Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor
We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relev...
Saved in:
Published in | Progress in photovoltaics Vol. 25; no. 5; pp. 341 - 357 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Bognor Regis
Wiley Subscription Services, Inc
01.05.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relevant technology for the fabrication of thin‐film solar cells. Controlling the amount of Se provided during the selenization of metal precursors is shown to be an effective measure to adjust the Ga in‐depth distribution. A reduced Se supply for CIGSe formation leads to a more homogeneous Ga distribution within the absorber. The underlying growth dynamics is investigated by interrupting the selenization at different times. At first, CIGSe formation occurs in accordance with previously suggested growth paths and Ga segregates at the Mo back contact. Between 520 and 580 °C, the growth dynamics differs distinctly, and In and Ga distribute far more uniformly within the absorber depth. We also studied the impact of the precursor architecture. The best performing precursor in terms of efficiency of the respective solar cells was a multilayer with 22 In/CuGa/In triple layers. Simple bilayers stacks lead to films of higher roughness and correlated shunting. By optimizing the precursor architecture and the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of up to 15.5% (active area) could be achieved. To our knowledge, this is the highest reported efficiency for sulfur free CIGSe‐based solar cells utilizing fast (few minutes) atmospheric processes and elemental Se vapor. Copyright © 2017 John Wiley & Sons, Ltd.
We study the Cu(In,Ga)Se2 absorber fabrication by fast atmospheric pressure selenization of metal precursor films utilizing elemental selenium vapor from independent sources. We find that a high Se supply during selenization leads to the generally observed Ga accumulation at the back contact, while a reduced Se supply leads to a more homogeneous Ga distribution within the absorber. By optimizing the precursor as well as the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of 15.5% was achieved. |
---|---|
AbstractList | We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relevant technology for the fabrication of thin-film solar cells. Controlling the amount of Se provided during the selenization of metal precursors is shown to be an effective measure to adjust the Ga in-depth distribution. A reduced Se supply for CIGSe formation leads to a more homogeneous Ga distribution within the absorber. The underlying growth dynamics is investigated by interrupting the selenization at different times. At first, CIGSe formation occurs in accordance with previously suggested growth paths and Ga segregates at the Mo back contact. Between 520 and 580°C, the growth dynamics differs distinctly, and In and Ga distribute far more uniformly within the absorber depth. We also studied the impact of the precursor architecture. The best performing precursor in terms of efficiency of the respective solar cells was a multilayer with 22 In/CuGa/In triple layers. Simple bilayers stacks lead to films of higher roughness and correlated shunting. By optimizing the precursor architecture and the Ga in-depth distribution in the CIGSe layer, a conversion efficiency of up to 15.5% (active area) could be achieved. To our knowledge, this is the highest reported efficiency for sulfur free CIGSe-based solar cells utilizing fast (few minutes) atmospheric processes and elemental Se vapor. Copyright © 2017 John Wiley & Sons, Ltd. We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relevant technology for the fabrication of thin‐film solar cells. Controlling the amount of Se provided during the selenization of metal precursors is shown to be an effective measure to adjust the Ga in‐depth distribution. A reduced Se supply for CIGSe formation leads to a more homogeneous Ga distribution within the absorber. The underlying growth dynamics is investigated by interrupting the selenization at different times. At first, CIGSe formation occurs in accordance with previously suggested growth paths and Ga segregates at the Mo back contact. Between 520 and 580 °C, the growth dynamics differs distinctly, and In and Ga distribute far more uniformly within the absorber depth. We also studied the impact of the precursor architecture. The best performing precursor in terms of efficiency of the respective solar cells was a multilayer with 22 In/CuGa/In triple layers. Simple bilayers stacks lead to films of higher roughness and correlated shunting. By optimizing the precursor architecture and the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of up to 15.5% (active area) could be achieved. To our knowledge, this is the highest reported efficiency for sulfur free CIGSe‐based solar cells utilizing fast (few minutes) atmospheric processes and elemental Se vapor. Copyright © 2017 John Wiley & Sons, Ltd. We study the Cu(In,Ga)Se2 absorber fabrication by fast atmospheric pressure selenization of metal precursor films utilizing elemental selenium vapor from independent sources. We find that a high Se supply during selenization leads to the generally observed Ga accumulation at the back contact, while a reduced Se supply leads to a more homogeneous Ga distribution within the absorber. By optimizing the precursor as well as the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of 15.5% was achieved. |
Author | Bäcker, Jan‐Peter Ziem, Florian Schmidt, Sebastian Simon Köble, Christine Kaufmann, Christian Alexander Rodriguez‐Alvarez, Humberto Abou‐Ras, Daniel Mainz, Roland Merdes, Saoussen Hartig, Manuel Wolf, Christian Cinque, Sonja Schlatmann, Rutger Dorbandt, Iris |
Author_xml | – sequence: 1 givenname: Sebastian Simon surname: Schmidt fullname: Schmidt, Sebastian Simon email: sebastian.schmidt@helmholtz‐berlin.de organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 2 givenname: Christian surname: Wolf fullname: Wolf, Christian organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 3 givenname: Humberto surname: Rodriguez‐Alvarez fullname: Rodriguez‐Alvarez, Humberto organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 4 givenname: Jan‐Peter surname: Bäcker fullname: Bäcker, Jan‐Peter organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 5 givenname: Christian Alexander surname: Kaufmann fullname: Kaufmann, Christian Alexander organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 6 givenname: Saoussen surname: Merdes fullname: Merdes, Saoussen organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 7 givenname: Florian surname: Ziem fullname: Ziem, Florian organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 8 givenname: Manuel surname: Hartig fullname: Hartig, Manuel organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 9 givenname: Sonja surname: Cinque fullname: Cinque, Sonja organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 10 givenname: Iris surname: Dorbandt fullname: Dorbandt, Iris organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 11 givenname: Christine surname: Köble fullname: Köble, Christine organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 12 givenname: Daniel surname: Abou‐Ras fullname: Abou‐Ras, Daniel organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 13 givenname: Roland surname: Mainz fullname: Mainz, Roland organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin – sequence: 14 givenname: Rutger surname: Schlatmann fullname: Schlatmann, Rutger organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin |
BookMark | eNotkN1KAzEQhYNUsK2CjxDwRsGt-dm_XJaitVCwoIJ3IdlM2i3p7prsKn0A39td69U5w5yZYb4JGlV1BQhdUzKjhLCHpmxmLE-TMzSmRIiIJuJjNPiURZkQyQWahLAnhGa5SMfoZ272XWjLaovbHeClwluvzFCazg9iVWixag91aHbgywI3vi4ghKFXW7zoblfV_VLdvQLDoXbK4wKcw0qH2mvw2Kkj-IC7vwFwcICqVQ6H3lZld8Bfqqn9JTq3ygW4-tcpen96fFs8R-uX5WoxX0dbFvMkslxoSHkRm1jEOaE6MzRTlmbC2AxilYqCxZm1PIccjGYFT7XRSZJRTRgvKJ-im9Pe_onPDkIr93Xnq_6kpHnO8x4J530qOqW-SwdH2fjyoPxRUiIHwrInLAfCcrPaDMp_AWvKc-E |
CODEN | PPHOED |
ContentType | Journal Article |
Copyright | Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | 7SP 7TB 8FD FR3 L7M |
DOI | 10.1002/pip.2865 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Engineering Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-159X |
EndPage | 357 |
ExternalDocumentID | 4321427495 PIP2865 |
Genre | article |
GrantInformation_xml | – fundername: SENBWF – fundername: German Federal Ministry of Education and Research funderid: 13N11768 – fundername: Federal Ministry of Education and Research (BMBF) funderid: 03IS2151 – fundername: SOLAR‐ERA.NET funderid: 0325903A |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BNHUX BROTX BRXPI BY8 CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDH EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 SAMSI SUPJJ TWZ UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WWI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT 7SP 7TB 8FD FR3 L7M |
ID | FETCH-LOGICAL-g2435-f39be63c4d494801b7d17af179df7e4a69c247ff38e8edb2c36bdb5571b023c13 |
IEDL.DBID | DR2 |
ISSN | 1062-7995 |
IngestDate | Thu Oct 10 20:27:44 EDT 2024 Sat Aug 24 01:16:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2435-f39be63c4d494801b7d17af179df7e4a69c247ff38e8edb2c36bdb5571b023c13 |
PQID | 1883889633 |
PQPubID | 1016445 |
PageCount | 17 |
ParticipantIDs | proquest_journals_1883889633 wiley_primary_10_1002_pip_2865_PIP2865 |
PublicationCentury | 2000 |
PublicationDate | May 2017 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: May 2017 |
PublicationDecade | 2010 |
PublicationPlace | Bognor Regis |
PublicationPlace_xml | – name: Bognor Regis |
PublicationTitle | Progress in photovoltaics |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 121 2001; 387 1997; 82 2011; 519 1973; 13 1997; 410–411 2011; 10 2012; 17 2015; 106 2009; 517 2014; 23 2005; 66 2004; 77 2009; 95 2013; 2013 2013; 119 2009; 93 1995; 67 2008; 517 2005; 71 2002; 91 2014; 122 2005; 38 2014; 6 2012; 20 2006; 287 2014; 126 2014; 10 1968; 48 2006; 90 2012; 100 2011 2016; 608 2006; 14 2006; 511–512 2008 2006 2015; 9 2001; 67 1993; 105 2004; 451–452 2005; 89 1992; 72 2015; 23 2006; 80 1987; 21 2012; 111 2007; 515 2004; 19 2000; 104 1982; 111 2016 2013 1998; 73 |
References_xml | – volume: 23 start-page: 1493 issue: 11 year: 2015 end-page: 1500 article-title: Above 16% efficient sequentially grown Cu(In,Ga)(Se,S) ‐based solar cells with atomic layer deposited Zn(O,S) buffers publication-title: Progress in Photovoltaics: Research and Applications – year: 2011 – volume: 106 start-page: 013909 issue: 1 year: 2015 article-title: Improved Ga grading of sequentially produced Cu(In,Ga)Se solar cells studied by high resolution X‐ray fluorescence publication-title: Applied Physics Letters – volume: 20 start-page: 851 issue: 7 year: 2012 end-page: 854 article-title: World‐record Cu(In,Ga)Se ‐based thin‐film sub‐module with 17.4% efficiency publication-title: Progress in Photovoltaics: Research and Applications – volume: 95 start-page: 173502 issue: 17 year: 2009 end-page: 3 article-title: Three‐dimensional structure of the buffer/absorber interface in CdS/CuGaSe based thin film solar cells publication-title: Applied Physics Letters – volume: 126 start-page: 120 issue: 0 year: 2014 end-page: 124 article-title: Zn(O,S) buffer prepared by atomic layer deposition for sequentially grown Cu(In,Ga)(Se,S) solar cells and modules publication-title: Solar Energy Materials and Solar Cells – volume: 111 start-page: 477 issue: 2 year: 1982 end-page: 481 article-title: Crystal structure and Raman spectra of InSe publication-title: physica status solidi (b) – volume: 71 start-page: 054303 issue: 5 year: 2005 article-title: Vibrational and crystalline properties of polymorphic CuInC (C = Se,S) chalcogenides publication-title: Physical Review B – start-page: 2528 year: 2013 end-page: 2533 – volume: 72 start-page: 4321 issue: 9 year: 1992 end-page: 4324 article-title: Lattice vibrations of CuInSe and CuGaSe by Raman microspectrometry publication-title: Journal of Applied Physics – volume: 67 start-page: 247 issue: 1–4 year: 2001 end-page: 253 article-title: Role of incorporated sulfur into the surface of Cu(InGa)Se thin‐film absorber publication-title: Solar Energy Materials and Solar Cells – volume: 13 start-page: 1297 issue: 9 year: 1973 end-page: 1301 article-title: Light scattering in transition metal diselenides CoSe and CuSe publication-title: Solid State Communications – volume: 14 start-page: 145 issue: 2 year: 2006 end-page: 153 article-title: CuIn Ga Se ‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers publication-title: Progress in Photovoltaics: Research and Applications – volume: 451–452 start-page: 544 year: 2004 end-page: 551 article-title: CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability publication-title: Thin Solid Films – volume: 38 start-page: 22 issue: 1 year: 2005 end-page: 25 article-title: Structural and optical properties of homogeneous Cu(In,Ga)Se thin films prepared by thermal reaction of InSe/Cu/GaSe alloys with elemental Se vapour publication-title: Journal of Physics D: Applied Physics – year: 2008 – volume: 48 start-page: 5743 issue: 12 year: 1968 end-page: 5744 article-title: Comment on the composition of selenium vapor publication-title: The Journal of Chemical Physics – volume: 93 start-page: 577 issue: 5 year: 2009 end-page: 582 article-title: The structural and material properties of CuInSe and Cu(In,Ga)Se prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications publication-title: Solar Energy Materials and Solar Cells – volume: 387 start-page: 262 issue: 1–2 year: 2001 end-page: 267 article-title: Rapid CIS‐process for high efficiency PV‐modules: development towards large area processing publication-title: Thin Solid Films – volume: 410–411 start-page: 267 year: 1997 end-page: 270 article-title: Raman spectra of thin solid films of some metal sulfides publication-title: Journal of Molecular Structure – volume: 89 start-page: 129 issue: 2–3 year: 2005 end-page: 137 article-title: Preparation of Cu(In,Ga)Se thin film solar cells by two‐stage selenization processes using N gas publication-title: Solar Energy Materials and Solar Cells – volume: 73 start-page: 441 issue: 4 year: 1998 end-page: 443 article-title: Raman spectra of the ordered vacancy compounds CuIn Se and CuGa Se publication-title: Applied Physics Letters – start-page: 003321 year: 2011 end-page: 003326 – volume: 67 start-page: 3978 issue: 26 year: 1995 end-page: 3980 article-title: Preparation of homogeneous Cu(InGa)Se films by selenization of metal precursors in H Se atmosphere publication-title: Applied Physics Letters – volume: 90 start-page: 3115 issue: 18–19 year: 2006 end-page: 3123 article-title: New developments in Cu(In,Ga)(S,Se) thin film modules formed by rapid thermal processing of stacked elemental layers publication-title: Solar Energy Materials and Solar Cells – volume: 9 start-page: 28 issue: 1 year: 2015 end-page: 31 article-title: Properties of Cu(In,Ga)Se solar cells with new record efficiencies up to 21.7% publication-title: physica status solidi (RRL) ‐ Rapid Research Letters – volume: 66 start-page: 1903 issue: 11 year: 2005 end-page: 1907 article-title: In situ investigation of the formation of Cu(In,Ga)Se from selenised metallic precursors by X‐ray diffraction—the impact of gallium, sodium and selenium excess publication-title: Journal of Physics and Chemistry of Solids – volume: 2013 start-page: 132105 issue: 13 year: 2013 article-title: Fabrication of a Cu(InGa)Se2 thin film photovoltaic absorber by rapid thermal annealing of CuGa/In precursors coated with a Se layer publication-title: International Journal of Photoenergy – volume: 19 start-page: 1201 issue: 10 year: 2004 end-page: 1206 article-title: Composition dependence of the Raman A 1 mode and additional mode in tetragonal Cu–In–Se thin films publication-title: Semiconductor Science and Technology – volume: 517 start-page: 867 issue: 2 year: 2008 end-page: 869 article-title: Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents publication-title: Thin Solid Films – volume: 119 start-page: 287 year: 2013 end-page: 290 article-title: Technological status of Cu(In,Ga)(Se,S) ‐based photovoltaics publication-title: Solar Energy Materials and Solar Cells – volume: 91 start-page: 3598 issue: 6 year: 2002 end-page: 3604 article-title: Epitaxial growth and characterization of CuInSe crystallographic polytypes publication-title: Journal of Applied Physics – volume: 287 start-page: 408 issue: 2 year: 2006 end-page: 413 article-title: Kinetics of the reactive crystallization of CuInSe and CuGaSe chalcopyrite films for solar cell applications publication-title: Journal of Crystal Growth – volume: 515 start-page: 5843 issue: 15 year: 2007 end-page: 5847 article-title: Formation reactions of chalcopyrite compounds and the role of sodium doping publication-title: Thin Solid Films – volume: 122 start-page: 309 year: 2014 end-page: 313 article-title: CIS‐based thin‐film PV technology in solar frontier K.K publication-title: Solar Energy Materials and Solar Cells – volume: 23 start-page: 1131 issue: 9 year: 2014 end-page: 1143 article-title: Time‐resolved investigation of Cu(In,Ga)Se growth and Ga gradient formation during fast selenisation of metallic precursors publication-title: Progress in Photovoltaics: Research and Applications – volume: 104 start-page: 4849 issue: 20 year: 2000 end-page: 4862 article-title: Stability issues of Cu(In,Ga)Se ‐based solar cells publication-title: J. Phys. Chem. B – volume: 10 start-page: 28 year: 2014 end-page: 36 article-title: Toward high efficiency and panel size 30 × 40 cm Cu(In,Ga)Se solar cell: investigation of modified stacking sequences of metallic precursors and pre‐annealing process without Se vapor at low temperature publication-title: Nano Energy – volume: 100 start-page: 233903 issue: 23 year: 2012 article-title: Improvement of V and J in CuInGaSe solar cells using a novel sandwiched CuGa/CuInGa/In precursor structure publication-title: Applied Physics Letters – volume: 105 start-page: 504 issue: 2 year: 1993 end-page: 511 article-title: Anion distributions and phase transitions in CuS Se (x = 0–1) studied by Raman spectroscopy publication-title: Journal of Solid State Chemistry – volume: 519 start-page: 7197 issue: 21 year: 2011 end-page: 7200 article-title: The influence of gallium on phase transitions during the crystallisation of thin film absorber materials Cu(In,Ga)(S,Se) investigated by in‐situ X‐ray diffraction publication-title: Thin Solid Films – year: 2016 – volume: 23 start-page: 717 issue: 6 year: 2014 end-page: 733 article-title: Gallium gradients in Cu(In,Ga)Se thin‐film solar cells publication-title: Progress in Photovoltaics: Research and Applications – start-page: 003315 year: 2011 end-page: 003320 – volume: 6 start-page: 4842 issue: 7 year: 2014 end-page: 4849 article-title: Improved efficiency of a large‐area Cu(In,Ga)Se solar cell by a nontoxic hydrogen‐assisted solid Se vapor selenization process publication-title: ACS Appl. Mater. Interfaces – volume: 511–512 start-page: 147 year: 2006 end-page: 152 article-title: A thermodynamical approach to the formation reactions of sodium‐doped Cu(In,Ga)Se publication-title: Thin Solid Films – volume: 517 start-page: 2121 issue: 7 year: 2009 end-page: 2124 article-title: Preparation and characterization of CuIn Ga Se S thin film solar cells by rapid thermal processing publication-title: Thin Solid Films – start-page: 453 year: 2006 end-page: 456 – volume: 77 start-page: 757 issue: 6 year: 2004 end-page: 765 article-title: Second generation CIS solar modules publication-title: Solar Energy – volume: 111 start-page: 083710 issue: 8 year: 2012 end-page: 8 article-title: Three‐step H Se/Ar/H S reaction of Cu–In–Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S) thin films publication-title: Journal of Applied Physics – volume: 80 start-page: 191 issue: 2 year: 2006 end-page: 195 article-title: Fabrication of Cu(In,Ga)Se thin films solar cell by selenization process with Se vapor publication-title: Solar Cells and Solar Energy Materials – volume: 515 start-page: 5895 issue: 15 year: 2007 end-page: 5898 article-title: Phase relations in the ternary Cu–Ga–In system publication-title: Thin Solid Films – volume: 82 start-page: 2896 issue: 6 year: 1997 end-page: 2905 article-title: Phases, morphology, and diffusion in CuIn Ga Se thin films publication-title: Journal of Applied Physics – start-page: 0849 year: 2013 end-page: 0852 – volume: 10 start-page: 857 issue: 11 year: 2011 end-page: 861 article-title: Highly efficient Cu(In,Ga)Se solar cells grown on flexible polymer films publication-title: Nature Materials – volume: 608 start-page: 62 year: 2016 end-page: 70 article-title: Influence of selenium amount on the structural and electronic properties of Cu(In,Ga)Se2 thin films and solar cells formed by the stacked elemental layer process publication-title: Thin Solid Films – volume: 21 start-page: 215 year: 1987 end-page: 224 article-title: Preparation of CuInSe and CuInS films by reactive annealing in H Se or H S publication-title: Solar Cells – volume: 17 start-page: 99 year: 2012 end-page: 106 article-title: Baseline meets innovation: technology transfer for high‐efficiency thin‐film Si and CIGS modules at PVcomB publication-title: Photovoltaics International – volume: 23 start-page: 765 issue: 6 year: 2015 end-page: 772 article-title: Composition and bandgap control in Cu(In,Ga)Se ‐based absorbers formed by reaction of metal precursors publication-title: Progress in Photovoltaics: Research and Applications – volume: 121 start-page: 4747 issue: 10 year: 2004 end-page: 4758 article-title: Raman scattering study on structural and dynamical features of noncrystalline selenium publication-title: The Journal of Chemical Physics |
SSID | ssj0017896 |
Score | 2.4001706 |
Snippet | We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 341 |
SubjectTerms | atmospheric processing CIGS CIGSe Ga grading in‐line processing metal precursor sequential processing |
Title | Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2865 https://www.proquest.com/docview/1883889633 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqTvTQ0kJVHkVzqBBIZMGxYyfH1fKsVIR4SEg9RHZirxaW7GqTcODO_2YmyVLaE-KUQ2JlZM_Y3yTffMPYz0h6lXEvA20wyKW0OjDSI5DLlBfWShd5KnD-faZOruWvm-imY1VSLUyrD_HywY0io9mvKcCNLff-ioZOR9MelVXi9suFJjbXwcWLchTXcdOaCxMefG-SRHPd2f1wbz7wH0z5Gpk2R8vRZ_ZnblTLKLnr1ZXtZY__6TW-z-ol9qlDnNBvXeQL--CKr-zjKx3CZfbUz2-pq1cxBMSDcGxgOGu49dBWMYI3ZQWmup-UpEIwymDa1hfQvYmHQb19Wuwem51LF0JJyTLQDwFAoyYz62YwNoTsoW4GuI6xPgbq9FSM6nt4MJgGrLDro8OrwUnQ9WcIhiGirMCLxDolMpmTxsw-tzrn2ngM8dxrJ41KslBq70XsYpfbMBPK5jaKNLeIFDIuvrGFYlK47wwSgbBF5oqbCP1FYRYYOpUkJoklJ1WwVbYxX6u0C7Iy5XEsYlxnIVbZVjPp6bSV6EhbMeYwxelOabrT89Nzuq699cF1thjSAd5QGzfYQjWr3Q-EH5XdbBztGZKw2Mg |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPZQe6Iuqy6OdA6pAIguOHSdRTwgKu-UhREHigBTZib3asmRXm6SH3vu_60k2FHpCnHJIrFjj-eJvnJlvADYCYWXKrPBC5UAuhA49Jawjcqm0XGthAksFzqdnsnclvl8H13Pwta2FafQh7g_cCBn195oATgfSO_9UQyfDSZfqKufhhUM7J1QeXNxrR7EwqptzuZDHvTmOg1Z5dtffaUc-YpUPuWm9uRy-hpt2Wk1OyW23KnU3_f2fYuMz5_0GlmakE_caL3kLcyZ_B68eSBG-hz972U9q7JUP0FFCPFI4mNbp9dgUMqJVRYmqvBsXJEQwTHHSlBjQvbHF_Wqzn28fqa0fxseC4mWkfwKodDGeajPFkSJyj1U9wMyS1kdIzZ7yYXWHv5SLBJbh6vDb5X7Pm7Vo8Aa-I1qe5bE2kqciI5mZXabDjIXKOpRnNjRCyTj1RWgtj0xkMu2nXOpMB0HItCMLKeMfYCEf5-YjYMwdcxGZZCpwLiNdIOgbGccqjgQjYbAOrLWLlcxwViQsinjkFprzDnyprZ5MGpWOpNFj9hNn7oTMnZz3z-m68tQHP8PL3uXpSXLSPztehUWf9vM603ENFsppZdYdGyn1p9rr_gIbV9zh |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaFCiaIekTdeK0NxRFC1S2KVKUNAZJ_OjDMNoaMNBBICXScOLIgiVlyJ7_HZ4ku26nopMGiRBxvBO_E-_7jpB3HjcipoY7vrRBzrnyHcmNBXKxMEwprj2DBOdvYzGc8s8zb9ZUVSIXptaH2P5ww8iovtcY4Fliur9FQ7NF1kFa5UPyiAvrqQiIvm-lo6gfVL25bMZjXxyG3kZ4tud2NyP_AJW70LTaW_qH5NdmVnVJyVWnLFQnvv1LsPH_pv2UHDSQE05rH3lGHuj0OdnfESJ8Qe5Ok0ts65XOwQJCGEiYr6vieqhpjGBkXoAsrlc5yhAsYshqggHeWxk4Kz-M0k8D-fGHdiHHbBnwRACkyldrpdewlAjtoawG6KZkfQnY6ildlNdwI20e8JJM-xc_z4ZO06DBmbsWZjmGhUoLFvMERWZ6VPkJ9aWxMZ4YX3MpwtjlvjEs0IFOlBszoRLleT5VFirElL0ie-kq1a8JhMziFp4IKj3rMMKmga4WYSjDgFOUBWuR9matoibK8ogGAQvsOjPWIu8ro0dZrdER1WrMbmTNHaG5o8logtejf33wLXk8Oe9HX0fjL8fkiYubeVXm2CZ7xbrUJxaKFOpN5XP3rHvbkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjusting+the+Ga+grading+during+fast+atmospheric+processing+of+Cu%28In%2CGa%29Se2+solar+cell+absorber+layers+using+elemental+selenium+vapor&rft.jtitle=Progress+in+photovoltaics&rft.au=Schmidt%2C+Sebastian+Simon&rft.au=Wolf%2C+Christian&rft.au=Rodriguez-Alvarez%2C+Humberto&rft.au=Backer%2C+Jan-Peter&rft.date=2017-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=25&rft.issue=5&rft.spage=341&rft_id=info:doi/10.1002%2Fpip.2865&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321427495 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon |