Radially Oriented Single‐Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium‐Ion Batteries
Ni‐rich Li[NixCoyMn1−x−y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g−1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capa...
Saved in:
Published in | Advanced energy materials Vol. 9; no. 15 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
18.04.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ni‐rich Li[NixCoyMn1−x−y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g−1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g−1 at 3.0–4.3 V) and rate capability (152.7 mAh g−1 at a current density of 1000 mA g−1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials.
A Ni‐rich LiNi0.8Co0.1Mn0.1O2 cathode material with radially aligned single‐crystal primary particles is synthesized. This unique crystallographic texture enables three‐dimensional (3D) Li+ diffusion channels penetrated straightforwardly from surface to center of the secondary particles and significantly alleviates volume‐change‐induced intergrain stress upon cycling. Accordingly, this material delivers superior capacity, rate capability and excellent cycling stability. |
---|---|
AbstractList | Ni‐rich Li[NixCoyMn1−x−y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g−1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g−1 at 3.0–4.3 V) and rate capability (152.7 mAh g−1 at a current density of 1000 mA g−1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials. Ni‐rich Li[NixCoyMn1−x−y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity of over 200 mAh g−1. Unfortunately, the anisotropic properties associated with the α‐NaFeO2 structured crystal grains result in poor rate capability and insufficient cycle life. To address these issues, a micrometer‐sized Ni‐rich LiNi0.8Co0.1Mn0.1O2 secondary cathode material consisting of radially aligned single‐crystal primary particles is proposed and synthesized. Concomitant with this unique crystallographic texture, all the exposed surfaces are active {010} facets, and 3D Li+ ion diffusion channels penetrate straightforwardly from surface to center, remarkably improving the Li+ diffusion coefficient. Moreover, coordinated charge–discharge volume change upon cycling is achieved by the consistent crystal orientation, significantly alleviating the volume‐change‐induced intergrain stress. Accordingly, this material delivers superior reversible capacity (203.4 mAh g−1 at 3.0–4.3 V) and rate capability (152.7 mAh g−1 at a current density of 1000 mA g−1). Further, this structure demonstrates excellent cycling stability without any degradation after 300 cycles. The anisotropic morphology modulation provides a simple, efficient, and scalable way to boost the performance and applicability of Ni‐rich layered oxide cathode materials. A Ni‐rich LiNi0.8Co0.1Mn0.1O2 cathode material with radially aligned single‐crystal primary particles is synthesized. This unique crystallographic texture enables three‐dimensional (3D) Li+ diffusion channels penetrated straightforwardly from surface to center of the secondary particles and significantly alleviates volume‐change‐induced intergrain stress upon cycling. Accordingly, this material delivers superior capacity, rate capability and excellent cycling stability. |
Author | He, Xiaoshu Wang, Liguang Yin, Geping Zhu, He Xu, Sheng Du, Chunyu Xu, Xing Jian, Jiyuan Huo, Hua Sun, Xueliang |
Author_xml | – sequence: 1 givenname: Xing surname: Xu fullname: Xu, Xing organization: Harbin Institute of Technology – sequence: 2 givenname: Hua surname: Huo fullname: Huo, Hua organization: Harbin Institute of Technology – sequence: 3 givenname: Jiyuan surname: Jian fullname: Jian, Jiyuan organization: Harbin Institute of Technology – sequence: 4 givenname: Liguang surname: Wang fullname: Wang, Liguang organization: Harbin Institute of Technology – sequence: 5 givenname: He surname: Zhu fullname: Zhu, He organization: City University of Hong Kong – sequence: 6 givenname: Sheng surname: Xu fullname: Xu, Sheng organization: Harbin Institute of Technology – sequence: 7 givenname: Xiaoshu surname: He fullname: He, Xiaoshu organization: Harbin Institute of Technology – sequence: 8 givenname: Geping surname: Yin fullname: Yin, Geping organization: Harbin Institute of Technology – sequence: 9 givenname: Chunyu surname: Du fullname: Du, Chunyu email: cydu@hit.edu.cn organization: Harbin Institute of Technology – sequence: 10 givenname: Xueliang orcidid: 0000-0003-0374-1245 surname: Sun fullname: Sun, Xueliang email: xsun9@uwo.ca organization: University of Western Ontario |
BookMark | eNo9UUtu2zAQJYoUaJJm2zWBru0MSUullqngtAb8KdJmLVDS0GJAky5Jo9CuR8gpcrCcJDQceBbzwbz5vity4bxDQr4wmDIAfqvQ7aYcmARRleIDuWQlm01KOYOLsy_4J3IT4xNkmVUMhLgkLw-qN8rakW6CQZewp7-N21p8_f9chzEmZemvYHYqjHStnI8DYop07lRrkT7aFNRgtgN9UAmpcj2tx87mBrnI7zEkg5F6TZdmbWAqa5_XXbmsNpzWKg2-R7rKpSHvQLUPGZgGc9jl6Qvv6HeVjjmMn8lHrWzEm3d7TR7v53_qn5Pl5seivltOtjzfN-mg7ZUuEWayUG0neQl9p4XqWuC8yJ8ppK64FlBo6JgsZPlNoxYSWMsQeSmuyddT333wfw8YU_PkD8HlkQ3nDGRVVEJmVHVC_TMWx2Z_-k_DoDly0Ry5aM5cNHfz9eociTeaUYQH |
ContentType | Journal Article |
Copyright | 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201803963 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM201803963 |
Genre | article |
GrantInformation_xml | – fundername: Applied Technology Research and Development Program of Harbin funderid: 2013DB4AP030 – fundername: National Key R&D Program of China funderid: 2016YFB0100200 – fundername: National Natural Science Foundation of China funderid: 21673065 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-g2683-c0bdaf6e0485abc8260dcf3acb022539658f92f305f0c185867fef3801b1ee263 |
ISSN | 1614-6832 |
IngestDate | Mon Jul 21 01:45:48 EDT 2025 Wed Jan 22 16:49:04 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g2683-c0bdaf6e0485abc8260dcf3acb022539658f92f305f0c185867fef3801b1ee263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0374-1245 |
PQID | 2210895938 |
PQPubID | 886389 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2210895938 wiley_primary_10_1002_aenm_201803963_AENM201803963 |
PublicationCentury | 2000 |
PublicationDate | April 18, 2019 |
PublicationDateYYYYMMDD | 2019-04-18 |
PublicationDate_xml | – month: 04 year: 2019 text: April 18, 2019 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 15 2017; 7 1993; 67 2017; 8 2013; 1 2015; 54 2017; 29 2017; 232 2012; 205 2017; 236 2014; 255 2014; 43 2010; 22 2018; 8 2010; 20 2018; 3 2016; 1 2018; 2 1993; 38 2014; 2 2013; 13 2017; 11 2015; 276 2004; 151 2017; 13 2014; 14 2013; 234 2018; 30 2017; 121 2018; 10 2014; 7 2014; 343 |
References_xml | – volume: 255 start-page: 439 year: 2014 publication-title: J. Power Sources – volume: 234 start-page: 201 year: 2013 publication-title: J. Power Sources – volume: 11 start-page: 5853 year: 2017 publication-title: ACS Nano – volume: 3 start-page: 600 year: 2018 publication-title: Nat. Energy – volume: 2 start-page: 464 year: 2018 publication-title: Joule – volume: 121 start-page: 3286 year: 2017 publication-title: J. Phys. Chem. C – volume: 7 start-page: 3077 year: 2014 publication-title: Energy Environ. Sci. – volume: 151 start-page: A1406 year: 2004 publication-title: J. Electrochem. Soc. – volume: 38 start-page: 1159 year: 1993 publication-title: Electrochim. Acta – volume: 29 start-page: 10436 year: 2017 publication-title: Chem. Mater. – volume: 1 start-page: 283 year: 2016 publication-title: ACS Energy Lett. – volume: 10 start-page: 6407 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 22 start-page: 4364 year: 2010 publication-title: Adv. Mater. – volume: 343 start-page: 519 year: 2014 publication-title: Science – volume: 236 start-page: 273 year: 2017 publication-title: Electrochim. Acta – volume: 2 start-page: 8696 year: 2014 publication-title: J. Mater. Chem. A – volume: 232 start-page: 123 year: 2017 publication-title: Electrochim. Acta – volume: 43 start-page: 14824 year: 2014 publication-title: Dalton Trans. – volume: 7 start-page: 1601266 year: 2017 publication-title: Adv. Energy Mater. – volume: 1 start-page: 15004 year: 2016 publication-title: Nat. Energy – volume: 1 start-page: 3860 year: 2013 publication-title: J. Mater. Chem. A – volume: 30 start-page: 1155 year: 2018 publication-title: Chem. Mater. – volume: 67 start-page: 123 year: 1993 publication-title: Solid State Ionics – volume: 13 start-page: 1145 year: 2013 publication-title: Nano Lett. – volume: 8 start-page: 1802057 year: 2018 publication-title: Adv. Energy Mater. – volume: 54 start-page: 4440 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 205 start-page: 449 year: 2012 publication-title: J. Power Sources – volume: 8 start-page: 1703612 year: 2018 publication-title: Adv. Energy Mater. – volume: 20 start-page: 7074 year: 2010 publication-title: J. Mater. Chem. – volume: 14 start-page: 4873 year: 2014 publication-title: Nano Lett. – volume: 15 start-page: 2111 year: 2015 publication-title: Nano Lett. – volume: 13 start-page: 1701802 year: 2017 publication-title: Small – volume: 276 start-page: 238 year: 2015 publication-title: J. Power Sources – volume: 8 start-page: 14101 year: 2017 publication-title: Nat. Commun. |
SSID | ssj0000491033 |
Score | 2.6706955 |
Snippet | Ni‐rich Li[NixCoyMn1−x−y]O2 (x ≥ 0.8) layered oxides are the most promising cathode materials for lithium‐ion batteries due to their high reversible capacity... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | anisotropic property Anisotropy Cathodes Crystal structure Crystallography Cycles Diffusion coefficient Electrode materials Ion diffusion Lithium Lithium-ion batteries Morphology Nanosheets Ni‐rich layered oxides radial arrangement |
Title | Radially Oriented Single‐Crystal Primary Nanosheets Enable Ultrahigh Rate and Cycling Properties of LiNi0.8Co0.1Mn0.1O2 Cathode Material for Lithium‐Ion Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201803963 https://www.proquest.com/docview/2210895938 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3LbtNAFIZHod3AAnEVhYJmwS5yscexO15WIShESVqVRmRn-TKTWkptlNiLsOIReAreh1fgSThzjS0qBN1YkePYsc_ncxnP-Y3Q2yTKB8RLMiePoNIBh5c4KSQKDoV7KWU0CoJUNCfP5uF4MZgsg2Wv97M1a6mp05Ps6619JXexKqwDu4ou2f-wrN0prIDPYF9YgoVh-U82vhTCAuv1rn8u1Ipl7giRaM3sDIbhZrcV3Y4XWlMCfGm1vWas3vZHqmlqsa7B3UCF3r-ErFM-ShjuMtmjfiHG6TdCcFU-SCjmhXtChxX4v1kJi3Mi2werXLy9qJanK-csTov6umhu7H_4CHwpFU8zX9GI3prpB0z1H97ovdgsf9kIAJYmuEr45MjuuLHBZFKoEdxJsWv2oH_Wo-DTYgVrV-2hDU8-pel4Y8gdnJDqAVDWXqc0nowLj9qkBq1gbkPdH5FCKc8mrBRyBB51_Ug72o4kt90y-Pu2SkF4NJ_Z7--hQwKVC7jew7P3s-knO_AHJZnn-rLxw5yeERN1ybvuQTplT7t4ktnP1SP0UJct-Ewx-Bj1WPkEPWiJWT5FPwyN2NCIFY2_vn3XHGLNId5ziBWH2HKIBYcYOMSaQ7znEFcc38Ih1hxiwyEGDrHmEI4OBGJL4DO0-DC6Go4d_RYQZ0Xg4jiZm-YJDxmEmiBJMyiH3TzjfpKlkH4GvhAv4hHhELe4m0H2ScNTzrgPmVfqMUZC_zk6KKuSvUCY0CBkp1nApcxhlFCXMSZSuEHIhfjYETo2lzvWt_k2JsRzqZDvpkeISBPEX9TFipXkN4mF0WJrtLjDwcu7_OgVur-_H47RQb1p2GtIfuv0jcbpNwFZqvI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radially+Oriented+Single%E2%80%90Crystal+Primary+Nanosheets+Enable+Ultrahigh+Rate+and+Cycling+Properties+of+LiNi0.8Co0.1Mn0.1O2+Cathode+Material+for+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Xu%2C+Xing&rft.au=Huo%2C+Hua&rft.au=Jian%2C+Jiyuan&rft.au=Wang%2C+Liguang&rft.date=2019-04-18&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=15&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201803963&rft.externalDBID=10.1002%252Faenm.201803963&rft.externalDocID=AENM201803963 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |