Decay bounds and O algorithms for approximating functions of sparse matrices
We establish decay bounds for the entries of f(A), where A is a sparse (in particular, banded) n x n diagonalizable matrix and f is smooth on a subset of the complex plane containing the spectrum of A. Combined with techniques from approximation theory, the bounds are used to compute sparse (or band...
Saved in:
Published in | Electronic transactions on numerical analysis Vol. 28; p. 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Institute of Computational Mathematics
01.08.2007
|
Online Access | Get full text |
ISSN | 1068-9613 1097-4067 |
Cover
Abstract | We establish decay bounds for the entries of f(A), where A is a sparse (in particular, banded) n x n diagonalizable matrix and f is smooth on a subset of the complex plane containing the spectrum of A. Combined with techniques from approximation theory, the bounds are used to compute sparse (or banded) approximations to f(A), resulting in algorithms that under appropriate conditions have linear complexity in the matrix dimension. Applications to various types of problems are discussed and illustrated by numerical examples. Key words. Matrix functions, sparse and banded matrices, decay rates, linear time algorithms, Chebyshev polynomials, Faber polynomials, density matrix, trace, determinant |
---|---|
AbstractList | We establish decay bounds for the entries of f(A), where A is a sparse (in particular, banded) n x n diagonalizable matrix and f is smooth on a subset of the complex plane containing the spectrum of A. Combined with techniques from approximation theory, the bounds are used to compute sparse (or banded) approximations to f(A), resulting in algorithms that under appropriate conditions have linear complexity in the matrix dimension. Applications to various types of problems are discussed and illustrated by numerical examples. Key words. Matrix functions, sparse and banded matrices, decay rates, linear time algorithms, Chebyshev polynomials, Faber polynomials, density matrix, trace, determinant We establish decay bounds for the entries of f(A), where A is a sparse (in particular, banded) n x n diagonalizable matrix and f is smooth on a subset of the complex plane containing the spectrum of A. Combined with techniques from approximation theory, the bounds are used to compute sparse (or banded) approximations to f(A), resulting in algorithms that under appropriate conditions have linear complexity in the matrix dimension. Applications to various types of problems are discussed and illustrated by numerical examples. |
Audience | Academic |
Author | Benzi, Michele Razouk, Nader |
Author_xml | – sequence: 1 fullname: Benzi, Michele – sequence: 2 fullname: Razouk, Nader |
BookMark | eNptkM1LAzEQxYNUsK3-DwHPK_lqYo6lfsJCL3ous8lkjewmZbMF_e-N6MGDzOEN7_dmDm9FFiknPCNLzqxpFNNm8b3r28ZqLi_IqpR3xrhVYrMk7R06-KRdPiVfKCRP9xSGPk9xfhsLDXmicDxO-SOOMMfU03BKbo45FZoDLUeYCtKKpuiwXJLzAEPBq19dk9eH-5fdU9PuH59327bphRBz44wUnoETXIC0gF47hbpaokNmtJJodFcB40wo6zmCUY6DkaA3grMg1-T6528PAx5iCnmewI2xuMOWWymU5krU1M0_qToex-hqRSFW_8_BF-02W9o |
ContentType | Journal Article |
Copyright | COPYRIGHT 2007 Institute of Computational Mathematics |
Copyright_xml | – notice: COPYRIGHT 2007 Institute of Computational Mathematics |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1097-4067 |
ExternalDocumentID | A193246142 |
GroupedDBID | -~9 29G 2WC 5GY ACGFO AENEX ALMA_UNASSIGNED_HOLDINGS C1A E3Z EBS EJD IAO ICD IEA ITC LO0 OK1 P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-g222t-c732d0ac212a39aed6c4e62d02be07643e76b39a010249d1ea74c1a73a65210f3 |
ISSN | 1068-9613 |
IngestDate | Wed Mar 19 02:20:25 EDT 2025 Sat Mar 08 19:09:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g222t-c732d0ac212a39aed6c4e62d02be07643e76b39a010249d1ea74c1a73a65210f3 |
ParticipantIDs | gale_infotracmisc_A193246142 gale_infotracacademiconefile_A193246142 |
PublicationCentury | 2000 |
PublicationDate | 20070801 |
PublicationDateYYYYMMDD | 2007-08-01 |
PublicationDate_xml | – month: 08 year: 2007 text: 20070801 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Electronic transactions on numerical analysis |
PublicationYear | 2007 |
Publisher | Institute of Computational Mathematics |
Publisher_xml | – name: Institute of Computational Mathematics |
SSID | ssj0019425 |
Score | 2.102894 |
Snippet | We establish decay bounds for the entries of f(A), where A is a sparse (in particular, banded) n x n diagonalizable matrix and f is smooth on a subset of the... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 16 |
Title | Decay bounds and O algorithms for approximating functions of sparse matrices |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60Jy--xWqVPQgeSkqTbBJzFB8UsRakhd7K7mZSCyWFNgXtr3c2u9m04qF6CWHzgnzD7MzuN98QcuMLxbCJXSf1_BQTFBccHnjcCQTDbISlTIKqd-6-hZ0BexkGw7KXvKkuyUVLrn6tK_kPqjiGuKoq2T8ga1-KA3iO-OIREcbjVhg_guRfTaE6I2mp5V6TT8czzPc_tM6Clgz_nKiwVDEmcRKzzDd0JfOFoq8qjX7DJCyX6KveOHnVT7zYWMiWeotHKQxoOROb0EO2mpRMfJhag3nnq9lSd_pRrOmNZYbIktxM6rlOXdANJ8rFyq7Vl11bXsRMEx1pqOtMW2DG4gjNQbffKL2vKQ3X7tP9oYpdCvP6SvWO4Uy767uFYmivbbeKYlZ01rUfNHPrWpTQPyT7Jryn9xqrI7ID2TE5MKE-NY50cUJeC-ioho4idLRHK-goQkc3oKMWOjpLqYaOltCdksHzU_-h45jGFs4Yw7HckZHvJW0uMWzgfswhCSWDEIc8Ae0IY0SIQoEXlN4fixMXeMSkyyOfhxhttVP_jNSyWQbnhKYqpxTA0tiTLEwCkbh3IXgsiUSQugzq5Fb9jZEyarQYyU3VBT6thL9G1c-tk8bGnehm5Nrli61fdEn2KgNqkFo-X8IVRm65uC6Q-wYl_07I |
linkProvider | EuDML: The European Digital Mathematics Library |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decay+bounds+and+O+algorithms+for+approximating+functions+of+sparse+matrices&rft.jtitle=Electronic+transactions+on+numerical+analysis&rft.au=Benzi%2C+Michele&rft.au=Razouk%2C+Nader&rft.date=2007-08-01&rft.pub=Institute+of+Computational+Mathematics&rft.issn=1068-9613&rft.eissn=1097-4067&rft.volume=28&rft.spage=16&rft.externalDocID=A193246142 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9613&client=summon |