EVEN VERTEX ODD MEAN LABELING OF TRANSFORMED TREES
Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon...
Saved in:
Published in | TWMS journal of applied and engineering mathematics Vol. 10; no. 2; p. 338 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Turkic World Mathematical Society
01.04.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2146-1147 |
Cover
Abstract | Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon])/2] is a bijection. A graph that admits even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that [T.sub.p]-tree (transformed tree), T@[P.sub.n], T@2[P.sub.n] and (To[K.sub.1,n]) (where T is a [T.sub.p]-tree), are even vertex odd mean graphs. Keywords: mean labeling, odd mean labeling, [T.sub.p]--tree, even vertex odd mean labeling, even vertex odd mean graph. AMS Subject Classification: 05C78 |
---|---|
AbstractList | Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon])/2] is a bijection. A graph that admits even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that [T.sub.p]-tree (transformed tree), T@[P.sub.n], T@2[P.sub.n] and (To[K.sub.1,n]) (where T is a [T.sub.p]-tree), are even vertex odd mean graphs. Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon])/2] is a bijection. A graph that admits even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that [T.sub.p]-tree (transformed tree), T@[P.sub.n], T@2[P.sub.n] and (To[K.sub.1,n]) (where T is a [T.sub.p]-tree), are even vertex odd mean graphs. Keywords: mean labeling, odd mean labeling, [T.sub.p]--tree, even vertex odd mean labeling, even vertex odd mean graph. AMS Subject Classification: 05C78 |
Audience | Academic |
Author | Ramya, D Selvi, M Eyanthi, P.J |
Author_xml | – sequence: 1 fullname: Eyanthi, P.J – sequence: 2 fullname: Ramya, D – sequence: 3 fullname: Selvi, M |
BookMark | eNptj8FqwzAQRHVIoWmafxD07CKtZcU6uvE6DTg2OG7oLajSKrgkDtT5fypoDz109rDD8HZhHthsvI40Y3OQSidSqtU9W07Tp4jKtV6JdM4AD9jwA3Y9vvO2LPkOi4bXxQvW22bD24r3XdHsq7bbYRk94v6R3QV7nmj5uxfsrcJ-_ZrU7Wa7LurkBAC3RAdBxlMGmbbGkrMfSvg8MxBzrbwKJjVaSpcbcuSNBO8pUjJIA3lwlC7Y08_fkz3TcRjD9fZl3WWY3LHQYLJUGCEi9fwPFcfTZXCxfxhi_ufgG9oPTMQ |
ContentType | Journal Article |
Copyright | COPYRIGHT 2020 Turkic World Mathematical Society |
Copyright_xml | – notice: COPYRIGHT 2020 Turkic World Mathematical Society |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | A629530900 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | .4S 2XV 5VS 8FE 8FG 8G5 ABJCF ABUWG ACIWK ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO EDSIH GNUQQ GUQSH HCIFZ IAO IEA ITC KQ8 L6V M2O M7S OK1 PADUT PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PTHSS RNS TUS |
ID | FETCH-LOGICAL-g222t-6f0e9de5256a9aecab40d8592f0e64d4f939611c89eced912ddeeca1f1928fce3 |
ISSN | 2146-1147 |
IngestDate | Tue Jun 17 21:21:35 EDT 2025 Tue Jun 10 20:51:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g222t-6f0e9de5256a9aecab40d8592f0e64d4f939611c89eced912ddeeca1f1928fce3 |
ParticipantIDs | gale_infotracmisc_A629530900 gale_infotracacademiconefile_A629530900 |
PublicationCentury | 2000 |
PublicationDate | 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 20200401 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | TWMS journal of applied and engineering mathematics |
PublicationYear | 2020 |
Publisher | Turkic World Mathematical Society |
Publisher_xml | – name: Turkic World Mathematical Society |
SSID | ssj0000866703 |
Score | 2.116388 |
Snippet | Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 338 |
SubjectTerms | Functions (Mathematics) Graph theory Mathematical research |
Title | EVEN VERTEX ODD MEAN LABELING OF TRANSFORMED TREES |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN74uOjB-Izv7MHEA6GBZdmyR7SYaqSaWmtvZlkWY9SaVGpSf72zdAU0HqoXQpZX4NvMfjPMfIPQUdAMBFOU2rCWeTYNFLcFyxybsIBl2h9RxR_TuMPat_Ri4A-qxpBFdUmeNOTHr3Ul_0EVxgBXXSX7B2TLm8IA7AO-sAWEYTsTxlE_6lj9CCjpwLpqtaxYp-RdhifRpY5B6Xyebti5AT8vjlqwHxnmZ7ho7w6c-JpyhDCEVIfSVSVTaL2Uyq4V_54AIEU7YOu6UUaau-JlIn5kET-_P1YxVxNdIE4tKaWoTxuPnh6lSeyJy8dpoZLXUqlkaq50h3AbvKvmN9vq1OYQqRlKb6rp8kPrOmSE-57DHWcezXsu2K3FqHVz3i6jZuCAsWbR7rp8nFlLa6ygt4pWDJ3H4RSbNTSnhutouXqFtw1ENEp4ihIGlLBGCX-hhK_OcA0lXKC0iW7Pot5p2zadKuwH4Fe5DbNb8VT5wB-12rkUCXXSwOcExhlNacY9zlxXBlxJlXKXwKICZ7kZ8Osgk8rbQgvD16HaRpjQZkJ8lQpX-hQMrPBTuEIxISlPXJLtoGP9uvd6luYjIYUpo4CrtZLXffUJd9D-tzPBbsja4d2Zb7SHlqqpsY8W8tFYHQAVy5NDg88nvJYwyA |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EVEN+VERTEX+ODD+MEAN+LABELING+OF+TRANSFORMED+TREES&rft.jtitle=TWMS+journal+of+applied+and+engineering+mathematics&rft.au=Eyanthi%2C+P.J&rft.au=Ramya%2C+D&rft.au=Selvi%2C+M&rft.date=2020-04-01&rft.pub=Turkic+World+Mathematical+Society&rft.issn=2146-1147&rft.volume=10&rft.issue=2&rft.spage=338&rft.externalDocID=A629530900 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2146-1147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2146-1147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2146-1147&client=summon |