Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi‐3D Topologies for Rapid I2 Adsorption
Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high c...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 50; pp. 22697 - 22705 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
07.12.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine.
A novel type of COF has colyliform quasi‐three‐dimensional (Q‐3D) topologies, “stereoscopic” oblique triangular pores, and larger interlayer spacings. The Q‐3D structure improves the permeability and mass transfer rate giving a faster adsorption rate for iodine than traditional 2D COFs, and an unprecedented maximum adsorption capacity of 6.29 g g−1. |
---|---|
AbstractList | Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine. Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine. A novel type of COF has colyliform quasi‐three‐dimensional (Q‐3D) topologies, “stereoscopic” oblique triangular pores, and larger interlayer spacings. The Q‐3D structure improves the permeability and mass transfer rate giving a faster adsorption rate for iodine than traditional 2D COFs, and an unprecedented maximum adsorption capacity of 6.29 g g−1. |
Author | Zhang, Meicheng Li, Kun Tian, Yin Li, Shoujian Ma, Lijian Li, Yang Qi, Yue Cao, Kecheng Yu, Xiaoqi Guo, Xinghua |
Author_xml | – sequence: 1 givenname: Xinghua surname: Guo fullname: Guo, Xinghua organization: Sichuan University – sequence: 2 givenname: Yang surname: Li fullname: Li, Yang organization: University of Science and Technology of China – sequence: 3 givenname: Meicheng surname: Zhang fullname: Zhang, Meicheng organization: Sichuan University – sequence: 4 givenname: Kecheng surname: Cao fullname: Cao, Kecheng organization: Ulm University – sequence: 5 givenname: Yin surname: Tian fullname: Tian, Yin organization: Chengdu University of Traditional Chinese Medicine – sequence: 6 givenname: Yue surname: Qi fullname: Qi, Yue organization: Sichuan University – sequence: 7 givenname: Shoujian surname: Li fullname: Li, Shoujian organization: Sichuan University – sequence: 8 givenname: Kun surname: Li fullname: Li, Kun organization: Sichuan University – sequence: 9 givenname: Xiaoqi surname: Yu fullname: Yu, Xiaoqi organization: Sichuan University – sequence: 10 givenname: Lijian orcidid: 0000-0002-6317-6287 surname: Ma fullname: Ma, Lijian email: ma.lj@hotmail.com organization: Sichuan University |
BookMark | eNpdkE9LwzAYxoMouE2vngNe5qEzf5o2PY5u08FwKPNcsjadmWlTk9axmx_Bz-gnMWOyg6f3eeHHw8OvD85rU0sAbjAaYYTIvaiVHBFEEEacJGeghxnBAY1jeu5zSGkQc4YvQd-5rec5R1EPmNTovValsRVM7d61QmtVS0gmMDWfQsu6hUu78d05nFlRyZ2x7w4O0-XM3cGdat_gcyec-vn6phO4Mo3RZqOkg74RvohGFXBO4LhwxjatMvUVuCiFdvL67w7A62y6Sh-DxfJhno4XwYZgngQF4oIVeUEwpVIKzphkLFkX63JN_XYsI4byMFlHXJRhEjIRRXlJ47xI8pBgUdABGB57G2s-OunarFIul1qLWprOZSSkMQ8xo8ijt__Qrels7dd5KmKxVxUfqORI7ZSW-6yxqhJ2n2GUHeRnB_nZSX42fppPTx_9BVEHfMM |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202010829 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 22705 |
ExternalDocumentID | ANIE202010829 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2020M671906 – fundername: Science Challenge Project funderid: TZ2016004 – fundername: National Natural Science Foundation of China funderid: Grants 21771128 and 21976125 – fundername: Sichuan Science and Technology Program funderid: 2020JDRC0014 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB B-7 BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM K9. 7X8 |
ID | FETCH-LOGICAL-g2189-d08a5dcd2133eea855e559bdbfb30021e650c49b68af4945a66cf37cd9c421ad3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 |
IngestDate | Fri Aug 16 07:27:41 EDT 2024 Thu Oct 10 16:29:13 EDT 2024 Sat Aug 24 01:04:09 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 50 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2189-d08a5dcd2133eea855e559bdbfb30021e650c49b68af4945a66cf37cd9c421ad3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6317-6287 |
PQID | 2465702870 |
PQPubID | 946352 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2437841530 proquest_journals_2465702870 wiley_primary_10_1002_anie_202010829_ANIE202010829 |
PublicationCentury | 2000 |
PublicationDate | December 7, 2020 |
PublicationDateYYYYMMDD | 2020-12-07 |
PublicationDate_xml | – month: 12 year: 2020 text: December 7, 2020 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 28 2019; 6 2018; 140 2020; 120 2013; 42 2019; 58 2020 2020; 59 132 2009; 131 2019; 141 2017; 355 2015; 7 2019 2019; 58 131 2011; 133 2017; 139 2018; 24 2015; 48 2017; 53 2007; 316 2020; 3 2019; 62 2020; 2 2013; 2013 2020; 49 2011; 21 2013; 135 2018; 30 2020; 276 2003; 103 2018; 10 2016; 8 2005; 34 2016; 470 2012; 41 |
References_xml | – volume: 2 start-page: 139 year: 2020 end-page: 145 publication-title: CCS Chem. – volume: 34 start-page: 153 year: 2005 end-page: 163 publication-title: Chem. Soc. Rev. – volume: 59 132 start-page: 5050 5086 year: 2020 2020 end-page: 5091 5129 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 131 start-page: 8875 year: 2009 end-page: 8883 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 3624 3653 year: 2020 2020 end-page: 3629 3658 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 120 start-page: 3787 year: 2020 end-page: 3851 publication-title: Chem. Rev. – volume: 49 start-page: 708 year: 2020 end-page: 735 publication-title: Chem. Soc. Rev. – volume: 53 start-page: 7266 year: 2017 end-page: 7269 publication-title: Chem. Commun. – volume: 133 start-page: 12398 year: 2011 end-page: 12401 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 548 year: 2013 end-page: 568 publication-title: Chem. Soc. Rev. – volume: 139 start-page: 7172 year: 2017 end-page: 7175 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 1517 year: 2019 end-page: 1525 publication-title: Mater. Horiz. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 18200 year: 2018 end-page: 18207 publication-title: J. Am. Chem. Soc. – volume: 24 start-page: 585 year: 2018 end-page: 589 publication-title: Chem. Eur. J. – volume: 6 start-page: 1571 year: 2019 end-page: 1595 publication-title: Mater. Horiz. – volume: 3 start-page: 5390 year: 2020 end-page: 5398 publication-title: ACS Appl. Nano Mater. – volume: 140 start-page: 16438 year: 2018 end-page: 16441 publication-title: J. Am. Chem. Soc. – volume: 30 start-page: 2299 year: 2018 end-page: 2308 publication-title: Chem. Mater. – volume: 62 start-page: 933 year: 2019 end-page: 967 publication-title: Sci. China Chem. – volume: 21 start-page: 335 year: 2011 end-page: 346 publication-title: Thyroid – volume: 140 start-page: 16124 year: 2018 end-page: 16133 publication-title: J. Am. Chem. Soc. – volume: 470 start-page: 307 year: 2016 end-page: 326 publication-title: J. Nucl. Mater. – volume: 135 start-page: 16256 year: 2013 end-page: 16259 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 28936 year: 2018 end-page: 28947 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 141 start-page: 3298 year: 2019 end-page: 3303 publication-title: J. Am. Chem. Soc. – volume: 103 start-page: 1649 year: 2003 end-page: 1684 publication-title: Chem. Rev. – volume: 58 start-page: 10495 year: 2019 end-page: 10502 publication-title: Ind. Eng. Chem. Res. – volume: 8 start-page: 310 year: 2016 end-page: 316 publication-title: Nat. Chem. – volume: 276 year: 2020 publication-title: Appl. Catal. B – volume: 30 start-page: 1762 year: 2018 end-page: 1768 publication-title: Chem. Mater. – volume: 48 start-page: 3053 year: 2015 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 355 year: 2017 publication-title: Science – volume: 316 start-page: 268 year: 2007 end-page: 272 publication-title: Science – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 58 131 start-page: 9770 9872 year: 2019 2019 end-page: 9775 9877 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 7 start-page: 4990 year: 2015 end-page: 4997 publication-title: ACS Appl. Mater. Interfaces – volume: 49 start-page: 4135 year: 2020 end-page: 4165 publication-title: Chem. Soc. Rev. – volume: 2013 start-page: 1 year: 2013 end-page: 12 publication-title: Sci. Technol. Nucl. Install. – volume: 59 132 start-page: 4168 4197 year: 2020 2020 end-page: 4175 4204 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 49 start-page: 3920 year: 2020 end-page: 3951 publication-title: Chem. Soc. Rev. |
SSID | ssj0028806 |
Score | 2.6785488 |
Snippet | Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 22697 |
SubjectTerms | Adsorption covalent organic frameworks (COFs) Crystal structure Crystallinity Interlayers Iodine Iodine radioisotopes Irradiation Mass transfer Permeability Pores quasi-three-dimensional Radiation Topology |
Title | Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi‐3D Topologies for Rapid I2 Adsorption |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010829 https://www.proquest.com/docview/2465702870 https://search.proquest.com/docview/2437841530 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EW8ZiQGGlMR2kmas0lYFCRColbpFfgUhoKmadoCJn8Bv5JdwlzThMcKWKHYU5872d7677wg58bQOJeBgR3geRzejchTAchAIUyFPXc0MGopX10FvIC6H_vBbFn_JD1EfuOHMKNZrnOBS5edfpKGYgQ32HXpzmwwz-DweYkxX-67mj2KgnGV6EecOVqGvWBtddv6z-w98-R2lFttMd5XI6gPL6JLHxmyqGvr1F3fjf0awRlbmGJS2SqVZJwt2tEGW4qr02ybJ4uzppcjZeqbx5AUAJDJ3W8raNM5ANWGjomUSp6bdKrorp6fxTTc_o3i0S29nMn_4eHvnbdov6zCASU7hjfROjh8MvWC0ZfJsUqxYW2TQ7fTjnjOvzODcAySIHOM2pW-0YWDhWiubvm_BMlFGpYojarCA-7SIVNCUqYiEL4NApzzUJtKCedLwbbI4ykZ2h1CRSjBkA-maUAgr0ggJ8mWUCrDsglC5u-Sgkkwyn155wgRG7KCPdpcc14_hJ6G3Q45sNsM2HH2qPoc2rBBDMi4JPJKSqpklKICkFkDSur7o1Hd7f-m0T5bxugh3CQ_I4nQys4cAWqbqqFDMT-Ox5DM |
link.rule.ids | 315,783,787,1378,27938,27939,46308,46732 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN74OOjFt_HtmnjQA0p3FyjHhtq0Pmo0NfFG9oUxajGlPejJn-Bv9Jc4AwUfRz0CuwSYmeWbnZlvCNmvaR1IwMGOqNU4hhmVowCWg0CYCnjiambQUbzo-u0bcXrrldmEWAtT8ENUG25oGfl6jQaOG9LHX6yhWIINDh6Gc-ssnCTTYPMcmxg0rysGKQbqWRQYce5gH_qSt9Flxz_n_0CY33Fq_qNpzRNVPmKRX_JwNBqqI_36i73xX--wQObGMJQ2Cr1ZJBO2v0RmorL72zJJo_TxJS_beqLR4AUwJJJ3W8qaNEpBO-FfRYs6Tk1bZYJXRg-iy1Z2SHF3l16NZHb_8fbOm7RXtGIAr5zCHem1fL43tMNow2TpIF-0VshN66QXtZ1xcwbnDlBB6Bi3Lj2jDQMn11pZ9zwLzokyKlEcgYMF6KdFqPy6TEQoPOn7OuGBNqEWrCYNXyVT_bRv1wgViQRf1peuCYSwIgmRI1-GiQDnzg-Uu062StHEYwvLYiYwaQfDtOtkr7oMHwkDHrJv0xGO4RhW9TiMYbkc4ueCwyMu2JpZjAKIKwHEjW7npDra-MukXTLT7l2cx-ed7tkmmcXzefZLsEWmhoOR3QYMM1Q7uZZ-AjHW6E0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaKrVcaKGteLauxIEeAontvI6rhIgtsC2IlfYW-ZUKAZvVZvcAJ34Cv5Ff0plkE6DH9pjEjuLM2P7GM_MNIbue1qEEHOwIz-PoZlSOAlgOAmEq5IWrmUFD8XQQHA3Fj5E_epbF3_BDdAduODPq9Ron-MQUB0-koZiBDfYdenMjFr8mb0TAXQzqSs87AikG2tnkF3HuYBn6lrbRZQcv-78AmM9har3PZO-JbL-wCS-52p_P1L6--4u88X-G8IGsLEAo7TVas0pe2fEaeZe0td8-kjIpr2_rpK0bmkxvAUEidbelLKVJCboJOxVtsjg1zdrwroruJT-z6jvFs116NpfV5eP9A0_pRVOIAWxyCm-k53JyaWif0Z6pymm9ZH0iw-zwIjlyFqUZnN-ACWLHuJH0jTYMTFxrZeT7FkwTZVShOMIGC8BPi1gFkSxELHwZBLrgoTaxFsyThn8mS-NybNcJFYUESzaQrgmFsKKIkSFfxoUA0y4IlbtBtlvJ5Iv5VeVMYMgOOmk3yLfuMfwkdHfIsS3n2IajU9Xn0IbVYsgnDYNH3nA1sxwFkHcCyHuD_mF3tfkvnb6St7_SLD_pD463yDLerkNfwm2yNJvO7Q4AmJn6UuvoH4kN5vw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colyliform+Crystalline+2D+Covalent+Organic+Frameworks+%28COFs%29+with+Quasi-3D+Topologies+for+Rapid+I2+Adsorption&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Xinghua&rft.au=Li%2C+Yang&rft.au=Zhang%2C+Meicheng&rft.au=Cao%2C+Kecheng&rft.date=2020-12-07&rft.eissn=1521-3773&rft.volume=59&rft.issue=50&rft.spage=22697&rft.epage=22705&rft_id=info:doi/10.1002%2Fanie.202010829&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |