INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING

Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in...

Full description

Saved in:
Bibliographic Details
Published inTWMS journal of applied and engineering mathematics Vol. 14; no. 2; p. 508
Main Authors Parveen, S. Thilsath, Balamurugan, B.J
Format Journal Article
LanguageEnglish
Published Turkic World Mathematical Society 01.04.2024
Subjects
Online AccessGet full text
ISSN2146-1147

Cover

Abstract Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration. Keywords: Graphs, independent domination, independent dominating set, independent domination number, vertex switching. AMS Subject Classification: 05C69, 05C76.
AbstractList Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration. Keywords: Graphs, independent domination, independent dominating set, independent domination number, vertex switching. AMS Subject Classification: 05C69, 05C76.
Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S is adjacent to some vertex in S and no two vertices within S are adjacent. The number of vertices in a minimum independent dominating set in the graph G is called the independent domination number i(G) of G. In this article, the independent domination number of graphs obtained through vertex switching have been computed with appropriate illustration.
Audience Academic
Author Balamurugan, B.J
Parveen, S. Thilsath
Author_xml – sequence: 1
  fullname: Parveen, S. Thilsath
– sequence: 2
  fullname: Balamurugan, B.J
BookMark eNptUMtqwzAQ1CGFpmn-QdCziySretzqJootSOTg2G1vQZKl4JIH1Pl_KkgPPXQXdmBmdmD3AUzOl3OYgCnBlGUYU34P5uP4hVIJxjjKp-BVm6XaqjRMC5f1Rpui1bWBptu8qQbWK1g2xbbawbZq6q6s4LtqWvUJdx-6XVTalI_gLtrjGOa_OAPdSiUpW9elXhTr7EAIuWZU8EgRldLmIQpKCHYvDFOJkWOcxt7lggvpKY9IuBiYk7ZnuRUhkl567_IZeLrlHuwx7IdzvFy_rT8No98XXJJ0kWAouZ7_caXuw2nw6RtxSPyfhR_WgVAa
ContentType Journal Article
Copyright COPYRIGHT 2024 Turkic World Mathematical Society
Copyright_xml – notice: COPYRIGHT 2024 Turkic World Mathematical Society
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID A792008860
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID .4S
2XV
5VS
8FE
8FG
8G5
ABJCF
ABUWG
ACIWK
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
DWQXO
EDSIH
GNUQQ
GUQSH
HCIFZ
IAO
IEA
ITC
KQ8
L6V
M2O
M7S
OK1
PADUT
PHGZM
PHGZT
PIMPY
PMFND
PQQKQ
PROAC
PTHSS
RNS
TUS
ID FETCH-LOGICAL-g222t-487f40499a3ef84221b5614910b674fdb38789c47f08bfe6b9ad63a8ef2d9ccb3
ISSN 2146-1147
IngestDate Tue Jun 17 22:12:41 EDT 2025
Tue Jun 10 21:08:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g222t-487f40499a3ef84221b5614910b674fdb38789c47f08bfe6b9ad63a8ef2d9ccb3
ParticipantIDs gale_infotracmisc_A792008860
gale_infotracacademiconefile_A792008860
PublicationCentury 2000
PublicationDate 20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 20240401
  day: 01
PublicationDecade 2020
PublicationTitle TWMS journal of applied and engineering mathematics
PublicationYear 2024
Publisher Turkic World Mathematical Society
Publisher_xml – name: Turkic World Mathematical Society
SSID ssj0000866703
Score 2.2515028
Snippet Let G = (V, E) be a graph with vertex set V and edge set E. An independent dominating set S of G is a subset of V with the property that every vertex in V - S...
SourceID gale
SourceType Aggregation Database
StartPage 508
SubjectTerms Social networks
Title INDEPENDENT DOMINATION NUMBER OF GRAPHS THROUGH VERTEX SWITCHING
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELUKvZRDBS0IClQ-VOohyiokcezc2GUDWaT90G627A3ZTowQsEgh20N_PeON6wQJodKLFTlfSt5o_GbkeYPQD8WBxBPOXS9XgRsSFrkiF9KVhMa-pwiYlE7oD0dROg8vF2TRdOFbV5dUoiP_vFpX8j-owhzgqqtk34GsfShMwDHgCyMgDOM_YTwY9ZNJAsMoc_rj4aCWtnVG82Evmer9PBfT7iSdOVk6Hc8vUudXAux14cyuBtlZ-ldKyjDT7ApC-paOBDf0VCfWi0a00HmwOq-WjU94-dv0t591dCfQ-yde2TRzj4PRrcrVTZ1q7XUu25kGv71BZV2rtirvbqXZ5DO0L9OiJY9WtaR2XbpbuAuRFn3hZ8OWPfktp0k81qxGdo9gVxsL-MDI20AbwQn4sI9JfzZIbQYNgrGIrltf29eZdbXFELJt9NlQe9ytcdpBH4rlF7TVfMLTV3TaQgw3iOEaMTw-xzVi2CCGa8SwRWwXzc8TOHRNDwv3BphX5UI8qEIdVvKgUCz0_ROhtVeBpImIhioXAaMsliFVHhOqiETM8yjgrFB-Hkspgj20uXxcFvsIc8I4AfagaEBCcADwZCIokzSPVEzy_AD91B9_re23KrnkpsAC7tYaX9fNDz1ARy-uBI8iW6e_vX36EH1qrOMIbVblqjgGZlaJ7waiZ74gNTg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=INDEPENDENT+DOMINATION+NUMBER+OF+GRAPHS+THROUGH+VERTEX+SWITCHING&rft.jtitle=TWMS+journal+of+applied+and+engineering+mathematics&rft.au=Parveen%2C+S.+Thilsath&rft.au=Balamurugan%2C+B.J&rft.date=2024-04-01&rft.pub=Turkic+World+Mathematical+Society&rft.issn=2146-1147&rft.volume=14&rft.issue=2&rft.spage=508&rft.externalDocID=A792008860
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2146-1147&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2146-1147&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2146-1147&client=summon