Highly Active and Durable Pt72Ru28 Porous Nanoalloy Assembled with Sub‐4.0 nm Particles for Methanol Oxidation

The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt‐based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 7; no. 8
Main Authors Zhao, Wei‐Yue, Ni, Bing, Yuan, Qiang, He, Pei‐Lei, Gong, Yue, Gu, Lin, Wang, Xun
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 19.04.2017
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.201601593

Cover

Loading…
Abstract The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt‐based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles. The peak current density and mass activity on these as‐synthesized porous flowerlike Pt72Ru28 nanoalloys can be increased to 10.98 mA cm−2 and 1.70 A mg−1 Pt for methanol oxidation in acidic medium. They are respectively 4.19/3.54, 4.27/5.0, and 5.74/1.73 times those on the commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. These porous flowerlike Pt72Ru28 nanoalloys have a much higher long‐term durability than commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. More significantly, the porous Pt72Ru28 bimetallic nanoalloys have long‐term solvent durability after immersion in water for 16 months. The peak current density and mass activity on porous Pt72Ru28 nanoalloys are still 7.76 mA cm−2 and 1.2 A mg−1 Pt. These experimental results show an effective approach to the development of PtRu nanoalloys as electrocatalysts with substantially enhanced activity and durability for direct methanol fuel cells. Porous Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles are successfully prepared. Specific activity and mass activity of Pt72Ru28 nanoalloys can boost to 10.98 mA cm−2 and 1.70 A mg−1 Pt toward methanol oxidation. After being kept for 16 months in water, the specific activity on Pt72Ru28 nanoalloys is 2.96, 3.02, and 4.06 times that on commercial Pt black, Pt50Ru50 black, and Pt50Ru50/C, respectively.
AbstractList The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt‐based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles. The peak current density and mass activity on these as‐synthesized porous flowerlike Pt72Ru28 nanoalloys can be increased to 10.98 mA cm−2 and 1.70 A mg−1 Pt for methanol oxidation in acidic medium. They are respectively 4.19/3.54, 4.27/5.0, and 5.74/1.73 times those on the commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. These porous flowerlike Pt72Ru28 nanoalloys have a much higher long‐term durability than commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. More significantly, the porous Pt72Ru28 bimetallic nanoalloys have long‐term solvent durability after immersion in water for 16 months. The peak current density and mass activity on porous Pt72Ru28 nanoalloys are still 7.76 mA cm−2 and 1.2 A mg−1 Pt. These experimental results show an effective approach to the development of PtRu nanoalloys as electrocatalysts with substantially enhanced activity and durability for direct methanol fuel cells. Porous Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles are successfully prepared. Specific activity and mass activity of Pt72Ru28 nanoalloys can boost to 10.98 mA cm−2 and 1.70 A mg−1 Pt toward methanol oxidation. After being kept for 16 months in water, the specific activity on Pt72Ru28 nanoalloys is 2.96, 3.02, and 4.06 times that on commercial Pt black, Pt50Ru50 black, and Pt50Ru50/C, respectively.
The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt-based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28 nanoalloys assembled with sub-4.0 nm particles. The peak current density and mass activity on these as-synthesized porous flowerlike Pt72Ru28 nanoalloys can be increased to 10.98 mA cm-2 and 1.70 A mg-1 Pt for methanol oxidation in acidic medium. They are respectively 4.19/3.54, 4.27/5.0, and 5.74/1.73 times those on the commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. These porous flowerlike Pt72Ru28 nanoalloys have a much higher long-term durability than commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. More significantly, the porous Pt72Ru28 bimetallic nanoalloys have long-term solvent durability after immersion in water for 16 months. The peak current density and mass activity on porous Pt72Ru28 nanoalloys are still 7.76 mA cm-2 and 1.2 A mg-1 Pt. These experimental results show an effective approach to the development of PtRu nanoalloys as electrocatalysts with substantially enhanced activity and durability for direct methanol fuel cells.
Author Gu, Lin
Zhao, Wei‐Yue
Yuan, Qiang
Wang, Xun
Gong, Yue
Ni, Bing
He, Pei‐Lei
Author_xml – sequence: 1
  givenname: Wei‐Yue
  surname: Zhao
  fullname: Zhao, Wei‐Yue
  organization: Guizhou University
– sequence: 2
  givenname: Bing
  surname: Ni
  fullname: Ni, Bing
  organization: Tsinghua University
– sequence: 3
  givenname: Qiang
  surname: Yuan
  fullname: Yuan, Qiang
  email: qyuan@gzu.edu.cn
  organization: Guizhou University
– sequence: 4
  givenname: Pei‐Lei
  surname: He
  fullname: He, Pei‐Lei
  organization: Tsinghua University
– sequence: 5
  givenname: Yue
  surname: Gong
  fullname: Gong, Yue
  organization: Collaborative Innovation Center of Quantum Matter
– sequence: 6
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Collaborative Innovation Center of Quantum Matter
– sequence: 7
  givenname: Xun
  surname: Wang
  fullname: Wang, Xun
  email: wangxun@mail.tsinghua.edu.cn
  organization: Tsinghua University
BookMark eNo9kMlOwzAQhi1UJErplbMlzinjLcuxKoUidRPL2XIap3XlxMVJKL3xCDwjT0Kqos5l5pe-mZG-a9QpXakRuiUwIAD0XumyGFAgIRCRsAvUJSHhQRhz6JxnRq9Qv6q20BZPCDDWRbuJWW_sAQ9XtfnUWJUZfmi8Sq3GyzqiLw2N8dJ511R4rkqnrHUtXFW6aJEM7029wa9N-vv9wweAywIvla_NyuoK587jma437ZrFiy-Tqdq48gZd5spWuv_fe-j9cfw2mgTTxdPzaDgN1jQCFmQkE1pEPAYVK0ijDCAREQu1ShlNeCLCNBdEKK7UKmSCQ64ZYTFP0lUOeURZD92d7u68-2h0Vcuta3zZvpQkjhNGQ05YSyUnam-sPsidN4XyB0lAHq3Ko1V5tiqH4_nsnNgfaKZu0A
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201601593
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 4321803533
AENM201601593
Genre article
GrantInformation_xml – fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  funderid: XDB07030200
– fundername: NSFC
  funderid: 21361005; 21571038; 91127040; 21221062; 51522212; 51421002
– fundername: National Program on Key Basic Research Project
  funderid: 2014CB921002
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g2703-d1d5e57480a8a0b7d0095736eab3294956bf515a4aac63540fe313849bcf0f723
ISSN 1614-6832
IngestDate Fri Jul 25 12:22:54 EDT 2025
Wed Aug 20 07:25:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g2703-d1d5e57480a8a0b7d0095736eab3294956bf515a4aac63540fe313849bcf0f723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1889326413
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_1889326413
wiley_primary_10_1002_aenm_201601593_AENM201601593
PublicationCentury 2000
PublicationDate April 19, 2017
PublicationDateYYYYMMDD 2017-04-19
PublicationDate_xml – month: 04
  year: 2017
  text: April 19, 2017
  day: 19
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 10
1998; 280
2004; 126
2013; 4
2012; 486
2013; 7
2011; 17
2013; 5
2014; 136
2013; 9
2002; 47
2014; 4
2010; 26
2012; 134
2014; 2
2015; 137
2006; 22
2013; 117
1993; 293
2007; 6
2011; 23
2014; 8
2012; 24
2010; 2
2014; 7
2014; 6
2012; 22
2009; 324
2007; 19
2011; 1
2010
2015; 11
2015; 54
2009
2006; 18
2015; 8
2015; 7
2008; 120
2014; 114
2011; 133
2010; 49
2012; 3
2012; 112
2007; 315
2011; 507
2004; 151
1993; 97
2005; 2
2012; 6
1975; 60
2009; 109
2012; 41
2014; 266
References_xml – volume: 2
  start-page: 249
  year: 2005
  publication-title: Small
– volume: 60
  start-page: 267
  year: 1975
  publication-title: J. Electroanal. Chem.
– volume: 22
  start-page: 11447
  year: 2006
  publication-title: Langmuir
– volume: 49
  start-page: 4962
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 133
  start-page: 9674
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 8066
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 11
  start-page: 631
  year: 2015
  publication-title: Nano Energy
– volume: 24
  start-page: 2326
  year: 2012
  publication-title: Adv. Mater.
– volume: 22
  start-page: 3570
  year: 2012
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 10437
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 136
  start-page: 3748
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 177
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 507
  start-page: 209
  year: 2011
  publication-title: Chem. Phys. Lett.
– volume: 3
  start-page: 1925
  year: 2012
  publication-title: Chem. Sci.
– volume: 10
  start-page: 30
  year: 2010
  publication-title: Nano Lett.
– volume: 151
  start-page: A1314
  year: 2004
  publication-title: J. Electrochem. Soc.
– volume: 9
  start-page: 1047
  year: 2013
  publication-title: Small
– volume: 6
  start-page: 241
  year: 2007
  publication-title: Nat. Mater.
– volume: 2
  start-page: 4384
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 5642
  year: 2012
  publication-title: ACS Nano
– volume: 133
  start-page: 15946
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 12397
  year: 2014
  publication-title: Chem. Rev.
– volume: 18
  start-page: 4946
  year: 2006
  publication-title: Chem. Mater.
– volume: 315
  start-page: 493
  year: 2007
  publication-title: Science
– volume: 8
  start-page: 350
  year: 2014
  publication-title: Energy Environ. Sci.
– volume: 324
  start-page: 1302
  year: 2009
  publication-title: Science
– volume: 19
  start-page: 2648
  year: 2007
  publication-title: Adv. Mater.
– volume: 112
  start-page: 5780
  year: 2012
  publication-title: Chem. Rev.
– volume: 137
  start-page: 7862
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 117
  start-page: 9826
  year: 2013
  publication-title: J. Phys. Chem. C
– volume: 134
  start-page: 20479
  year: 2012
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2931
  year: 2013
  publication-title: J. Phys. Chem. Lett.
– volume: 97
  start-page: 12020
  year: 1993
  publication-title: J. Phys. Chem.
– volume: 49
  start-page: 411
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 7945
  year: 2013
  publication-title: ACS Nano
– volume: 120
  start-page: 100
  year: 2008
  publication-title: Angew. Chem. Int. Ed.
– volume: 486
  start-page: 43
  year: 2012
  publication-title: Nature
– year: 2010
– volume: 266
  start-page: 259
  year: 2014
  publication-title: J. Power Sources
– volume: 1
  start-page: 1719
  year: 2011
  publication-title: ACS Catal.
– volume: 49
  start-page: 3173
  year: 2010
  publication-title: Angew. Chem. Int. Ed.
– volume: 126
  start-page: 8028
  year: 2004
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 4199
  year: 2011
  publication-title: Chem. Mater.
– volume: 280
  start-page: 1735
  year: 1998
  publication-title: Science
– volume: 293
  start-page: 67
  year: 1993
  publication-title: J. Surf. Sci.
– volume: 7
  start-page: 1337
  year: 2014
  publication-title: Nano Res.
– volume: 6
  start-page: 17748
  year: 2014
  publication-title: Acs Appl. Mater. Interfaces
– volume: 47
  start-page: 3715
  year: 2002
  publication-title: Electrochim. Acta
– volume: 54
  start-page: 108
  year: 2015
  publication-title: Angew. Chem. Int. Ed.
– volume: 7
  start-page: 9467
  year: 2015
  publication-title: Nanoscale
– volume: 2
  start-page: 454
  year: 2010
  publication-title: Nat. Chem.
– volume: 109
  start-page: 4183
  year: 2009
  publication-title: Chem. Rev.
– volume: 17
  start-page: 9915
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 2829
  year: 2014
  publication-title: ACS Catal.
– volume: 19
  start-page: 36
  year: 2007
  publication-title: Chem. Mater.
– start-page: 2270
  year: 2009
  publication-title: Chem. Commun.
– volume: 26
  start-page: 7437
  year: 2010
  publication-title: Langmuir
SSID ssj0000491033
Score 2.5159526
Snippet The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Atoms & subatomic particles
Fuel cells
methanol oxidation
nanoalloy
Oxidation
porous
PtRu
Title Highly Active and Durable Pt72Ru28 Porous Nanoalloy Assembled with Sub‐4.0 nm Particles for Methanol Oxidation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201601593
https://www.proquest.com/docview/1889326413
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE8xNpAfeKsyHMeJ3ccCnSrUdgNaUZ4ix3ZQpTVFXSMx_hL-XM524qXShBgvUeM2X75f7353uTsj9IYqocpMkIjqOI2YVO79Lo-UBNulGdFcWUdxOsvGC_ZxmS57vd-drKV6V5yqX7fWlfyPVGEM5GqrZO8g2XBSGIDPIF_YgoRh-08ytkkal9f9odNZPqm43rpaqIsdp59rKvoXm61NcgUlurGv2K-tPMwaftJknYPiiNgp6VdrIJNNkpxLPZwaG1TfXPbPf670jfjahrVt6oDxtYPAe_0DdwLRLgj71ayib3VAz8wlD7xr7aVbEcyHYD8BTsPg2JeewbETs-oGJsDY2Q6Id1F_HbULJCHKRBPpNN0x38yp1dW8A0lxqwXwHWWlqWybgRjczdSvwLjfant2np8tJpN8PlrO9791pp0lwHxIAlT4Hjqk4ICAyj8cfphOvoT4HXhWMUlc_UZ7821PUELf7l9_z3vp-kCOxMwfoYeN94GHXtCPUc9UT9CDTk_Kp6jyoMIeVBhAhRtQ4RZU2IMKB1DhACpsQYUbUOFqjQOoMIAKt6DCAVTP0OJsNH8_jppFOaLvFKxDpGOdmpQzQaSQpODaknSeZEYWCR1Yd7sogSNLJqXKbFCxNEmcCDYoVElKTpPn6KDaVOYFwtIMBDB-pXiiWaxZoTLFScEkiXVMC3qETtppy5t_3VUeC2FdDuBeR4i6qcx_-L4sue_ATXM7-XmY_Hw4mk3D3su_n_MY3b-B8gk62G1r8wpY56543QDgD_Sdf-k
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Active+and+Durable+Pt72Ru28+Porous+Nanoalloy+Assembled+with+Sub-4.0+nm+Particles+for+Methanol+Oxidation&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Wei-Yue&rft.au=Ni%2C+Bing&rft.au=Yuan%2C+Qiang&rft.au=He%2C+Pei-Lei&rft.date=2017-04-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1002%2Faenm.201601593&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321803533
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon