Highly Active and Durable Pt72Ru28 Porous Nanoalloy Assembled with Sub‐4.0 nm Particles for Methanol Oxidation
The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt‐based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28...
Saved in:
Published in | Advanced energy materials Vol. 7; no. 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
19.04.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.201601593 |
Cover
Loading…
Abstract | The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt‐based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles. The peak current density and mass activity on these as‐synthesized porous flowerlike Pt72Ru28 nanoalloys can be increased to 10.98 mA cm−2 and 1.70 A mg−1 Pt for methanol oxidation in acidic medium. They are respectively 4.19/3.54, 4.27/5.0, and 5.74/1.73 times those on the commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. These porous flowerlike Pt72Ru28 nanoalloys have a much higher long‐term durability than commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. More significantly, the porous Pt72Ru28 bimetallic nanoalloys have long‐term solvent durability after immersion in water for 16 months. The peak current density and mass activity on porous Pt72Ru28 nanoalloys are still 7.76 mA cm−2 and 1.2 A mg−1 Pt. These experimental results show an effective approach to the development of PtRu nanoalloys as electrocatalysts with substantially enhanced activity and durability for direct methanol fuel cells.
Porous Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles are successfully prepared. Specific activity and mass activity of Pt72Ru28 nanoalloys can boost to 10.98 mA cm−2 and 1.70 A mg−1 Pt toward methanol oxidation. After being kept for 16 months in water, the specific activity on Pt72Ru28 nanoalloys is 2.96, 3.02, and 4.06 times that on commercial Pt black, Pt50Ru50 black, and Pt50Ru50/C, respectively. |
---|---|
AbstractList | The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt‐based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles. The peak current density and mass activity on these as‐synthesized porous flowerlike Pt72Ru28 nanoalloys can be increased to 10.98 mA cm−2 and 1.70 A mg−1 Pt for methanol oxidation in acidic medium. They are respectively 4.19/3.54, 4.27/5.0, and 5.74/1.73 times those on the commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. These porous flowerlike Pt72Ru28 nanoalloys have a much higher long‐term durability than commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. More significantly, the porous Pt72Ru28 bimetallic nanoalloys have long‐term solvent durability after immersion in water for 16 months. The peak current density and mass activity on porous Pt72Ru28 nanoalloys are still 7.76 mA cm−2 and 1.2 A mg−1 Pt. These experimental results show an effective approach to the development of PtRu nanoalloys as electrocatalysts with substantially enhanced activity and durability for direct methanol fuel cells.
Porous Pt72Ru28 nanoalloys assembled with sub‐4.0 nm particles are successfully prepared. Specific activity and mass activity of Pt72Ru28 nanoalloys can boost to 10.98 mA cm−2 and 1.70 A mg−1 Pt toward methanol oxidation. After being kept for 16 months in water, the specific activity on Pt72Ru28 nanoalloys is 2.96, 3.02, and 4.06 times that on commercial Pt black, Pt50Ru50 black, and Pt50Ru50/C, respectively. The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed strategy introduces an exotic element to form Pt-based alloy nanostructures. This study reports a green route to prepare porous flowerlike Pt72Ru28 nanoalloys assembled with sub-4.0 nm particles. The peak current density and mass activity on these as-synthesized porous flowerlike Pt72Ru28 nanoalloys can be increased to 10.98 mA cm-2 and 1.70 A mg-1 Pt for methanol oxidation in acidic medium. They are respectively 4.19/3.54, 4.27/5.0, and 5.74/1.73 times those on the commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. These porous flowerlike Pt72Ru28 nanoalloys have a much higher long-term durability than commercial Pt black, Pt50Ru50 black, and Ru50Pt50/C. More significantly, the porous Pt72Ru28 bimetallic nanoalloys have long-term solvent durability after immersion in water for 16 months. The peak current density and mass activity on porous Pt72Ru28 nanoalloys are still 7.76 mA cm-2 and 1.2 A mg-1 Pt. These experimental results show an effective approach to the development of PtRu nanoalloys as electrocatalysts with substantially enhanced activity and durability for direct methanol fuel cells. |
Author | Gu, Lin Zhao, Wei‐Yue Yuan, Qiang Wang, Xun Gong, Yue Ni, Bing He, Pei‐Lei |
Author_xml | – sequence: 1 givenname: Wei‐Yue surname: Zhao fullname: Zhao, Wei‐Yue organization: Guizhou University – sequence: 2 givenname: Bing surname: Ni fullname: Ni, Bing organization: Tsinghua University – sequence: 3 givenname: Qiang surname: Yuan fullname: Yuan, Qiang email: qyuan@gzu.edu.cn organization: Guizhou University – sequence: 4 givenname: Pei‐Lei surname: He fullname: He, Pei‐Lei organization: Tsinghua University – sequence: 5 givenname: Yue surname: Gong fullname: Gong, Yue organization: Collaborative Innovation Center of Quantum Matter – sequence: 6 givenname: Lin surname: Gu fullname: Gu, Lin organization: Collaborative Innovation Center of Quantum Matter – sequence: 7 givenname: Xun surname: Wang fullname: Wang, Xun email: wangxun@mail.tsinghua.edu.cn organization: Tsinghua University |
BookMark | eNo9kMlOwzAQhi1UJErplbMlzinjLcuxKoUidRPL2XIap3XlxMVJKL3xCDwjT0Kqos5l5pe-mZG-a9QpXakRuiUwIAD0XumyGFAgIRCRsAvUJSHhQRhz6JxnRq9Qv6q20BZPCDDWRbuJWW_sAQ9XtfnUWJUZfmi8Sq3GyzqiLw2N8dJ511R4rkqnrHUtXFW6aJEM7029wa9N-vv9wweAywIvla_NyuoK587jma437ZrFiy-Tqdq48gZd5spWuv_fe-j9cfw2mgTTxdPzaDgN1jQCFmQkE1pEPAYVK0ijDCAREQu1ShlNeCLCNBdEKK7UKmSCQ64ZYTFP0lUOeURZD92d7u68-2h0Vcuta3zZvpQkjhNGQ05YSyUnam-sPsidN4XyB0lAHq3Ko1V5tiqH4_nsnNgfaKZu0A |
ContentType | Journal Article |
Copyright | 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201601593 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 4321803533 AENM201601593 |
Genre | article |
GrantInformation_xml | – fundername: Strategic Priority Research Program of Chinese Academy of Sciences funderid: XDB07030200 – fundername: NSFC funderid: 21361005; 21571038; 91127040; 21221062; 51522212; 51421002 – fundername: National Program on Key Basic Research Project funderid: 2014CB921002 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 AAESR AAHQN AAIHA AAMMB AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADMLS ADOZA ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFPM AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIACR AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR ZZTAW ~S- 7SP 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g2703-d1d5e57480a8a0b7d0095736eab3294956bf515a4aac63540fe313849bcf0f723 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:22:54 EDT 2025 Wed Aug 20 07:25:19 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g2703-d1d5e57480a8a0b7d0095736eab3294956bf515a4aac63540fe313849bcf0f723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1889326413 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1889326413 wiley_primary_10_1002_aenm_201601593_AENM201601593 |
PublicationCentury | 2000 |
PublicationDate | April 19, 2017 |
PublicationDateYYYYMMDD | 2017-04-19 |
PublicationDate_xml | – month: 04 year: 2017 text: April 19, 2017 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 10 1998; 280 2004; 126 2013; 4 2012; 486 2013; 7 2011; 17 2013; 5 2014; 136 2013; 9 2002; 47 2014; 4 2010; 26 2012; 134 2014; 2 2015; 137 2006; 22 2013; 117 1993; 293 2007; 6 2011; 23 2014; 8 2012; 24 2010; 2 2014; 7 2014; 6 2012; 22 2009; 324 2007; 19 2011; 1 2010 2015; 11 2015; 54 2009 2006; 18 2015; 8 2015; 7 2008; 120 2014; 114 2011; 133 2010; 49 2012; 3 2012; 112 2007; 315 2011; 507 2004; 151 1993; 97 2005; 2 2012; 6 1975; 60 2009; 109 2012; 41 2014; 266 |
References_xml | – volume: 2 start-page: 249 year: 2005 publication-title: Small – volume: 60 start-page: 267 year: 1975 publication-title: J. Electroanal. Chem. – volume: 22 start-page: 11447 year: 2006 publication-title: Langmuir – volume: 49 start-page: 4962 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 133 start-page: 9674 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 8066 year: 2012 publication-title: Chem. Soc. Rev. – volume: 11 start-page: 631 year: 2015 publication-title: Nano Energy – volume: 24 start-page: 2326 year: 2012 publication-title: Adv. Mater. – volume: 22 start-page: 3570 year: 2012 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 10437 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 136 start-page: 3748 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 177 year: 2015 publication-title: Energy Environ. Sci. – volume: 507 start-page: 209 year: 2011 publication-title: Chem. Phys. Lett. – volume: 3 start-page: 1925 year: 2012 publication-title: Chem. Sci. – volume: 10 start-page: 30 year: 2010 publication-title: Nano Lett. – volume: 151 start-page: A1314 year: 2004 publication-title: J. Electrochem. Soc. – volume: 9 start-page: 1047 year: 2013 publication-title: Small – volume: 6 start-page: 241 year: 2007 publication-title: Nat. Mater. – volume: 2 start-page: 4384 year: 2014 publication-title: J. Mater. Chem. A – volume: 6 start-page: 5642 year: 2012 publication-title: ACS Nano – volume: 133 start-page: 15946 year: 2011 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 12397 year: 2014 publication-title: Chem. Rev. – volume: 18 start-page: 4946 year: 2006 publication-title: Chem. Mater. – volume: 315 start-page: 493 year: 2007 publication-title: Science – volume: 8 start-page: 350 year: 2014 publication-title: Energy Environ. Sci. – volume: 324 start-page: 1302 year: 2009 publication-title: Science – volume: 19 start-page: 2648 year: 2007 publication-title: Adv. Mater. – volume: 112 start-page: 5780 year: 2012 publication-title: Chem. Rev. – volume: 137 start-page: 7862 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 117 start-page: 9826 year: 2013 publication-title: J. Phys. Chem. C – volume: 134 start-page: 20479 year: 2012 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 2931 year: 2013 publication-title: J. Phys. Chem. Lett. – volume: 97 start-page: 12020 year: 1993 publication-title: J. Phys. Chem. – volume: 49 start-page: 411 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 7945 year: 2013 publication-title: ACS Nano – volume: 120 start-page: 100 year: 2008 publication-title: Angew. Chem. Int. Ed. – volume: 486 start-page: 43 year: 2012 publication-title: Nature – year: 2010 – volume: 266 start-page: 259 year: 2014 publication-title: J. Power Sources – volume: 1 start-page: 1719 year: 2011 publication-title: ACS Catal. – volume: 49 start-page: 3173 year: 2010 publication-title: Angew. Chem. Int. Ed. – volume: 126 start-page: 8028 year: 2004 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 4199 year: 2011 publication-title: Chem. Mater. – volume: 280 start-page: 1735 year: 1998 publication-title: Science – volume: 293 start-page: 67 year: 1993 publication-title: J. Surf. Sci. – volume: 7 start-page: 1337 year: 2014 publication-title: Nano Res. – volume: 6 start-page: 17748 year: 2014 publication-title: Acs Appl. Mater. Interfaces – volume: 47 start-page: 3715 year: 2002 publication-title: Electrochim. Acta – volume: 54 start-page: 108 year: 2015 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 9467 year: 2015 publication-title: Nanoscale – volume: 2 start-page: 454 year: 2010 publication-title: Nat. Chem. – volume: 109 start-page: 4183 year: 2009 publication-title: Chem. Rev. – volume: 17 start-page: 9915 year: 2011 publication-title: Chem. Eur. J. – volume: 4 start-page: 2829 year: 2014 publication-title: ACS Catal. – volume: 19 start-page: 36 year: 2007 publication-title: Chem. Mater. – start-page: 2270 year: 2009 publication-title: Chem. Commun. – volume: 26 start-page: 7437 year: 2010 publication-title: Langmuir |
SSID | ssj0000491033 |
Score | 2.5159526 |
Snippet | The main challenges to the direct methanol fuel cells are the activity and durability of electrocatalysts. To alleviate such issues, a recently proposed... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Atoms & subatomic particles Fuel cells methanol oxidation nanoalloy Oxidation porous PtRu |
Title | Highly Active and Durable Pt72Ru28 Porous Nanoalloy Assembled with Sub‐4.0 nm Particles for Methanol Oxidation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201601593 https://www.proquest.com/docview/1889326413 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfK9gIPiE8xNpAfeKsyHMeJ3ccCnSrUdgNaUZ4ix3ZQpTVFXSMx_hL-XM524qXShBgvUeM2X75f7353uTsj9IYqocpMkIjqOI2YVO79Lo-UBNulGdFcWUdxOsvGC_ZxmS57vd-drKV6V5yqX7fWlfyPVGEM5GqrZO8g2XBSGIDPIF_YgoRh-08ytkkal9f9odNZPqm43rpaqIsdp59rKvoXm61NcgUlurGv2K-tPMwaftJknYPiiNgp6VdrIJNNkpxLPZwaG1TfXPbPf670jfjahrVt6oDxtYPAe_0DdwLRLgj71ayib3VAz8wlD7xr7aVbEcyHYD8BTsPg2JeewbETs-oGJsDY2Q6Id1F_HbULJCHKRBPpNN0x38yp1dW8A0lxqwXwHWWlqWybgRjczdSvwLjfant2np8tJpN8PlrO9791pp0lwHxIAlT4Hjqk4ICAyj8cfphOvoT4HXhWMUlc_UZ7821PUELf7l9_z3vp-kCOxMwfoYeN94GHXtCPUc9UT9CDTk_Kp6jyoMIeVBhAhRtQ4RZU2IMKB1DhACpsQYUbUOFqjQOoMIAKt6DCAVTP0OJsNH8_jppFOaLvFKxDpGOdmpQzQaSQpODaknSeZEYWCR1Yd7sogSNLJqXKbFCxNEmcCDYoVElKTpPn6KDaVOYFwtIMBDB-pXiiWaxZoTLFScEkiXVMC3qETtppy5t_3VUeC2FdDuBeR4i6qcx_-L4sue_ATXM7-XmY_Hw4mk3D3su_n_MY3b-B8gk62G1r8wpY56543QDgD_Sdf-k |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+Active+and+Durable+Pt72Ru28+Porous+Nanoalloy+Assembled+with+Sub-4.0+nm+Particles+for+Methanol+Oxidation&rft.jtitle=Advanced+energy+materials&rft.au=Zhao%2C+Wei-Yue&rft.au=Ni%2C+Bing&rft.au=Yuan%2C+Qiang&rft.au=He%2C+Pei-Lei&rft.date=2017-04-19&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=8&rft_id=info:doi/10.1002%2Faenm.201601593&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321803533 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |