EVEN VERTEX ODD MEAN LABELING OF TRANSFORMED TREES

Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon...

Full description

Saved in:
Bibliographic Details
Published inTWMS journal of applied and engineering mathematics Vol. 10; no. 2; p. 338
Main Authors Eyanthi, P.J, Ramya, D, Selvi, M
Format Journal Article
LanguageEnglish
Published Turkic World Mathematical Society 01.04.2020
Subjects
Online AccessGet full text
ISSN2146-1147

Cover

Abstract Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon])/2] is a bijection. A graph that admits even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that [T.sub.p]-tree (transformed tree), T@[P.sub.n], T@2[P.sub.n] and (To[K.sub.1,n]) (where T is a [T.sub.p]-tree), are even vertex odd mean graphs. Keywords: mean labeling, odd mean labeling, [T.sub.p]--tree, even vertex odd mean labeling, even vertex odd mean graph. AMS Subject Classification: 05C78
AbstractList Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon])/2] is a bijection. A graph that admits even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that [T.sub.p]-tree (transformed tree), T@[P.sub.n], T@2[P.sub.n] and (To[K.sub.1,n]) (where T is a [T.sub.p]-tree), are even vertex odd mean graphs.
Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right arrow] {0, 2,4,..., 2q} satisfying f is 1-1 and the induced map f* : E(G) [right arrow] {1, 3, 5,..., 2q -1} defined by f* (uv) = [f(u)+f([upsilon])/2] is a bijection. A graph that admits even vertex odd mean labeling is called an even vertex odd mean graph. In this paper, we prove that [T.sub.p]-tree (transformed tree), T@[P.sub.n], T@2[P.sub.n] and (To[K.sub.1,n]) (where T is a [T.sub.p]-tree), are even vertex odd mean graphs. Keywords: mean labeling, odd mean labeling, [T.sub.p]--tree, even vertex odd mean labeling, even vertex odd mean graph. AMS Subject Classification: 05C78
Audience Academic
Author Ramya, D
Selvi, M
Eyanthi, P.J
Author_xml – sequence: 1
  fullname: Eyanthi, P.J
– sequence: 2
  fullname: Ramya, D
– sequence: 3
  fullname: Selvi, M
BookMark eNptj8FqwzAQRHVIoWmafxD07CKtZcU6uvE6DTg2OG7oLajSKrgkDtT5fypoDz109rDD8HZhHthsvI40Y3OQSidSqtU9W07Tp4jKtV6JdM4AD9jwA3Y9vvO2LPkOi4bXxQvW22bD24r3XdHsq7bbYRk94v6R3QV7nmj5uxfsrcJ-_ZrU7Wa7LurkBAC3RAdBxlMGmbbGkrMfSvg8MxBzrbwKJjVaSpcbcuSNBO8pUjJIA3lwlC7Y08_fkz3TcRjD9fZl3WWY3LHQYLJUGCEi9fwPFcfTZXCxfxhi_ufgG9oPTMQ
ContentType Journal Article
Copyright COPYRIGHT 2020 Turkic World Mathematical Society
Copyright_xml – notice: COPYRIGHT 2020 Turkic World Mathematical Society
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID A629530900
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID .4S
2XV
5VS
8FE
8FG
8G5
ABJCF
ABUWG
ACIWK
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
EDSIH
GNUQQ
GUQSH
HCIFZ
IAO
IEA
ITC
KQ8
L6V
M2O
M7S
OK1
PADUT
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PTHSS
RNS
TUS
ID FETCH-LOGICAL-g222t-6f0e9de5256a9aecab40d8592f0e64d4f939611c89eced912ddeeca1f1928fce3
ISSN 2146-1147
IngestDate Tue Jun 17 21:21:35 EDT 2025
Tue Jun 10 20:51:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g222t-6f0e9de5256a9aecab40d8592f0e64d4f939611c89eced912ddeeca1f1928fce3
ParticipantIDs gale_infotracmisc_A629530900
gale_infotracacademiconefile_A629530900
PublicationCentury 2000
PublicationDate 20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 20200401
  day: 01
PublicationDecade 2020
PublicationTitle TWMS journal of applied and engineering mathematics
PublicationYear 2020
Publisher Turkic World Mathematical Society
Publisher_xml – name: Turkic World Mathematical Society
SSID ssj0000866703
Score 2.116388
Snippet Let G = (V, E) be a graph with p vertices and q edges. A graph G is said have an even vertex odd mean labeling if there exists a function f : V(G) [right...
SourceID gale
SourceType Aggregation Database
StartPage 338
SubjectTerms Functions (Mathematics)
Graph theory
Mathematical research
Title EVEN VERTEX ODD MEAN LABELING OF TRANSFORMED TREES
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN74uOjB-Izv7MHEA6GBZdmyR7SYaqSaWmtvZlkWY9SaVGpSf72zdAU0HqoXQpZX4NvMfjPMfIPQUdAMBFOU2rCWeTYNFLcFyxybsIBl2h9RxR_TuMPat_Ri4A-qxpBFdUmeNOTHr3Ul_0EVxgBXXSX7B2TLm8IA7AO-sAWEYTsTxlE_6lj9CCjpwLpqtaxYp-RdhifRpY5B6Xyebti5AT8vjlqwHxnmZ7ho7w6c-JpyhDCEVIfSVSVTaL2Uyq4V_54AIEU7YOu6UUaau-JlIn5kET-_P1YxVxNdIE4tKaWoTxuPnh6lSeyJy8dpoZLXUqlkaq50h3AbvKvmN9vq1OYQqRlKb6rp8kPrOmSE-57DHWcezXsu2K3FqHVz3i6jZuCAsWbR7rp8nFlLa6ygt4pWDJ3H4RSbNTSnhutouXqFtw1ENEp4ihIGlLBGCX-hhK_OcA0lXKC0iW7Pot5p2zadKuwH4Fe5DbNb8VT5wB-12rkUCXXSwOcExhlNacY9zlxXBlxJlXKXwKICZ7kZ8Osgk8rbQgvD16HaRpjQZkJ8lQpX-hQMrPBTuEIxISlPXJLtoGP9uvd6luYjIYUpo4CrtZLXffUJd9D-tzPBbsja4d2Zb7SHlqqpsY8W8tFYHQAVy5NDg88nvJYwyA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EVEN+VERTEX+ODD+MEAN+LABELING+OF+TRANSFORMED+TREES&rft.jtitle=TWMS+journal+of+applied+and+engineering+mathematics&rft.au=Eyanthi%2C+P.J&rft.au=Ramya%2C+D&rft.au=Selvi%2C+M&rft.date=2020-04-01&rft.pub=Turkic+World+Mathematical+Society&rft.issn=2146-1147&rft.volume=10&rft.issue=2&rft.spage=338&rft.externalDocID=A629530900
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2146-1147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2146-1147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2146-1147&client=summon