Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability

A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 31; no. 23
Main Authors Tian, Jingjing, Xue, Qifan, Tang, Xiaofeng, Chen, Yuxuan, Li, Ning, Hu, Zhicheng, Shi, Tingting, Wang, Xin, Huang, Fei, Brabec, Christoph J., Yip, Hin‐Lap, Cao, Yong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 06.06.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h. The efficiency and photostability of all‐inorganic mixed‐halide perovskite solar cells (PVSCs) can be simultaneously enhanced by introducing an amino‐functionalized polymer PN4N as a novel cathode interlayer and dopant‐free PDCBT hole‐transporting layer. The favorable interaction between perovskite crystal and PN4N/PDCBT can effectively improve CsPbI2Br film quality, with power conversion efficiency over 16%.
AbstractList A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.
A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h. The efficiency and photostability of all‐inorganic mixed‐halide perovskite solar cells (PVSCs) can be simultaneously enhanced by introducing an amino‐functionalized polymer PN4N as a novel cathode interlayer and dopant‐free PDCBT hole‐transporting layer. The favorable interaction between perovskite crystal and PN4N/PDCBT can effectively improve CsPbI2Br film quality, with power conversion efficiency over 16%.
Author Li, Ning
Chen, Yuxuan
Hu, Zhicheng
Huang, Fei
Cao, Yong
Wang, Xin
Tang, Xiaofeng
Brabec, Christoph J.
Tian, Jingjing
Shi, Tingting
Yip, Hin‐Lap
Xue, Qifan
Author_xml – sequence: 1
  givenname: Jingjing
  surname: Tian
  fullname: Tian, Jingjing
  organization: South China University of Technology
– sequence: 2
  givenname: Qifan
  surname: Xue
  fullname: Xue, Qifan
  email: qfxue@scut.edu.cn
  organization: South China University of Technology
– sequence: 3
  givenname: Xiaofeng
  surname: Tang
  fullname: Tang, Xiaofeng
  organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg
– sequence: 4
  givenname: Yuxuan
  surname: Chen
  fullname: Chen, Yuxuan
  organization: South China Normal University
– sequence: 5
  givenname: Ning
  surname: Li
  fullname: Li, Ning
  organization: Zhengzhou University
– sequence: 6
  givenname: Zhicheng
  surname: Hu
  fullname: Hu, Zhicheng
  organization: South China University of Technology
– sequence: 7
  givenname: Tingting
  surname: Shi
  fullname: Shi, Tingting
  organization: Jinan University
– sequence: 8
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: South China Normal University
– sequence: 9
  givenname: Fei
  surname: Huang
  fullname: Huang, Fei
  organization: South China University of Technology
– sequence: 10
  givenname: Christoph J.
  surname: Brabec
  fullname: Brabec, Christoph J.
  organization: Friedrich‐Alexander‐University Erlangen‐Nuremberg
– sequence: 11
  givenname: Hin‐Lap
  orcidid: 0000-0002-5750-9751
  surname: Yip
  fullname: Yip, Hin‐Lap
  email: msangusyip@scut.edu.cn
  organization: South China Institute of Collaborative Innovation
– sequence: 12
  givenname: Yong
  surname: Cao
  fullname: Cao, Yong
  organization: South China University of Technology
BookMark eNo9kEtPAjEQxxuDiYBePTfxvNjHbkuPuKBugpFEPTfd0kJx2cW2SPj2lmBIJvPI_DOP3wD02q41ANxjNMIIkUe13KoRQVggjAtyBfrJ4yxHouiBPhK0yATLxzdgEMIGISQYYn1QT_eqgVUbjbdKu5RPTXCrFtrOw5m1TjvTRliGRV2RJw8Xxne_4dtFAz-6RnlYmqYJ8ODiGlbbXWqaJVysu9iFqGrXuHi8BddWNcHc_cch-HqefZav2fz9pSon82xFOCEZ0xZjy_Nac2O1EIoRPc5Zbhhnxo6FyAk1nDKECkZweoVbrZkpkmlEl4wOwcN5brriZ29ClJtu79u0UhJCKc8FxyipxFl1cI05yp13W-WPEiN5gihPEOUFopxM3yaXiv4BDm9pVw
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
8BQ
8FD
JG9
DOI 10.1002/adma.201901152
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID ADMA201901152
Genre article
GrantInformation_xml – fundername: Science and Technology Program of Guangzhou
  funderid: 201607020010; 2017A050503002
– fundername: Natural Science Foundation of China
  funderid: 51803060; 21761132001; 51573057
– fundername: Ministry of Science and Technology
  funderid: 2017YF0206600
– fundername: Science and Technology Program of Guangdong Province
  funderid: 2018A030313045
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
7SR
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
ID FETCH-LOGICAL-g2722-6cf11f74bc7efc99a62c8464e676ef899423e7360056219647fcc6e56e5c03d63
IEDL.DBID DR2
ISSN 0935-9648
IngestDate Fri Jul 25 03:08:13 EDT 2025
Wed Jan 22 16:40:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2722-6cf11f74bc7efc99a62c8464e676ef899423e7360056219647fcc6e56e5c03d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5750-9751
PQID 2233749710
PQPubID 2045203
PageCount 9
ParticipantIDs proquest_journals_2233749710
wiley_primary_10_1002_adma_201901152_ADMA201901152
PublicationCentury 2000
PublicationDate June 6, 2019
PublicationDateYYYYMMDD 2019-06-06
PublicationDate_xml – month: 06
  year: 2019
  text: June 6, 2019
  day: 06
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2007; 101
2017; 8
2017; 1
2013; 4
2017; 2
2017; 3
2014; 24
2015; 348
2013; 7
2017; 356
2014; 136
2017; 358
2018; 9
2018; 8
2014; 5
2018; 2
2014; 2
2013; 13
2013; 52
2016; 354
2014; 14
2018; 30
2014; 8
2014; 7
2012; 338
2015; 6
2019; 3
2018; 140
2015; 3
2013; 501
2013; 342
2005; 87
2017; 29
2009; 131
2015; 9
2016; 6
2018; 18
2016; 7
2018; 17
2016; 1
2015; 27
2016; 3
2018
2013; 499
2005; 94
2018; 11
2016; 28
2018; 54
2012; 5
2014; 104
References_xml – volume: 8
  start-page: 3213
  year: 2014
  publication-title: ACS Nano
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 136
  start-page: 758
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8094
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 1703246
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 356
  start-page: 1376
  year: 2017
  publication-title: Science
– volume: 7
  start-page: 4569
  year: 2013
  publication-title: ACS Nano
– volume: 6
  start-page: 1502458
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1600502
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1605290
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7497
  year: 2015
  publication-title: Nat. Commun.
– volume: 6
  start-page: 7747
  year: 2015
  publication-title: Nat. Commun.
– volume: 14
  start-page: 3247
  year: 2014
  publication-title: Nano Lett.
– volume: 9
  start-page: 106
  year: 2015
  publication-title: Nat. Photonics
– volume: 9
  start-page: 1076
  year: 2018
  publication-title: Nat. Commun.
– volume: 140
  start-page: 12345
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: e1700841
  year: 2017
  publication-title: Sci. Adv.
– year: 2018
– volume: 17
  start-page: 261
  year: 2018
  publication-title: Nat. Mater.
– volume: 140
  start-page: 10504
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 358
  start-page: 1192
  year: 2017
  publication-title: Science
– volume: 27
  start-page: 1837
  year: 2015
  publication-title: Adv. Mater.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 2
  start-page: 1356
  year: 2018
  publication-title: Joule
– volume: 7
  start-page: 1889
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 9815
  year: 2014
  publication-title: ACS Nano
– volume: 18
  start-page: 2172
  year: 2018
  publication-title: Nano Lett.
– volume: 2
  start-page: 17291
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 284
  year: 2016
  publication-title: Chem. Mater.
– volume: 13
  start-page: 1764
  year: 2013
  publication-title: Nano Lett.
– volume: 7
  start-page: 1602333
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 982
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 2225
  year: 2018
  publication-title: Nat. Commun.
– volume: 354
  start-page: 92
  year: 2016
  publication-title: Science
– volume: 5
  start-page: 5784
  year: 2014
  publication-title: Nat. Commun.
– volume: 11
  start-page: 286
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 4
  start-page: 3623
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 2
  start-page: 1700188
  year: 2018
  publication-title: Sol. RRL
– volume: 5
  start-page: 5994
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 104
  start-page: 063903
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 54
  start-page: 9809
  year: 2018
  publication-title: Chem. Commun.
– volume: 2
  start-page: 19598
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 1688
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 94
  start-page: 126602
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 9098
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 24
  start-page: 7357
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 371
  year: 2017
  publication-title: Joule
– volume: 2
  start-page: 1507
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 191
  year: 2019
  publication-title: Joule
– volume: 1
  start-page: 1199
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 6
  start-page: 1501534
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1705393
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 7348
  year: 2015
  publication-title: Nat. Commun.
– volume: 1
  start-page: 1700086
  year: 2017
  publication-title: Sol. RRL
– volume: 3
  start-page: eaao4204
  year: 2017
  publication-title: Sci. Adv.
– volume: 8
  start-page: 2936
  year: 2017
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 746
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 87
  start-page: 203502
  year: 2005
  publication-title: Appl. Phys. Lett.
– volume: 52
  start-page: 9019
  year: 2013
  publication-title: Inorg. Chem.
– volume: 6
  start-page: 613
  year: 2015
  publication-title: Chem. Sci.
– volume: 1
  start-page: 1700048
  year: 2017
  publication-title: Sol. RRL
– volume: 3
  start-page: 19688
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 1502021
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 101
  start-page: 114503
  year: 2007
  publication-title: J. Appl. Phys.
– volume: 348
  start-page: 683
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 1500301
  year: 2016
  publication-title: Adv. Sci.
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
SSID ssj0009606
Score 2.6783907
Snippet A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms all‐inorganic perovskite solar cells
Anodes
Cathodes
Dipoles
Grain size
high efficiency
interface modification
Interlayers
Materials science
Molecular orbitals
Perovskites
photoinduced halide segregation
Photovoltaic cells
Polymers
Solar cells
surface passivation
Tin dioxide
Wetting
Title Dual Interfacial Design for Efficient CsPbI2Br Perovskite Solar Cells with Improved Photostability
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201901152
https://www.proquest.com/docview/2233749710
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PS8MwFMeD7KQHf4vTKTl47dalSdoc534wBWWog91KkiYKjlXWTdC_3pd0Pz0q9NBCA2mSl_d5j5dvEboxVHPGLAsktSqgImKB4BJCFZaENsnAusoq30feH9L7ERttnOIv9SFWCTdnGX6_dgYuVdFYi4bKzOsGOYcGPgg2YVew5ajoaa0f5fDci-35LtBkqdoYksZ28y2-3KRU72Z6B0guO1hWl7zX5zNV19-_tBv_8wWHaH_BoLhVLpojtGMmx2hvQ5nwBKnOHN7w6UIrXVYdd3ypBwbGxV0vOwHeCreLgbojt1M8MNP8s3CZYPzsgmXcNuNxgV2WF5d5C5PhwVs-y4FGfT3u1yka9rov7X6w-B1D8EpiCFm5ts2mjanSsbFaCMmJBnqhhsfcWIjbgMxMHHGnLkqczldsteaGwaXDKOPRGapM8ok5R9gIoSmzYcaJoDJLlDsQqwAdFfCQErKKasvpSBc2VaQAMlFMBSBRFRE_rulHqciRltrLJHUjmq5GNG11Hlqrp4u_NLpEu-7e14bxGqrMpnNzBRQyU9d-pf0AIITTkA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xHIADO2LHBzgGiuM49YFDaVq1QKuKReIWYscGCdSipgXBX_ErfBFjpy3LEYkDUi6Jkij2eDxvXsbPALuaKR4EJvASZqTHhB94gieYqgTFgimm6F15lW-T167YyXVwPQZvw7UwuT7EiHCznuHma-vglpA--FQNTVInHGQjGgahQV3lqX55xqwtO6pHaOI9SquVy3LNG2ws4N3SEJMvrszhoQmZVKE2SoiEU4VxmGkecm0wA0GMoUOfW51MahWrQqMU1wEequCn3Mf3jsOk3UbcyvVH55-KVTYhcPJ-rtGsONSJLNCD79_7DdF-xcUusFXn4H3YJXk9y_1-vyf31esPtch_1WfzMDuA2aSU-8UCjOn2Isx8EV9cAhn18Q7HiJrE_jggkatmIQjjScUpa2BAJuWsJev0uEtautt5yizZTS4sH0DK-uEhI5bIJjk1o1PSuuv0Ogi4XcnxyzJc_UkjV2Ci3WnrVSBaCMUCU0g5FSxJi9Ku-ZWIjiVCPimSNdgc2j8eTBtZjFjND5lA1LcG1BkyfsxFR-JcXprG1oLxyIJxKWqURmfrv3loB6Zql42z-KzePN2AaXvdlcLxTZjodft6C0FXT267YU7g5q_HyAfmzC-t
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2xSAgO7IilgA9wDATHceoDh9K0omyqWCRuIXZskEAtaloQfBW_wh8xdtqyHJE4IOWSKIlij8fz5mX8DLClmeJhaEIvZUZ6TAShJ3iKqUpY9k05Q-8qqnzP-OEVO7oOr0fgbbAWptCHGBJu1jPcfG0d_DEzu5-ioWnmdINsQMMY1C-rPNYvz5i05fuNGC28TWm9dlk99Pr7Cni3NMLciyuzt2ciJlWkjRIi5VRhGGaaR1wbTEAQYugo4FYmk1rBqsgoxXWIh_KDjAf43lEYZ9wXdrOI-PxTsMrmA07dz7WZlQcykT7d_f693wDtV1js4lp9Bt4HPVKUs9zv9LpyR73-EIv8T102C9N9kE0qhVfMwYhuzcPUF-nFBZBxD-9wfKhJ7W8DErtaFoIgntScrgaGY1LNm7JBDzqkqTvtp9xS3eTCsgGkqh8ecmJpbFIQMzojzbt2t41w2xUcvyzC1Z80cgnGWu2WXgaihVAsNH7GqWBpVpZ2xa9EbCwR8EmRrkBpYP6kP2nkCSK1IGICMd8KUGfH5LGQHEkKcWmaWAsmQwsmlfi0Mjxb_c1DmzDRjOvJSePseA0m7WVXB8dLMNbt9PQ6Iq6u3HCDnMDNXw-RD_mVLlw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual+Interfacial+Design+for+Efficient+CsPbI2Br+Perovskite+Solar+Cells+with+Improved+Photostability&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Tian%2C+Jingjing&rft.au=Xue%2C+Qifan&rft.au=Tang%2C+Xiaofeng&rft.au=Chen%2C+Yuxuan&rft.date=2019-06-06&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=31&rft.issue=23&rft_id=info:doi/10.1002%2Fadma.201901152&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon