Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor

We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relev...

Full description

Saved in:
Bibliographic Details
Published inProgress in photovoltaics Vol. 25; no. 5; pp. 341 - 357
Main Authors Schmidt, Sebastian Simon, Wolf, Christian, Rodriguez‐Alvarez, Humberto, Bäcker, Jan‐Peter, Kaufmann, Christian Alexander, Merdes, Saoussen, Ziem, Florian, Hartig, Manuel, Cinque, Sonja, Dorbandt, Iris, Köble, Christine, Abou‐Ras, Daniel, Mainz, Roland, Schlatmann, Rutger
Format Journal Article
LanguageEnglish
Published Bognor Regis Wiley Subscription Services, Inc 01.05.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relevant technology for the fabrication of thin‐film solar cells. Controlling the amount of Se provided during the selenization of metal precursors is shown to be an effective measure to adjust the Ga in‐depth distribution. A reduced Se supply for CIGSe formation leads to a more homogeneous Ga distribution within the absorber. The underlying growth dynamics is investigated by interrupting the selenization at different times. At first, CIGSe formation occurs in accordance with previously suggested growth paths and Ga segregates at the Mo back contact. Between 520 and 580 °C, the growth dynamics differs distinctly, and In and Ga distribute far more uniformly within the absorber depth. We also studied the impact of the precursor architecture. The best performing precursor in terms of efficiency of the respective solar cells was a multilayer with 22 In/CuGa/In triple layers. Simple bilayers stacks lead to films of higher roughness and correlated shunting. By optimizing the precursor architecture and the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of up to 15.5% (active area) could be achieved. To our knowledge, this is the highest reported efficiency for sulfur free CIGSe‐based solar cells utilizing fast (few minutes) atmospheric processes and elemental Se vapor. Copyright © 2017 John Wiley & Sons, Ltd. We study the Cu(In,Ga)Se2 absorber fabrication by fast atmospheric pressure selenization of metal precursor films utilizing elemental selenium vapor from independent sources. We find that a high Se supply during selenization leads to the generally observed Ga accumulation at the back contact, while a reduced Se supply leads to a more homogeneous Ga distribution within the absorber. By optimizing the precursor as well as the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of 15.5% was achieved.
AbstractList We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relevant technology for the fabrication of thin-film solar cells. Controlling the amount of Se provided during the selenization of metal precursors is shown to be an effective measure to adjust the Ga in-depth distribution. A reduced Se supply for CIGSe formation leads to a more homogeneous Ga distribution within the absorber. The underlying growth dynamics is investigated by interrupting the selenization at different times. At first, CIGSe formation occurs in accordance with previously suggested growth paths and Ga segregates at the Mo back contact. Between 520 and 580°C, the growth dynamics differs distinctly, and In and Ga distribute far more uniformly within the absorber depth. We also studied the impact of the precursor architecture. The best performing precursor in terms of efficiency of the respective solar cells was a multilayer with 22 In/CuGa/In triple layers. Simple bilayers stacks lead to films of higher roughness and correlated shunting. By optimizing the precursor architecture and the Ga in-depth distribution in the CIGSe layer, a conversion efficiency of up to 15.5% (active area) could be achieved. To our knowledge, this is the highest reported efficiency for sulfur free CIGSe-based solar cells utilizing fast (few minutes) atmospheric processes and elemental Se vapor. Copyright © 2017 John Wiley & Sons, Ltd.
We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few minutes and the utilization of elemental selenium vapor from independent Se sources. This technology could proof to be an industrially relevant technology for the fabrication of thin‐film solar cells. Controlling the amount of Se provided during the selenization of metal precursors is shown to be an effective measure to adjust the Ga in‐depth distribution. A reduced Se supply for CIGSe formation leads to a more homogeneous Ga distribution within the absorber. The underlying growth dynamics is investigated by interrupting the selenization at different times. At first, CIGSe formation occurs in accordance with previously suggested growth paths and Ga segregates at the Mo back contact. Between 520 and 580 °C, the growth dynamics differs distinctly, and In and Ga distribute far more uniformly within the absorber depth. We also studied the impact of the precursor architecture. The best performing precursor in terms of efficiency of the respective solar cells was a multilayer with 22 In/CuGa/In triple layers. Simple bilayers stacks lead to films of higher roughness and correlated shunting. By optimizing the precursor architecture and the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of up to 15.5% (active area) could be achieved. To our knowledge, this is the highest reported efficiency for sulfur free CIGSe‐based solar cells utilizing fast (few minutes) atmospheric processes and elemental Se vapor. Copyright © 2017 John Wiley & Sons, Ltd. We study the Cu(In,Ga)Se2 absorber fabrication by fast atmospheric pressure selenization of metal precursor films utilizing elemental selenium vapor from independent sources. We find that a high Se supply during selenization leads to the generally observed Ga accumulation at the back contact, while a reduced Se supply leads to a more homogeneous Ga distribution within the absorber. By optimizing the precursor as well as the Ga in‐depth distribution in the CIGSe layer, a conversion efficiency of 15.5% was achieved.
Author Bäcker, Jan‐Peter
Ziem, Florian
Schmidt, Sebastian Simon
Köble, Christine
Kaufmann, Christian Alexander
Rodriguez‐Alvarez, Humberto
Abou‐Ras, Daniel
Mainz, Roland
Merdes, Saoussen
Hartig, Manuel
Wolf, Christian
Cinque, Sonja
Schlatmann, Rutger
Dorbandt, Iris
Author_xml – sequence: 1
  givenname: Sebastian Simon
  surname: Schmidt
  fullname: Schmidt, Sebastian Simon
  email: sebastian.schmidt@helmholtz‐berlin.de
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 2
  givenname: Christian
  surname: Wolf
  fullname: Wolf, Christian
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 3
  givenname: Humberto
  surname: Rodriguez‐Alvarez
  fullname: Rodriguez‐Alvarez, Humberto
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 4
  givenname: Jan‐Peter
  surname: Bäcker
  fullname: Bäcker, Jan‐Peter
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 5
  givenname: Christian Alexander
  surname: Kaufmann
  fullname: Kaufmann, Christian Alexander
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 6
  givenname: Saoussen
  surname: Merdes
  fullname: Merdes, Saoussen
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 7
  givenname: Florian
  surname: Ziem
  fullname: Ziem, Florian
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 8
  givenname: Manuel
  surname: Hartig
  fullname: Hartig, Manuel
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 9
  givenname: Sonja
  surname: Cinque
  fullname: Cinque, Sonja
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 10
  givenname: Iris
  surname: Dorbandt
  fullname: Dorbandt, Iris
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 11
  givenname: Christine
  surname: Köble
  fullname: Köble, Christine
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 12
  givenname: Daniel
  surname: Abou‐Ras
  fullname: Abou‐Ras, Daniel
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 13
  givenname: Roland
  surname: Mainz
  fullname: Mainz, Roland
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
– sequence: 14
  givenname: Rutger
  surname: Schlatmann
  fullname: Schlatmann, Rutger
  organization: Helmholtz‐Zentrum Berlin fur Materialien und Energie GmbH PVcomB Berlin
BookMark eNotkN1KAzEQhYNUsK2CjxDwRsGt-dm_XJaitVCwoIJ3IdlM2i3p7prsKn0A39td69U5w5yZYb4JGlV1BQhdUzKjhLCHpmxmLE-TMzSmRIiIJuJjNPiURZkQyQWahLAnhGa5SMfoZ272XWjLaovbHeClwluvzFCazg9iVWixag91aHbgywI3vi4ghKFXW7zoblfV_VLdvQLDoXbK4wKcw0qH2mvw2Kkj-IC7vwFwcICqVQ6H3lZld8Bfqqn9JTq3ygW4-tcpen96fFs8R-uX5WoxX0dbFvMkslxoSHkRm1jEOaE6MzRTlmbC2AxilYqCxZm1PIccjGYFT7XRSZJRTRgvKJ-im9Pe_onPDkIr93Xnq_6kpHnO8x4J530qOqW-SwdH2fjyoPxRUiIHwrInLAfCcrPaDMp_AWvKc-E
CODEN PPHOED
ContentType Journal Article
Copyright Copyright © 2017 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2017 John Wiley & Sons, Ltd.
DBID 7SP
7TB
8FD
FR3
L7M
DOI 10.1002/pip.2865
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Engineering Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-159X
EndPage 357
ExternalDocumentID 4321427495
PIP2865
Genre article
GrantInformation_xml – fundername: SENBWF
– fundername: German Federal Ministry of Education and Research
  funderid: 13N11768
– fundername: Federal Ministry of Education and Research (BMBF)
  funderid: 03IS2151
– fundername: SOLAR‐ERA.NET
  funderid: 0325903A
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BNHUX
BROTX
BRXPI
BY8
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDH
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
TWZ
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WWI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
7SP
7TB
8FD
FR3
L7M
ID FETCH-LOGICAL-g2435-f39be63c4d494801b7d17af179df7e4a69c247ff38e8edb2c36bdb5571b023c13
IEDL.DBID DR2
ISSN 1062-7995
IngestDate Thu Oct 10 20:27:44 EDT 2024
Sat Aug 24 01:16:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2435-f39be63c4d494801b7d17af179df7e4a69c247ff38e8edb2c36bdb5571b023c13
PQID 1883889633
PQPubID 1016445
PageCount 17
ParticipantIDs proquest_journals_1883889633
wiley_primary_10_1002_pip_2865_PIP2865
PublicationCentury 2000
PublicationDate May 2017
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: May 2017
PublicationDecade 2010
PublicationPlace Bognor Regis
PublicationPlace_xml – name: Bognor Regis
PublicationTitle Progress in photovoltaics
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 121
2001; 387
1997; 82
2011; 519
1973; 13
1997; 410–411
2011; 10
2012; 17
2015; 106
2009; 517
2014; 23
2005; 66
2004; 77
2009; 95
2013; 2013
2013; 119
2009; 93
1995; 67
2008; 517
2005; 71
2002; 91
2014; 122
2005; 38
2014; 6
2012; 20
2006; 287
2014; 126
2014; 10
1968; 48
2006; 90
2012; 100
2011
2016; 608
2006; 14
2006; 511–512
2008
2006
2015; 9
2001; 67
1993; 105
2004; 451–452
2005; 89
1992; 72
2015; 23
2006; 80
1987; 21
2012; 111
2007; 515
2004; 19
2000; 104
1982; 111
2016
2013
1998; 73
References_xml – volume: 23
  start-page: 1493
  issue: 11
  year: 2015
  end-page: 1500
  article-title: Above 16% efficient sequentially grown Cu(In,Ga)(Se,S) ‐based solar cells with atomic layer deposited Zn(O,S) buffers
  publication-title: Progress in Photovoltaics: Research and Applications
– year: 2011
– volume: 106
  start-page: 013909
  issue: 1
  year: 2015
  article-title: Improved Ga grading of sequentially produced Cu(In,Ga)Se solar cells studied by high resolution X‐ray fluorescence
  publication-title: Applied Physics Letters
– volume: 20
  start-page: 851
  issue: 7
  year: 2012
  end-page: 854
  article-title: World‐record Cu(In,Ga)Se ‐based thin‐film sub‐module with 17.4% efficiency
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 95
  start-page: 173502
  issue: 17
  year: 2009
  end-page: 3
  article-title: Three‐dimensional structure of the buffer/absorber interface in CdS/CuGaSe based thin film solar cells
  publication-title: Applied Physics Letters
– volume: 126
  start-page: 120
  issue: 0
  year: 2014
  end-page: 124
  article-title: Zn(O,S) buffer prepared by atomic layer deposition for sequentially grown Cu(In,Ga)(Se,S) solar cells and modules
  publication-title: Solar Energy Materials and Solar Cells
– volume: 111
  start-page: 477
  issue: 2
  year: 1982
  end-page: 481
  article-title: Crystal structure and Raman spectra of InSe
  publication-title: physica status solidi (b)
– volume: 71
  start-page: 054303
  issue: 5
  year: 2005
  article-title: Vibrational and crystalline properties of polymorphic CuInC (C = Se,S) chalcogenides
  publication-title: Physical Review B
– start-page: 2528
  year: 2013
  end-page: 2533
– volume: 72
  start-page: 4321
  issue: 9
  year: 1992
  end-page: 4324
  article-title: Lattice vibrations of CuInSe and CuGaSe by Raman microspectrometry
  publication-title: Journal of Applied Physics
– volume: 67
  start-page: 247
  issue: 1–4
  year: 2001
  end-page: 253
  article-title: Role of incorporated sulfur into the surface of Cu(InGa)Se thin‐film absorber
  publication-title: Solar Energy Materials and Solar Cells
– volume: 13
  start-page: 1297
  issue: 9
  year: 1973
  end-page: 1301
  article-title: Light scattering in transition metal diselenides CoSe and CuSe
  publication-title: Solid State Communications
– volume: 14
  start-page: 145
  issue: 2
  year: 2006
  end-page: 153
  article-title: CuIn Ga Se ‐based thin‐film solar cells by the selenization of sequentially evaporated metallic layers
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 451–452
  start-page: 544
  year: 2004
  end-page: 551
  article-title: CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability
  publication-title: Thin Solid Films
– volume: 38
  start-page: 22
  issue: 1
  year: 2005
  end-page: 25
  article-title: Structural and optical properties of homogeneous Cu(In,Ga)Se thin films prepared by thermal reaction of InSe/Cu/GaSe alloys with elemental Se vapour
  publication-title: Journal of Physics D: Applied Physics
– year: 2008
– volume: 48
  start-page: 5743
  issue: 12
  year: 1968
  end-page: 5744
  article-title: Comment on the composition of selenium vapor
  publication-title: The Journal of Chemical Physics
– volume: 93
  start-page: 577
  issue: 5
  year: 2009
  end-page: 582
  article-title: The structural and material properties of CuInSe and Cu(In,Ga)Se prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications
  publication-title: Solar Energy Materials and Solar Cells
– volume: 387
  start-page: 262
  issue: 1–2
  year: 2001
  end-page: 267
  article-title: Rapid CIS‐process for high efficiency PV‐modules: development towards large area processing
  publication-title: Thin Solid Films
– volume: 410–411
  start-page: 267
  year: 1997
  end-page: 270
  article-title: Raman spectra of thin solid films of some metal sulfides
  publication-title: Journal of Molecular Structure
– volume: 89
  start-page: 129
  issue: 2–3
  year: 2005
  end-page: 137
  article-title: Preparation of Cu(In,Ga)Se thin film solar cells by two‐stage selenization processes using N gas
  publication-title: Solar Energy Materials and Solar Cells
– volume: 73
  start-page: 441
  issue: 4
  year: 1998
  end-page: 443
  article-title: Raman spectra of the ordered vacancy compounds CuIn Se and CuGa Se
  publication-title: Applied Physics Letters
– start-page: 003321
  year: 2011
  end-page: 003326
– volume: 67
  start-page: 3978
  issue: 26
  year: 1995
  end-page: 3980
  article-title: Preparation of homogeneous Cu(InGa)Se films by selenization of metal precursors in H Se atmosphere
  publication-title: Applied Physics Letters
– volume: 90
  start-page: 3115
  issue: 18–19
  year: 2006
  end-page: 3123
  article-title: New developments in Cu(In,Ga)(S,Se) thin film modules formed by rapid thermal processing of stacked elemental layers
  publication-title: Solar Energy Materials and Solar Cells
– volume: 9
  start-page: 28
  issue: 1
  year: 2015
  end-page: 31
  article-title: Properties of Cu(In,Ga)Se solar cells with new record efficiencies up to 21.7%
  publication-title: physica status solidi (RRL) ‐ Rapid Research Letters
– volume: 66
  start-page: 1903
  issue: 11
  year: 2005
  end-page: 1907
  article-title: In situ investigation of the formation of Cu(In,Ga)Se from selenised metallic precursors by X‐ray diffraction—the impact of gallium, sodium and selenium excess
  publication-title: Journal of Physics and Chemistry of Solids
– volume: 2013
  start-page: 132105
  issue: 13
  year: 2013
  article-title: Fabrication of a Cu(InGa)Se2 thin film photovoltaic absorber by rapid thermal annealing of CuGa/In precursors coated with a Se layer
  publication-title: International Journal of Photoenergy
– volume: 19
  start-page: 1201
  issue: 10
  year: 2004
  end-page: 1206
  article-title: Composition dependence of the Raman A 1 mode and additional mode in tetragonal Cu–In–Se thin films
  publication-title: Semiconductor Science and Technology
– volume: 517
  start-page: 867
  issue: 2
  year: 2008
  end-page: 869
  article-title: Raman investigations of Cu(In,Ga)Se2 thin films with various copper contents
  publication-title: Thin Solid Films
– volume: 119
  start-page: 287
  year: 2013
  end-page: 290
  article-title: Technological status of Cu(In,Ga)(Se,S) ‐based photovoltaics
  publication-title: Solar Energy Materials and Solar Cells
– volume: 91
  start-page: 3598
  issue: 6
  year: 2002
  end-page: 3604
  article-title: Epitaxial growth and characterization of CuInSe crystallographic polytypes
  publication-title: Journal of Applied Physics
– volume: 287
  start-page: 408
  issue: 2
  year: 2006
  end-page: 413
  article-title: Kinetics of the reactive crystallization of CuInSe and CuGaSe chalcopyrite films for solar cell applications
  publication-title: Journal of Crystal Growth
– volume: 515
  start-page: 5843
  issue: 15
  year: 2007
  end-page: 5847
  article-title: Formation reactions of chalcopyrite compounds and the role of sodium doping
  publication-title: Thin Solid Films
– volume: 122
  start-page: 309
  year: 2014
  end-page: 313
  article-title: CIS‐based thin‐film PV technology in solar frontier K.K
  publication-title: Solar Energy Materials and Solar Cells
– volume: 23
  start-page: 1131
  issue: 9
  year: 2014
  end-page: 1143
  article-title: Time‐resolved investigation of Cu(In,Ga)Se growth and Ga gradient formation during fast selenisation of metallic precursors
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 104
  start-page: 4849
  issue: 20
  year: 2000
  end-page: 4862
  article-title: Stability issues of Cu(In,Ga)Se ‐based solar cells
  publication-title: J. Phys. Chem. B
– volume: 10
  start-page: 28
  year: 2014
  end-page: 36
  article-title: Toward high efficiency and panel size 30 × 40 cm Cu(In,Ga)Se solar cell: investigation of modified stacking sequences of metallic precursors and pre‐annealing process without Se vapor at low temperature
  publication-title: Nano Energy
– volume: 100
  start-page: 233903
  issue: 23
  year: 2012
  article-title: Improvement of V and J in CuInGaSe solar cells using a novel sandwiched CuGa/CuInGa/In precursor structure
  publication-title: Applied Physics Letters
– volume: 105
  start-page: 504
  issue: 2
  year: 1993
  end-page: 511
  article-title: Anion distributions and phase transitions in CuS Se (x = 0–1) studied by Raman spectroscopy
  publication-title: Journal of Solid State Chemistry
– volume: 519
  start-page: 7197
  issue: 21
  year: 2011
  end-page: 7200
  article-title: The influence of gallium on phase transitions during the crystallisation of thin film absorber materials Cu(In,Ga)(S,Se) investigated by in‐situ X‐ray diffraction
  publication-title: Thin Solid Films
– year: 2016
– volume: 23
  start-page: 717
  issue: 6
  year: 2014
  end-page: 733
  article-title: Gallium gradients in Cu(In,Ga)Se thin‐film solar cells
  publication-title: Progress in Photovoltaics: Research and Applications
– start-page: 003315
  year: 2011
  end-page: 003320
– volume: 6
  start-page: 4842
  issue: 7
  year: 2014
  end-page: 4849
  article-title: Improved efficiency of a large‐area Cu(In,Ga)Se solar cell by a nontoxic hydrogen‐assisted solid Se vapor selenization process
  publication-title: ACS Appl. Mater. Interfaces
– volume: 511–512
  start-page: 147
  year: 2006
  end-page: 152
  article-title: A thermodynamical approach to the formation reactions of sodium‐doped Cu(In,Ga)Se
  publication-title: Thin Solid Films
– volume: 517
  start-page: 2121
  issue: 7
  year: 2009
  end-page: 2124
  article-title: Preparation and characterization of CuIn Ga Se S thin film solar cells by rapid thermal processing
  publication-title: Thin Solid Films
– start-page: 453
  year: 2006
  end-page: 456
– volume: 77
  start-page: 757
  issue: 6
  year: 2004
  end-page: 765
  article-title: Second generation CIS solar modules
  publication-title: Solar Energy
– volume: 111
  start-page: 083710
  issue: 8
  year: 2012
  end-page: 8
  article-title: Three‐step H Se/Ar/H S reaction of Cu–In–Ga precursors for controlled composition and adhesion of Cu(In,Ga)(Se,S) thin films
  publication-title: Journal of Applied Physics
– volume: 80
  start-page: 191
  issue: 2
  year: 2006
  end-page: 195
  article-title: Fabrication of Cu(In,Ga)Se thin films solar cell by selenization process with Se vapor
  publication-title: Solar Cells and Solar Energy Materials
– volume: 515
  start-page: 5895
  issue: 15
  year: 2007
  end-page: 5898
  article-title: Phase relations in the ternary Cu–Ga–In system
  publication-title: Thin Solid Films
– volume: 82
  start-page: 2896
  issue: 6
  year: 1997
  end-page: 2905
  article-title: Phases, morphology, and diffusion in CuIn Ga Se thin films
  publication-title: Journal of Applied Physics
– start-page: 0849
  year: 2013
  end-page: 0852
– volume: 10
  start-page: 857
  issue: 11
  year: 2011
  end-page: 861
  article-title: Highly efficient Cu(In,Ga)Se solar cells grown on flexible polymer films
  publication-title: Nature Materials
– volume: 608
  start-page: 62
  year: 2016
  end-page: 70
  article-title: Influence of selenium amount on the structural and electronic properties of Cu(In,Ga)Se2 thin films and solar cells formed by the stacked elemental layer process
  publication-title: Thin Solid Films
– volume: 21
  start-page: 215
  year: 1987
  end-page: 224
  article-title: Preparation of CuInSe and CuInS films by reactive annealing in H Se or H S
  publication-title: Solar Cells
– volume: 17
  start-page: 99
  year: 2012
  end-page: 106
  article-title: Baseline meets innovation: technology transfer for high‐efficiency thin‐film Si and CIGS modules at PVcomB
  publication-title: Photovoltaics International
– volume: 23
  start-page: 765
  issue: 6
  year: 2015
  end-page: 772
  article-title: Composition and bandgap control in Cu(In,Ga)Se ‐based absorbers formed by reaction of metal precursors
  publication-title: Progress in Photovoltaics: Research and Applications
– volume: 121
  start-page: 4747
  issue: 10
  year: 2004
  end-page: 4758
  article-title: Raman scattering study on structural and dynamical features of noncrystalline selenium
  publication-title: The Journal of Chemical Physics
SSID ssj0017896
Score 2.4001706
Snippet We study the sequential fabrication of Cu(In,Ga)Se2 (CIGSe) absorber layers by using an atmospheric pressure selenization with a process duration of only a few...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 341
SubjectTerms atmospheric processing
CIGS
CIGSe
Ga grading
in‐line processing
metal precursor
sequential processing
Title Adjusting the Ga grading during fast atmospheric processing of Cu(In,Ga)Se2 solar cell absorber layers using elemental selenium vapor
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpip.2865
https://www.proquest.com/docview/1883889633
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYqTvTQ0kJVHkVzqBBIZMGxYyfH1fKsVIR4SEg9RHZirxaW7GqTcODO_2YmyVLaE-KUQ2JlZM_Y3yTffMPYz0h6lXEvA20wyKW0OjDSI5DLlBfWShd5KnD-faZOruWvm-imY1VSLUyrD_HywY0io9mvKcCNLff-ioZOR9MelVXi9suFJjbXwcWLchTXcdOaCxMefG-SRHPd2f1wbz7wH0z5Gpk2R8vRZ_ZnblTLKLnr1ZXtZY__6TW-z-ol9qlDnNBvXeQL--CKr-zjKx3CZfbUz2-pq1cxBMSDcGxgOGu49dBWMYI3ZQWmup-UpEIwymDa1hfQvYmHQb19Wuwem51LF0JJyTLQDwFAoyYz62YwNoTsoW4GuI6xPgbq9FSM6nt4MJgGrLDro8OrwUnQ9WcIhiGirMCLxDolMpmTxsw-tzrn2ngM8dxrJ41KslBq70XsYpfbMBPK5jaKNLeIFDIuvrGFYlK47wwSgbBF5oqbCP1FYRYYOpUkJoklJ1WwVbYxX6u0C7Iy5XEsYlxnIVbZVjPp6bSV6EhbMeYwxelOabrT89Nzuq699cF1thjSAd5QGzfYQjWr3Q-EH5XdbBztGZKw2Mg
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPZQe6Iuqy6OdA6pAIguOHSdRTwgKu-UhREHigBTZib3asmRXm6SH3vu_60k2FHpCnHJIrFjj-eJvnJlvADYCYWXKrPBC5UAuhA49Jawjcqm0XGthAksFzqdnsnclvl8H13Pwta2FafQh7g_cCBn195oATgfSO_9UQyfDSZfqKufhhUM7J1QeXNxrR7EwqptzuZDHvTmOg1Z5dtffaUc-YpUPuWm9uRy-hpt2Wk1OyW23KnU3_f2fYuMz5_0GlmakE_caL3kLcyZ_B68eSBG-hz972U9q7JUP0FFCPFI4mNbp9dgUMqJVRYmqvBsXJEQwTHHSlBjQvbHF_Wqzn28fqa0fxseC4mWkfwKodDGeajPFkSJyj1U9wMyS1kdIzZ7yYXWHv5SLBJbh6vDb5X7Pm7Vo8Aa-I1qe5bE2kqciI5mZXabDjIXKOpRnNjRCyTj1RWgtj0xkMu2nXOpMB0HItCMLKeMfYCEf5-YjYMwdcxGZZCpwLiNdIOgbGccqjgQjYbAOrLWLlcxwViQsinjkFprzDnyprZ5MGpWOpNFj9hNn7oTMnZz3z-m68tQHP8PL3uXpSXLSPztehUWf9vM603ENFsppZdYdGyn1p9rr_gIbV9zh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECbaFCiaIekTdeK0NxRFC1S2KVKUNAZJ_OjDMNoaMNBBICXScOLIgiVlyJ7_HZ4ku26nopMGiRBxvBO_E-_7jpB3HjcipoY7vrRBzrnyHcmNBXKxMEwprj2DBOdvYzGc8s8zb9ZUVSIXptaH2P5ww8iovtcY4Fliur9FQ7NF1kFa5UPyiAvrqQiIvm-lo6gfVL25bMZjXxyG3kZ4tud2NyP_AJW70LTaW_qH5NdmVnVJyVWnLFQnvv1LsPH_pv2UHDSQE05rH3lGHuj0OdnfESJ8Qe5Ok0ts65XOwQJCGEiYr6vieqhpjGBkXoAsrlc5yhAsYshqggHeWxk4Kz-M0k8D-fGHdiHHbBnwRACkyldrpdewlAjtoawG6KZkfQnY6ildlNdwI20e8JJM-xc_z4ZO06DBmbsWZjmGhUoLFvMERWZ6VPkJ9aWxMZ4YX3MpwtjlvjEs0IFOlBszoRLleT5VFirElL0ie-kq1a8JhMziFp4IKj3rMMKmga4WYSjDgFOUBWuR9matoibK8ogGAQvsOjPWIu8ro0dZrdER1WrMbmTNHaG5o8logtejf33wLXk8Oe9HX0fjL8fkiYubeVXm2CZ7xbrUJxaKFOpN5XP3rHvbkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adjusting+the+Ga+grading+during+fast+atmospheric+processing+of+Cu%28In%2CGa%29Se2+solar+cell+absorber+layers+using+elemental+selenium+vapor&rft.jtitle=Progress+in+photovoltaics&rft.au=Schmidt%2C+Sebastian+Simon&rft.au=Wolf%2C+Christian&rft.au=Rodriguez-Alvarez%2C+Humberto&rft.au=Backer%2C+Jan-Peter&rft.date=2017-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1062-7995&rft.eissn=1099-159X&rft.volume=25&rft.issue=5&rft.spage=341&rft_id=info:doi/10.1002%2Fpip.2865&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4321427495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1062-7995&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1062-7995&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1062-7995&client=summon