=Tang%2C+Xiaofeng&rft.au=Chen%2C+Yuxuan&rft.date=2019-06-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=23&rft_id=info:doi/10.1002%2Fadma.201901152&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |