Evaluating matrix functions for exponential integrators via Caratheodory-Fejer approximation and contour integrals

Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A), where A is a negative semidefinite matrix and is the exponential function or one of the related "ψ functions" such as [ψ.sub.i](z) = ([e.sup.z] - l)/z. Building on previous wo...

Full description

Saved in:
Bibliographic Details
Published inElectronic transactions on numerical analysis Vol. 29; p. 1
Main Authors Schmelzer, Thomas, Trefethen, Lloyd N
Format Journal Article
LanguageEnglish
Published Institute of Computational Mathematics 01.12.2007
Subjects
Online AccessGet full text
ISSN1068-9613
1097-4067

Cover

Abstract Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A), where A is a negative semidefinite matrix and is the exponential function or one of the related "ψ functions" such as [ψ.sub.i](z) = ([e.sup.z] - l)/z. Building on previous work by Trefethen and Gutknecht, Minchev, and Lu, we propose two methods for the fast evaluation of f(A) that are especially useful when shifted systems (A + zl)x = b can be solved efficiently, e.g. by a sparse direct solver. The first method is based on best rational approximations to on the negative real axis computed via the Caratheodory-Fejer procedure. Rather than using optimal poles we approximate the functions in a set of common poles, which speeds up typical computations by a factor of 2 to 3.. The second method is an application of the trapezoid rule on a Talbot-type contour. Key words. matrix exponential, exponential integrators, stiff semilinear parabolic PDEs, rational uniform approximation, Hankel contour, numerical quadrature
AbstractList Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A), where A is a negative semidefinite matrix and is the exponential function or one of the related "ψ functions" such as [ψ.sub.i](z) = ([e.sup.z] - l)/z. Building on previous work by Trefethen and Gutknecht, Minchev, and Lu, we propose two methods for the fast evaluation of f(A) that are especially useful when shifted systems (A + zl)x = b can be solved efficiently, e.g. by a sparse direct solver. The first method is based on best rational approximations to on the negative real axis computed via the Caratheodory-Fejer procedure. Rather than using optimal poles we approximate the functions in a set of common poles, which speeds up typical computations by a factor of 2 to 3.. The second method is an application of the trapezoid rule on a Talbot-type contour.
Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A), where A is a negative semidefinite matrix and is the exponential function or one of the related "ψ functions" such as [ψ.sub.i](z) = ([e.sup.z] - l)/z. Building on previous work by Trefethen and Gutknecht, Minchev, and Lu, we propose two methods for the fast evaluation of f(A) that are especially useful when shifted systems (A + zl)x = b can be solved efficiently, e.g. by a sparse direct solver. The first method is based on best rational approximations to on the negative real axis computed via the Caratheodory-Fejer procedure. Rather than using optimal poles we approximate the functions in a set of common poles, which speeds up typical computations by a factor of 2 to 3.. The second method is an application of the trapezoid rule on a Talbot-type contour. Key words. matrix exponential, exponential integrators, stiff semilinear parabolic PDEs, rational uniform approximation, Hankel contour, numerical quadrature
Audience Academic
Author Schmelzer, Thomas
Trefethen, Lloyd N
Author_xml – sequence: 1
  fullname: Schmelzer, Thomas
– sequence: 2
  fullname: Trefethen, Lloyd N
BookMark eNptjl1LwzAUhoNMcJv-h4DXlTTNR3M5xqbCwBu9HqdpUjPapKTZqP_eiApeyLl4z8f7PpwVWvjgzRValkTJghEhF1-9qAslyuoGrabpREipGOVLFHcX6M-QnO_wACm6Gduz18kFP2EbIjbzmGk-Oeix88l0EVKIE744wFvIw7sJbYgfxd6cTMQwjjHMLqMyAYNvsQ4-hXP8DffTLbq2Wczdj67R2373un0qDi-Pz9vNoegopakQTUuhZsoQsKphUhIqtLIl4bLigttWAANd8YbpfKyNpkbWilvZcFKrllVrdP_N7aA3R-dtSBH04CZ93JRK1oRWssquh39cuVozuPy7sS7v_wQ-AawJa60
ContentType Journal Article
Copyright COPYRIGHT 2007 Institute of Computational Mathematics
Copyright_xml – notice: COPYRIGHT 2007 Institute of Computational Mathematics
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1097-4067
ExternalDocumentID A197802373
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID -~9
29G
2WC
5GY
ACGFO
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
E3Z
EBS
EJD
IAO
ICD
IEA
ITC
LO0
OK1
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-g222t-6bd2a849e0af9b477026c9f10573565fd6a4ac35b4c4778ec2e7895f7b5089d43
ISSN 1068-9613
IngestDate Wed Mar 19 02:20:25 EDT 2025
Sat Mar 08 19:09:57 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g222t-6bd2a849e0af9b477026c9f10573565fd6a4ac35b4c4778ec2e7895f7b5089d43
ParticipantIDs gale_infotracmisc_A197802373
gale_infotracacademiconefile_A197802373
PublicationCentury 2000
PublicationDate 20071201
PublicationDateYYYYMMDD 2007-12-01
PublicationDate_xml – month: 12
  year: 2007
  text: 20071201
  day: 01
PublicationDecade 2000
PublicationTitle Electronic transactions on numerical analysis
PublicationYear 2007
Publisher Institute of Computational Mathematics
Publisher_xml – name: Institute of Computational Mathematics
SSID ssj0019425
Score 2.0757391
Snippet Among the fastest methods for solving stiff PDE are exponential integrators, which require the evaluation of f(A), where A is a negative semidefinite matrix...
SourceID gale
SourceType Aggregation Database
StartPage 1
SubjectTerms Approximation theory
Mathematical research
Matrices
Methods
Title Evaluating matrix functions for exponential integrators via Caratheodory-Fejer approximation and contour integrals
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWAExd2RKEgH5A4oKA2cZP6WCGqCrFcQOKGYsdhUUlRm6K2X89z7MYpcAAuUeU0i_rc8bzxzBtCjrGEM9-XoCUSJpD5IvJilUpQFa3NoqRICp3t65uwd88uH1oPrl1qUV2SizM5-7Gu5D-oYgy46irZPyBb3hQD-Ax8cQTCOP4K4wsr1Q22_6al9ienepkyuW2FlPfkfZDpdKBCWcPoQujmOh8vsc700M4fWOlw6nXVqxoaffHJiylmtAVvWY4XmV_cHy0E8l0Hndx1HS-2H7Kx2QjSOgRG9MRt-Dy_qf7MThSXnaSDB7rlSW6rRa76g2li94nmQYnoS4LHQqKDaU8xD21el2q0lWAkeCnMbmiqUs-UHeOYPA3TrGNuq210xBjbplvDyszCTlNLKvlBFCyT5aBZyIveNsp9Jc6KNrzl8-xCXHEp7jbImuUCtGOA3SRLKtsi65YXUGt1R9tk6HCmBmda4kyBM63gTCs4U-BMv-NMF3CmwJlanGmJ8w65717cnfc82yvDe4KHl3uhSPy4zbhqxCkXLIrArSVPdRfnAD57moQxi2XQEkziZFtJX0Vt3kojAQ-dJyzYJSsZXnWP0LQlQWsjxpM4YIkMuQ9OyUM_FYLDYU5q5ET_Zo_6f4LpJWNbyIGrtZbYo4OgRuoL34TlkpXT-7--0QFZdbOsTlby4VgdwhnMxVGB7ydclnAD
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+matrix+functions+for+exponential+integrators+via+Caratheodory-Fejer+approximation+and+contour+integrals&rft.jtitle=Electronic+transactions+on+numerical+analysis&rft.au=Schmelzer%2C+Thomas&rft.au=Trefethen%2C+Lloyd+N&rft.date=2007-12-01&rft.pub=Institute+of+Computational+Mathematics&rft.issn=1068-9613&rft.eissn=1097-4067&rft.volume=29&rft.spage=1&rft.externalDocID=A197802373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9613&client=summon