INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING
Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in...
Saved in:
Published in | TWMS journal of applied and engineering mathematics Vol. 14; no. 2; p. 508 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Turkic World Mathematical Society
01.04.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2146-1147 |
Cover
Abstract | Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration. Keywords: Graphs, independent domination, independent dominating set, independent domination number, vertex switching. AMS Subject Classification: 05C69, 05C76. |
---|---|
AbstractList | Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration. Keywords: Graphs, independent domination, independent dominating set, independent domination number, vertex switching. AMS Subject Classification: 05C69, 05C76. Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration. |
Audience | Academic |
Author | Balamurugan, B.J Parveen, S. Thilsath |
Author_xml | – sequence: 1 fullname: Parveen, S. Thilsath – sequence: 2 fullname: Balamurugan, B.J |
BookMark | eNptUMtqwzAQ1CGFpmn-QdCziySretzqJootSOTg2G1vQZKl4JIH1Pl_KkgPPXQXdmBmdmD3AUzOl3OYgCnBlGUYU34P5uP4hVIJxjjKp-BVm6XaqjRMC5f1Rpui1bWBptu8qQbWK1g2xbbawbZq6q6s4LtqWvUJdx-6XVTalI_gLtrjGOa_OAPdSiUpW9elXhTr7EAIuWZU8EgRldLmIQpKCHYvDFOJkWOcxt7lggvpKY9IuBiYk7ZnuRUhkl567_IZeLrlHuwx7IdzvFy_rT8No98XXJJ0kWAouZ7_caXuw2nw6RtxSPyfhR_WgVAa |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Turkic World Mathematical Society |
Copyright_xml | – notice: COPYRIGHT 2024 Turkic World Mathematical Society |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | A792008860 |
GeographicLocations | India |
GeographicLocations_xml | – name: India |
GroupedDBID | .4S 2XV 5VS 8FE 8FG 8G5 ABJCF ABUWG ACIWK ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU DWQXO EDSIH GNUQQ GUQSH HCIFZ IAO IEA ITC KQ8 L6V M2O M7S OK1 PADUT PHGZM PHGZT PIMPY PMFND PQQKQ PROAC PTHSS RNS TUS |
ID | FETCH-LOGICAL-g222t-487f40499a3ef84221b5614910b674fdb38789c47f08bfe6b9ad63a8ef2d9ccb3 |
ISSN | 2146-1147 |
IngestDate | Tue Jun 17 22:12:41 EDT 2025 Tue Jun 10 21:08:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g222t-487f40499a3ef84221b5614910b674fdb38789c47f08bfe6b9ad63a8ef2d9ccb3 |
ParticipantIDs | gale_infotracmisc_A792008860 gale_infotracacademiconefile_A792008860 |
PublicationCentury | 2000 |
PublicationDate | 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 20240401 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | TWMS journal of applied and engineering mathematics |
PublicationYear | 2024 |
Publisher | Turkic World Mathematical Society |
Publisher_xml | – name: Turkic World Mathematical Society |
SSID | ssj0000866703 |
Score | 2.2515028 |
Snippet | Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 508 |
SubjectTerms | Social networks |
Title | INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUKvZRDBS0IClQ-VOohyiokcezc2GUDWaT90G627A3ZTowQsEgh20N_PeON6wQJodKLFTlfSt5o_GbkeYPQD8WBxBPOXS9XgRsSFrkiF9KVhMa-pwiYlE7oD0dROg8vF2TRdOFbV5dUoiP_vFpX8j-owhzgqqtk34GsfShMwDHgCyMgDOM_YTwY9ZNJAsMoc_rj4aCWtnVG82Evmer9PBfT7iSdOVk6Hc8vUudXAux14cyuBtlZ-ldKyjDT7ApC-paOBDf0VCfWi0a00HmwOq-WjU94-dv0t591dCfQ-yde2TRzj4PRrcrVTZ1q7XUu25kGv71BZV2rtirvbqXZ5DO0L9OiJY9WtaR2XbpbuAuRFn3hZ8OWPfktp0k81qxGdo9gVxsL-MDI20AbwQn4sI9JfzZIbQYNgrGIrltf29eZdbXFELJt9NlQe9ytcdpBH4rlF7TVfMLTV3TaQgw3iOEaMTw-xzVi2CCGa8SwRWwXzc8TOHRNDwv3BphX5UI8qEIdVvKgUCz0_ROhtVeBpImIhioXAaMsliFVHhOqiETM8yjgrFB-Hkspgj20uXxcFvsIc8I4AfagaEBCcADwZCIokzSPVEzy_AD91B9_re23KrnkpsAC7tYaX9fNDz1ARy-uBI8iW6e_vX36EH1qrOMIbVblqjgGZlaJ7waiZ74gNTg |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INDEPENDENT+DOMINATION+NUMBER+OF+GRAPHS+THROUGH+VERTEX+SWITCHING&rft.jtitle=TWMS+journal+of+applied+and+engineering+mathematics&rft.au=Parveen%2C+S.+Thilsath&rft.au=Balamurugan%2C+B.J&rft.date=2024-04-01&rft.pub=Turkic+World+Mathematical+Society&rft.issn=2146-1147&rft.volume=14&rft.issue=2&rft.spage=508&rft.externalDocID=A792008860 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2146-1147&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2146-1147&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2146-1147&client=summon |