Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi‐3D Topologies for Rapid I2 Adsorption

Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high c...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 50; pp. 22697 - 22705
Main Authors Guo, Xinghua, Li, Yang, Zhang, Meicheng, Cao, Kecheng, Tian, Yin, Qi, Yue, Li, Shoujian, Li, Kun, Yu, Xiaoqi, Ma, Lijian
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 07.12.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine. A novel type of COF has colyliform quasi‐three‐dimensional (Q‐3D) topologies, “stereoscopic” oblique triangular pores, and larger interlayer spacings. The Q‐3D structure improves the permeability and mass transfer rate giving a faster adsorption rate for iodine than traditional 2D COFs, and an unprecedented maximum adsorption capacity of 6.29 g g−1.
AbstractList Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine.
Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively improve the permeability and mass transfer rate of the materials and realize the rapid adsorption for guest molecules, while avoiding the high cost and monomer scarcity in preparing 3D COFs. Herein, we report for the first time a series of colyliform crystalline 2D COFs with quasi‐three‐dimensional (Q‐3D) topologies, consisting of unique “stereoscopic” triangular pores, large interlayer spacings and flexible constitutional units which makes the pores elastic and self‐adaptable for the guest transmission. The as‐prepared QTD‐COFs have a faster adsorption rate (2.51 g h−1) for iodine than traditional 2D COFs, with an unprecedented maximum adsorption capacity of 6.29 g g−1. The excellent adsorption performance, as well as the prominent irradiation stability allow the QTD‐COFs to be applied for the rapid removal of radioactive iodine. A novel type of COF has colyliform quasi‐three‐dimensional (Q‐3D) topologies, “stereoscopic” oblique triangular pores, and larger interlayer spacings. The Q‐3D structure improves the permeability and mass transfer rate giving a faster adsorption rate for iodine than traditional 2D COFs, and an unprecedented maximum adsorption capacity of 6.29 g g−1.
Author Zhang, Meicheng
Li, Kun
Tian, Yin
Li, Shoujian
Ma, Lijian
Li, Yang
Qi, Yue
Cao, Kecheng
Yu, Xiaoqi
Guo, Xinghua
Author_xml – sequence: 1
  givenname: Xinghua
  surname: Guo
  fullname: Guo, Xinghua
  organization: Sichuan University
– sequence: 2
  givenname: Yang
  surname: Li
  fullname: Li, Yang
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Meicheng
  surname: Zhang
  fullname: Zhang, Meicheng
  organization: Sichuan University
– sequence: 4
  givenname: Kecheng
  surname: Cao
  fullname: Cao, Kecheng
  organization: Ulm University
– sequence: 5
  givenname: Yin
  surname: Tian
  fullname: Tian, Yin
  organization: Chengdu University of Traditional Chinese Medicine
– sequence: 6
  givenname: Yue
  surname: Qi
  fullname: Qi, Yue
  organization: Sichuan University
– sequence: 7
  givenname: Shoujian
  surname: Li
  fullname: Li, Shoujian
  organization: Sichuan University
– sequence: 8
  givenname: Kun
  surname: Li
  fullname: Li, Kun
  organization: Sichuan University
– sequence: 9
  givenname: Xiaoqi
  surname: Yu
  fullname: Yu, Xiaoqi
  organization: Sichuan University
– sequence: 10
  givenname: Lijian
  orcidid: 0000-0002-6317-6287
  surname: Ma
  fullname: Ma, Lijian
  email: ma.lj@hotmail.com
  organization: Sichuan University
BookMark eNpdkE9LwzAYxoMouE2vngNe5qEzf5o2PY5u08FwKPNcsjadmWlTk9axmx_Bz-gnMWOyg6f3eeHHw8OvD85rU0sAbjAaYYTIvaiVHBFEEEacJGeghxnBAY1jeu5zSGkQc4YvQd-5rec5R1EPmNTovValsRVM7d61QmtVS0gmMDWfQsu6hUu78d05nFlRyZ2x7w4O0-XM3cGdat_gcyec-vn6phO4Mo3RZqOkg74RvohGFXBO4LhwxjatMvUVuCiFdvL67w7A62y6Sh-DxfJhno4XwYZgngQF4oIVeUEwpVIKzphkLFkX63JN_XYsI4byMFlHXJRhEjIRRXlJ47xI8pBgUdABGB57G2s-OunarFIul1qLWprOZSSkMQ8xo8ijt__Qrels7dd5KmKxVxUfqORI7ZSW-6yxqhJ2n2GUHeRnB_nZSX42fppPTx_9BVEHfMM
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202010829
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 22705
ExternalDocumentID ANIE202010829
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2020M671906
– fundername: Science Challenge Project
  funderid: TZ2016004
– fundername: National Natural Science Foundation of China
  funderid: Grants 21771128 and 21976125
– fundername: Sichuan Science and Technology Program
  funderid: 2020JDRC0014
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
B-7
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
K9.
7X8
ID FETCH-LOGICAL-g2189-d08a5dcd2133eea855e559bdbfb30021e650c49b68af4945a66cf37cd9c421ad3
IEDL.DBID DR2
ISSN 1433-7851
IngestDate Fri Aug 16 07:27:41 EDT 2024
Thu Oct 10 16:29:13 EDT 2024
Sat Aug 24 01:04:09 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 50
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2189-d08a5dcd2133eea855e559bdbfb30021e650c49b68af4945a66cf37cd9c421ad3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6317-6287
PQID 2465702870
PQPubID 946352
PageCount 9
ParticipantIDs proquest_miscellaneous_2437841530
proquest_journals_2465702870
wiley_primary_10_1002_anie_202010829_ANIE202010829
PublicationCentury 2000
PublicationDate December 7, 2020
PublicationDateYYYYMMDD 2020-12-07
PublicationDate_xml – month: 12
  year: 2020
  text: December 7, 2020
  day: 07
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 28
2019; 6
2018; 140
2020; 120
2013; 42
2019; 58
2020 2020; 59 132
2009; 131
2019; 141
2017; 355
2015; 7
2019 2019; 58 131
2011; 133
2017; 139
2018; 24
2015; 48
2017; 53
2007; 316
2020; 3
2019; 62
2020; 2
2013; 2013
2020; 49
2011; 21
2013; 135
2018; 30
2020; 276
2003; 103
2018; 10
2016; 8
2005; 34
2016; 470
2012; 41
References_xml – volume: 2
  start-page: 139
  year: 2020
  end-page: 145
  publication-title: CCS Chem.
– volume: 34
  start-page: 153
  year: 2005
  end-page: 163
  publication-title: Chem. Soc. Rev.
– volume: 59 132
  start-page: 5050 5086
  year: 2020 2020
  end-page: 5091 5129
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 3624 3653
  year: 2020 2020
  end-page: 3629 3658
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 120
  start-page: 3787
  year: 2020
  end-page: 3851
  publication-title: Chem. Rev.
– volume: 49
  start-page: 708
  year: 2020
  end-page: 735
  publication-title: Chem. Soc. Rev.
– volume: 53
  start-page: 7266
  year: 2017
  end-page: 7269
  publication-title: Chem. Commun.
– volume: 133
  start-page: 12398
  year: 2011
  end-page: 12401
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  publication-title: Chem. Soc. Rev.
– volume: 139
  start-page: 7172
  year: 2017
  end-page: 7175
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 1517
  year: 2019
  end-page: 1525
  publication-title: Mater. Horiz.
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 18200
  year: 2018
  end-page: 18207
  publication-title: J. Am. Chem. Soc.
– volume: 24
  start-page: 585
  year: 2018
  end-page: 589
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 1571
  year: 2019
  end-page: 1595
  publication-title: Mater. Horiz.
– volume: 3
  start-page: 5390
  year: 2020
  end-page: 5398
  publication-title: ACS Appl. Nano Mater.
– volume: 140
  start-page: 16438
  year: 2018
  end-page: 16441
  publication-title: J. Am. Chem. Soc.
– volume: 30
  start-page: 2299
  year: 2018
  end-page: 2308
  publication-title: Chem. Mater.
– volume: 62
  start-page: 933
  year: 2019
  end-page: 967
  publication-title: Sci. China Chem.
– volume: 21
  start-page: 335
  year: 2011
  end-page: 346
  publication-title: Thyroid
– volume: 140
  start-page: 16124
  year: 2018
  end-page: 16133
  publication-title: J. Am. Chem. Soc.
– volume: 470
  start-page: 307
  year: 2016
  end-page: 326
  publication-title: J. Nucl. Mater.
– volume: 135
  start-page: 16256
  year: 2013
  end-page: 16259
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 28936
  year: 2018
  end-page: 28947
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 141
  start-page: 3298
  year: 2019
  end-page: 3303
  publication-title: J. Am. Chem. Soc.
– volume: 103
  start-page: 1649
  year: 2003
  end-page: 1684
  publication-title: Chem. Rev.
– volume: 58
  start-page: 10495
  year: 2019
  end-page: 10502
  publication-title: Ind. Eng. Chem. Res.
– volume: 8
  start-page: 310
  year: 2016
  end-page: 316
  publication-title: Nat. Chem.
– volume: 276
  year: 2020
  publication-title: Appl. Catal. B
– volume: 30
  start-page: 1762
  year: 2018
  end-page: 1768
  publication-title: Chem. Mater.
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 355
  year: 2017
  publication-title: Science
– volume: 316
  start-page: 268
  year: 2007
  end-page: 272
  publication-title: Science
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 58 131
  start-page: 9770 9872
  year: 2019 2019
  end-page: 9775 9877
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 7
  start-page: 4990
  year: 2015
  end-page: 4997
  publication-title: ACS Appl. Mater. Interfaces
– volume: 49
  start-page: 4135
  year: 2020
  end-page: 4165
  publication-title: Chem. Soc. Rev.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 12
  publication-title: Sci. Technol. Nucl. Install.
– volume: 59 132
  start-page: 4168 4197
  year: 2020 2020
  end-page: 4175 4204
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 49
  start-page: 3920
  year: 2020
  end-page: 3951
  publication-title: Chem. Soc. Rev.
SSID ssj0028806
Score 2.6785488
Snippet Constructing three‐dimensional (3D) structural characteristics on two‐dimensional (2D) covalent organic frameworks (COFs) is a good approach to effectively...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 22697
SubjectTerms Adsorption
covalent organic frameworks (COFs)
Crystal structure
Crystallinity
Interlayers
Iodine
Iodine radioisotopes
Irradiation
Mass transfer
Permeability
Pores
quasi-three-dimensional
Radiation
Topology
Title Colyliform Crystalline 2D Covalent Organic Frameworks (COFs) with Quasi‐3D Topologies for Rapid I2 Adsorption
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010829
https://www.proquest.com/docview/2465702870
https://search.proquest.com/docview/2437841530
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQCyy8EW8ZiQGGlMR2kmas0lYFCRColbpFfgUhoKmadoCJn8Bv5JdwlzThMcKWKHYU5872d7677wg58bQOJeBgR3geRzejchTAchAIUyFPXc0MGopX10FvIC6H_vBbFn_JD1EfuOHMKNZrnOBS5edfpKGYgQ32HXpzmwwz-DweYkxX-67mj2KgnGV6EecOVqGvWBtddv6z-w98-R2lFttMd5XI6gPL6JLHxmyqGvr1F3fjf0awRlbmGJS2SqVZJwt2tEGW4qr02ybJ4uzppcjZeqbx5AUAJDJ3W8raNM5ANWGjomUSp6bdKrorp6fxTTc_o3i0S29nMn_4eHvnbdov6zCASU7hjfROjh8MvWC0ZfJsUqxYW2TQ7fTjnjOvzODcAySIHOM2pW-0YWDhWiubvm_BMlFGpYojarCA-7SIVNCUqYiEL4NApzzUJtKCedLwbbI4ykZ2h1CRSjBkA-maUAgr0ggJ8mWUCrDsglC5u-Sgkkwyn155wgRG7KCPdpcc14_hJ6G3Q45sNsM2HH2qPoc2rBBDMi4JPJKSqpklKICkFkDSur7o1Hd7f-m0T5bxugh3CQ_I4nQys4cAWqbqqFDMT-Ox5DM
link.rule.ids 315,783,787,1378,27938,27939,46308,46732
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEN74OOjFt_HtmnjQA0p3FyjHhtq0Pmo0NfFG9oUxajGlPejJn-Bv9Jc4AwUfRz0CuwSYmeWbnZlvCNmvaR1IwMGOqNU4hhmVowCWg0CYCnjiambQUbzo-u0bcXrrldmEWAtT8ENUG25oGfl6jQaOG9LHX6yhWIINDh6Gc-ssnCTTYPMcmxg0rysGKQbqWRQYce5gH_qSt9Flxz_n_0CY33Fq_qNpzRNVPmKRX_JwNBqqI_36i73xX--wQObGMJQ2Cr1ZJBO2v0RmorL72zJJo_TxJS_beqLR4AUwJJJ3W8qaNEpBO-FfRYs6Tk1bZYJXRg-iy1Z2SHF3l16NZHb_8fbOm7RXtGIAr5zCHem1fL43tMNow2TpIF-0VshN66QXtZ1xcwbnDlBB6Bi3Lj2jDQMn11pZ9zwLzokyKlEcgYMF6KdFqPy6TEQoPOn7OuGBNqEWrCYNXyVT_bRv1wgViQRf1peuCYSwIgmRI1-GiQDnzg-Uu062StHEYwvLYiYwaQfDtOtkr7oMHwkDHrJv0xGO4RhW9TiMYbkc4ueCwyMu2JpZjAKIKwHEjW7npDra-MukXTLT7l2cx-ed7tkmmcXzefZLsEWmhoOR3QYMM1Q7uZZ-AjHW6E0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZaKrVcaKGteLauxIEeAontvI6rhIgtsC2IlfYW-ZUKAZvVZvcAJ34Cv5Ff0plkE6DH9pjEjuLM2P7GM_MNIbue1qEEHOwIz-PoZlSOAlgOAmEq5IWrmUFD8XQQHA3Fj5E_epbF3_BDdAduODPq9Ron-MQUB0-koZiBDfYdenMjFr8mb0TAXQzqSs87AikG2tnkF3HuYBn6lrbRZQcv-78AmM9har3PZO-JbL-wCS-52p_P1L6--4u88X-G8IGsLEAo7TVas0pe2fEaeZe0td8-kjIpr2_rpK0bmkxvAUEidbelLKVJCboJOxVtsjg1zdrwroruJT-z6jvFs116NpfV5eP9A0_pRVOIAWxyCm-k53JyaWif0Z6pymm9ZH0iw-zwIjlyFqUZnN-ACWLHuJH0jTYMTFxrZeT7FkwTZVShOMIGC8BPi1gFkSxELHwZBLrgoTaxFsyThn8mS-NybNcJFYUESzaQrgmFsKKIkSFfxoUA0y4IlbtBtlvJ5Iv5VeVMYMgOOmk3yLfuMfwkdHfIsS3n2IajU9Xn0IbVYsgnDYNH3nA1sxwFkHcCyHuD_mF3tfkvnb6St7_SLD_pD463yDLerkNfwm2yNJvO7Q4AmJn6UuvoH4kN5vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colyliform+Crystalline+2D+Covalent+Organic+Frameworks+%28COFs%29+with+Quasi-3D+Topologies+for+Rapid+I2+Adsorption&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Guo%2C+Xinghua&rft.au=Li%2C+Yang&rft.au=Zhang%2C+Meicheng&rft.au=Cao%2C+Kecheng&rft.date=2020-12-07&rft.eissn=1521-3773&rft.volume=59&rft.issue=50&rft.spage=22697&rft.epage=22705&rft_id=info:doi/10.1002%2Fanie.202010829&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon