Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna–reactor hybrids: charge and energy transfer
An antenna–reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS2/Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the...
Saved in:
Published in | Nanoscale Vol. 10; no. 8; pp. 4130 - 4137 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | An antenna–reactor hybrid coupling plasmonic antenna with catalytic nanoparticles is a new strategy to optimize photocatalytic activity. Herein, we have rationally proposed a Au/XS2/Au (X = Re, Mo) antenna reactor, which has a large Au core as the antenna and small satellite Au nanoparticles as the reactor separated by an ultrathin two-dimensional transition-metal dichalcogenide XS2 shell (∼2.6 nm). Due to efficient charge transfer across the XS2 shell as well as energy transfer via coupling of the Au antenna and Au reactor, the photocatalytic activity has been largely enhanced: Au/ReS2/Au exhibits a 3.59-fold enhancement, whereas Au/MoS2/Au exhibits a 2.66-fold enhancement as compared to that of the sum of the three individual components. The different enhancement in the Au/ReS2/Au and Au/MoS2/Au antenna–reactor hybrid is related to the competition and cooperation of charge and energy transfer. These results indicate the great potential of the Au/XS2/Au antenna–reactor hybrid for the development of highly efficient plasmonic photocatalysts. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c7nr09362d |