Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis

Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical d...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 57; no. 15; pp. 4020 - 4024
Main Authors Gu, Chao, Hu, Shaojin, Zheng, Xusheng, Gao, Min‐Rui, Zheng, Ya‐Rong, Shi, Lei, Gao, Qiang, Zheng, Xiao, Chu, Wangsheng, Yao, Hong‐Bin, Zhu, Junfa, Yu, Shu‐Hong
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 03.04.2018
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts. Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.
AbstractList Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition-metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub-2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft-template mediated colloidal synthesis of Fe-doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1-dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm-2 in 0.1 m KOH, as well as remarkable long-term stability, representing one of the most efficient noble-metal-free catalysts.Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition-metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub-2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft-template mediated colloidal synthesis of Fe-doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1-dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm-2 in 0.1 m KOH, as well as remarkable long-term stability, representing one of the most efficient noble-metal-free catalysts.
Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts. Down to the wire: Colloidal Fe‐doped NiSe2 ultrathin nanowires (UNWs) down to 1.7 nm in diameter were synthesized by a binary soft‐template strategy. These UNWs yield surface‐confined electrochemical oxidation, enabling efficient and robust oxygen evolution catalysis owing to their favorable electronic structures and unsaturated local coordination environments.
Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal chalcogenides are promising electrocatalysts, yet it remains difficult to make ultrathin structures (sub‐2 nm), and the realization of their chemical doping is even more challenging. Herein we describe a soft‐template mediated colloidal synthesis of Fe‐doped NiSe2 ultrathin nanowires (UNWs) with diameter down to 1.7 nm. The synergistic interplay between oleylamine and 1‐dodecanethiol is crucial to yield these UNWs. The in situ formed amorphous hydroxide layers that is confined to the surface of the ultrathin scaffolds enable efficient oxygen evolution electrocatalysis. The UNWs exhibit a very low overpotential of 268 mV at 10 mA cm−2 in 0.1 m KOH, as well as remarkable long‐term stability, representing one of the most efficient noble‐metal‐free catalysts.
Author Gu, Chao
Zheng, Xiao
Yao, Hong‐Bin
Gao, Min‐Rui
Zheng, Ya‐Rong
Hu, Shaojin
Shi, Lei
Yu, Shu‐Hong
Gao, Qiang
Zheng, Xusheng
Zhu, Junfa
Chu, Wangsheng
Author_xml – sequence: 1
  givenname: Chao
  surname: Gu
  fullname: Gu, Chao
  organization: University of Science and Technology of China
– sequence: 2
  givenname: Shaojin
  surname: Hu
  fullname: Hu, Shaojin
  organization: University of Science and Technology of China
– sequence: 3
  givenname: Xusheng
  surname: Zheng
  fullname: Zheng, Xusheng
  organization: University of Science and Technology of China
– sequence: 4
  givenname: Min‐Rui
  orcidid: 0000-0002-7805-803X
  surname: Gao
  fullname: Gao, Min‐Rui
  email: mgao@ustc.edu.cn
  organization: University of Science and Technology of China
– sequence: 5
  givenname: Ya‐Rong
  surname: Zheng
  fullname: Zheng, Ya‐Rong
  organization: University of Science and Technology of China
– sequence: 6
  givenname: Lei
  surname: Shi
  fullname: Shi, Lei
  organization: University of Science and Technology of China
– sequence: 7
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: University of Science and Technology of China
– sequence: 8
  givenname: Xiao
  surname: Zheng
  fullname: Zheng, Xiao
  organization: University of Science and Technology of China
– sequence: 9
  givenname: Wangsheng
  surname: Chu
  fullname: Chu, Wangsheng
  organization: University of Science and Technology of China
– sequence: 10
  givenname: Hong‐Bin
  surname: Yao
  fullname: Yao, Hong‐Bin
  organization: University of Science and Technology of China
– sequence: 11
  givenname: Junfa
  surname: Zhu
  fullname: Zhu, Junfa
  organization: University of Science and Technology of China
– sequence: 12
  givenname: Shu‐Hong
  orcidid: 0000-0003-3732-1011
  surname: Yu
  fullname: Yu, Shu‐Hong
  email: shyu@ustc.edu.cn
  organization: University of Science and Technology of China
BookMark eNpdkU1PAjEQhhujiYBePTfx4mWxHy7bPRJEJSFwAM9Nd7eFkqXFdlfcxAMX7_5GfolFDAcvM_NOns5M-rbBubFGAnCDURcjRO6F0bJLEGYIMUbPQAvHBEc0Seh5qB8ojRIW40vQ9n4VeMZQrwU-Z42pltJrD62Cszrb777Jfvdl1nDkrAnq0W5kASd6JgmcCGO32kkPhSngfCm1C2-cErkM5MAapU2Apx-6EJW2BirrgmoW0sDhuy3r3-ZAVKJswsorcKFE6eX1X-6A16fhfPASjafPo0F_HC0IZjRScTiW9OIiZwwXGYuVSjPFMkqSDKskz3OVBJ0eIJoVLOulIomxCJFJLBXtgLvj3I2zb7X0FV9rn8uyFEba2nMSvoNgjGga0Nt_6MrWzoTrAoWTlDJC40ClR2qrS9nwjdNr4RqOET84wQ9O8JMTvD8ZDU-K_gCKcYV3
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.201800883
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

ProQuest Health & Medical Complete (Alumni)
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4024
ExternalDocumentID ANIE201800883
Genre shortCommunication
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21761132008
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g2183-f5288265dc881db85ff9bf8b327b1f7cccf7bf8988263bd8b69a751a9a78e1ef3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:32:30 EDT 2025
Fri Jul 25 10:45:38 EDT 2025
Wed Jan 22 16:38:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2183-f5288265dc881db85ff9bf8b327b1f7cccf7bf8988263bd8b69a751a9a78e1ef3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7805-803X
0000-0003-3732-1011
PQID 2017938235
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2002211039
proquest_journals_2017938235
wiley_primary_10_1002_anie_201800883_ANIE201800883
PublicationCentury 2000
PublicationDate April 3, 2018
PublicationDateYYYYMMDD 2018-04-03
PublicationDate_xml – month: 04
  year: 2018
  text: April 3, 2018
  day: 03
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2015; 1
2017; 7
2017; 8
2017; 2
2009; 21
2017; 3
2013; 42
2008; 8
2010 2010; 49 122
2008 2008; 47 120
2009; 131
2015; 9
2016; 16
2016; 15
2017; 9
2014; 136
2011; 133
2017; 50
2016; 7
2012; 3
2016 2016; 55 128
2016; 1
2012; 134
2010; 46
2015; 137
2012 2012; 51 124
2017; 13
2009; 9
2015 2015; 54 127
2013; 135
2016; 116
2014; 8
2014; 7
2001; 13
2008; 130
2016; 8
1998; 120
References_xml – volume: 137
  start-page: 1587
  year: 2015
  end-page: 1592
  publication-title: J. Am. Chem. Soc.
– volume: 13
  start-page: 1701487
  year: 2017
  publication-title: Small
– volume: 135
  start-page: 11580
  year: 2013
  end-page: 11586
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 4604
  year: 2017
  end-page: 4608
  publication-title: Catal. Sci. Technol.
– volume: 9
  start-page: 1260
  year: 2009
  end-page: 1264
  publication-title: Nano Lett.
– volume: 50
  start-page: 2194
  year: 2017
  end-page: 2204
  publication-title: Acc. Chem. Res.
– volume: 53 126
  start-page: 12196 12392
  year: 2014 2014
  end-page: 12200 12396
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 244
  year: 2015
  end-page: 251
  publication-title: ACS Cent. Sci.
– volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 10888
  year: 2016
  end-page: 10933
  publication-title: Chem. Rev.
– volume: 8
  start-page: 23
  year: 2014
  end-page: 39
  publication-title: Nano Res.
– volume: 136
  start-page: 7077
  year: 2014
  end-page: 7084
  publication-title: J. Am. Chem. Soc.
– volume: 9
  start-page: 9451
  year: 2015
  end-page: 9469
  publication-title: ACS Nano
– volume: 120
  start-page: 5343
  year: 1998
  end-page: 5344
  publication-title: J. Am. Chem. Soc.
– volume: 49 122
  start-page: 8695 8877
  year: 2010 2010
  end-page: 8698 8880
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 46
  start-page: 8941
  year: 2010
  end-page: 8943
  publication-title: Chem. Commun.
– volume: 8
  start-page: 2041
  year: 2008
  end-page: 2044
  publication-title: Nano Lett.
– volume: 133
  start-page: 15605
  year: 2011
  end-page: 15612
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 10934
  year: 2016
  publication-title: Chem. Rev.
– volume: 8
  start-page: 4077
  year: 2017
  end-page: 4090
  publication-title: J. Phys. Chem. Lett.
– volume: 7
  start-page: 3519
  year: 2014
  end-page: 3542
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 5327
  year: 2016
  end-page: 5334
  publication-title: ACS Appl. Mater. Interfaces
– volume: 135
  start-page: 11115
  year: 2013
  end-page: 11124
  publication-title: J. Am. Chem. Soc.
– volume: 16
  start-page: 7588
  year: 2016
  end-page: 7596
  publication-title: Nano Lett.
– volume: 3
  start-page: 1601705
  year: 2017
  publication-title: Sci. Adv.
– volume: 9
  start-page: 6821
  year: 2017
  end-page: 6825
  publication-title: Nanoscale
– volume: 42
  start-page: 2986
  year: 2013
  end-page: 3017
  publication-title: Chem. Soc. Rev.
– volume: 47 120
  start-page: 3814 3874
  year: 2008 2008
  end-page: 3817 3877
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 134
  start-page: 17253
  year: 2012
  end-page: 17261
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 9351 9483
  year: 2015 2015
  end-page: 9355 9487
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 2
  start-page: 1937
  year: 2017
  end-page: 1938
  publication-title: ACS Energy Lett.
– volume: 131
  start-page: 7486
  year: 2009
  end-page: 7487
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1177
  year: 2012
  publication-title: Nat. Commun.
– volume: 55 128
  start-page: 6919 7033
  year: 2016 2016
  end-page: 6924 7038
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 2395 2445
  year: 2012 2012
  end-page: 2399 2449
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 1710 1742
  year: 2016 2016
  end-page: 1713 1745
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 16364
  year: 2009
  end-page: 16365
  publication-title: J. Am. Chem. Soc.
– volume: 15
  start-page: 564
  year: 2016
  end-page: 569
  publication-title: Nat. Mater.
– volume: 13
  start-page: 848
  year: 2001
  end-page: 853
  publication-title: Chem. Mater.
– volume: 135
  start-page: 9480
  year: 2013
  end-page: 9485
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 1013
  year: 2009
  end-page: 1020
  publication-title: Adv. Mater.
– volume: 1
  start-page: 16184
  year: 2016
  publication-title: Nat. Energy
– volume: 42
  start-page: 5577
  year: 2013
  end-page: 5594
  publication-title: Chem. Soc. Rev.
– volume: 130
  start-page: 8900
  year: 2008
  end-page: 8901
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 12324
  year: 2016
  publication-title: Nat. Commun.
SSID ssj0028806
Score 2.5996852
Snippet Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition‐metal...
Ultrathin nanostructures are attractive for diverse applications owing to their unique properties compared to their bulk materials. Transition-metal...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 4020
SubjectTerms Catalysis
Catalysts
Chemical evolution
colloidal synthesis
doping
Electrocatalysts
Iron
Nanotechnology
Nanowires
Oxidation
Oxygen
oxygen evolution
soft template
Synthesis
ultrathin nanowires
Title Synthesis of Sub‐2 nm Iron‐Doped NiSe2 Nanowires and Their Surface‐Confined Oxidation for Oxygen Evolution Catalysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201800883
https://www.proquest.com/docview/2017938235
https://www.proquest.com/docview/2002211039
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Ei158i9UqK3iNms1jN8dSK1awglXwFvYpRUykaUXFgxfv_kZ_iTNJGx9HvYQdsgvJzuzky-7MN4Ts-YeShQ68X-Ib5oXWMk8lGlqMWxkIaCv8UTzrxSdX4el1dP0ti7_ih6g33HBllP4aF7hUxcEXaShmYGNoFiAeIZDuEwO2EBVd1PxRDIyzSi8KAg-r0E9ZGw_Zwc_hP_Dld5RafmaOF4mcPmAVXXK7Px6pff38i7vxP2-wRBYmGJS2KqNZJjM2WyFz7Wnpt1Xy0n_KABgWg4LmjoJv-Xh9Zx-vb9kd7Q7zDKSj_N4a2hv0LaPgoHNkPC6ozAy9xJMHGDN0UlvoiSmF8KSGnj8OqvpNFHAySE9gurTzMDF92sZ9JKRHWSNXx53L9ok3KdPg3SC-8lwE88ziyGgB4FeJyLlEOaECxpXvuNbacZAT7BQoI1ScSB75Eq7C-tYF62Q2yzO7QWicGK5NrLUNk9BxX3LOI2e0M5EOtXUN0pyqKZ2stSJlpZMRLIgaZLe-DTOGRx8ys_kY-wBW8fHYu0FYqZP0vmLzSCveZpaiNtJaG2mr1-3U0uZfBm2ReWyXYT5Bk8yOhmO7DQhmpHZKK_0Eh7jvIQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VeoAL0BbULZS6EtcAsZPYOaLtot0WtlJZpN6i-IVWFQnaR1UqDly49zfySzqTbFLgSC9RnNiS4xlPPtsz3wDshYc5jzxavzS0PIic44FODd5x6XKh8F7TQvF0mPTPo8_f48abkGJhan6IdsONZkZlr2mC04b0wT_WUArBJt8shDxKiSV4SWm9q1XVt5ZBiqN61gFGQgSUh77hbTzkB4_bP0KYD3Fq9aM5XgfddLH2L_mxP5_pffP7CXvjf33DBqwtYCg7qvXmFbxwxWtY6TbZ397Azdl1gdhwOp6y0jM0L_e3f_j97V1xyQaTssDSp_LKWTYcnznO0EaXRHo8ZXlh2YgOH7DNxOfGYU2KKsSuWvb117hO4cQQKmPpGrWX9X4utJ91aSuJGFI24fy4N-r2g0WmhuCCIFbgYxxonsTWKMS_WsXep9orLbjUoZfGGC-xnFIloa3SSZrLOMzxqlzovNiC5aIs3FtgSWqlsYkxLkojL8NcShl7a7yNTWSc78BOI6dsMd2mGa_sjOIi7sDH9jWOGJ1-5IUr51QH4UpIJ98d4JVQsqua0COrqZt5RtLIWmlkR8NBry29e06jD7DSH52eZCeD4ZdtWKXnldeP2IHl2WTu3iOgmendSmX_AmzT8zw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkaCXlqdYKGAkrmk3dhI7x2of6vJYEG2l3iI_qxUiWe2johWHXrjzG_tLOpPshpYjXCJPYkuOZzz5Ynu-AXgXdzVPAnq_PHY8Srznkcktlrj0WigsG_pR_DTODo6T9yfpyY0o_oYfol1wo5lR-2ua4FMX9v6QhlIENh3NQsSjlLgL95Ksq8iu-19bAimO1tnEFwkRURr6NW1jl-_dbn8LYN6EqfV3ZrgNet3D5njJt93lwuzai7_IG__nFR7C1gqEsv3Gah7BHV8-hge9de63J_Dz8LxEZDifzFkVGDqXq8vf_OryV_mdjWZViVK_mnrHxpNDzxl66Iooj-dMl44d0dYDtpkFbT3WpJhC7Kljn39MmgRODIEySudou2xwtrJ91qOFJOJHeQrHw8FR7yBa5WmITglgRSHFceZZ6qxC9GtUGkJugjKCSxMHaa0NEuWcKgnjlMlyLdNY41X52AfxDDbKqvTPgWW5k9Zl1vokT4KMtZQyDc4Gl9rE-tCBnbWaitVkmxe89jKKi7QDb9vHOGK096FLXy2pDoKVmPa9O8BrnRTThs6jaIibeUHaKFptFPvj0aCVXvxLozdw_0t_WHwcjT-8hE26XR_5ETuwsZgt_StEMwvzujbYa8Pz8fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+Sub-2%E2%80%85nm+Iron-Doped+NiSe2+Nanowires+and+Their+Surface-Confined+Oxidation+for+Oxygen+Evolution+Catalysis&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Gu%2C+Chao&rft.au=Hu%2C+Shaojin&rft.au=Zheng%2C+Xusheng&rft.au=Gao%2C+Min-Rui&rft.date=2018-04-03&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=57&rft.issue=15&rft.spage=4020&rft_id=info:doi/10.1002%2Fanie.201800883&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon