Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO2 to Cyclic Carbonates

A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 59; no. 51; pp. 23291 - 23298
Main Authors Zhang, Yao‐Yao, Yang, Guan‐Wen, Xie, Rui, Yang, Li, Li, Bo, Wu, Guang‐Peng
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 14.12.2020
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal‐free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal‐free catalysts and state‐of‐the‐art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure–performance relationships, kinetic studies, and key reaction intermediates. A highly active bifunctional organoboron catalyst with the advantages of scalable preparation, thermostability, and recyclability was reported for the cyclization of CO2 and epoxides. An intramolecular cooperative mechanism was substantiated by investigations into the crystal structure of the catalysts, structure– performance relationships, kinetic studies, and the key reaction intermediates.
AbstractList A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal‐free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal‐free catalysts and state‐of‐the‐art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure–performance relationships, kinetic studies, and key reaction intermediates.
A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal‐free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal‐free catalysts and state‐of‐the‐art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure–performance relationships, kinetic studies, and key reaction intermediates. A highly active bifunctional organoboron catalyst with the advantages of scalable preparation, thermostability, and recyclability was reported for the cyclization of CO2 and epoxides. An intramolecular cooperative mechanism was substantiated by investigations into the crystal structure of the catalysts, structure– performance relationships, kinetic studies, and the key reaction intermediates.
A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal-free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal-free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal-free catalysts and state-of-the-art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure-performance relationships, kinetic studies, and key reaction intermediates.A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal-free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal-free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal-free catalysts and state-of-the-art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure-performance relationships, kinetic studies, and key reaction intermediates.
Author Zhang, Yao‐Yao
Yang, Li
Li, Bo
Wu, Guang‐Peng
Yang, Guan‐Wen
Xie, Rui
Author_xml – sequence: 1
  givenname: Yao‐Yao
  surname: Zhang
  fullname: Zhang, Yao‐Yao
  organization: Zhejiang University
– sequence: 2
  givenname: Guan‐Wen
  surname: Yang
  fullname: Yang, Guan‐Wen
  organization: Zhejiang University
– sequence: 3
  givenname: Rui
  surname: Xie
  fullname: Xie, Rui
  organization: Zhejiang University
– sequence: 4
  givenname: Li
  surname: Yang
  fullname: Yang, Li
  organization: Zhejiang University
– sequence: 5
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Hangzhou Normal University
– sequence: 6
  givenname: Guang‐Peng
  orcidid: 0000-0001-8935-964X
  surname: Wu
  fullname: Wu, Guang‐Peng
  email: gpwu@zju.edu.cn
  organization: Zhejiang University
BookMark eNpdkbtuGzEQRYnAAWLLaVMTcJPC6_Cxy0dprOUHoFhAon5BUrMOjRWpkCsH2-UT_I3-ElOR4SLV3Is5MxjMPUFHIQZA6AslF5QQ9s0EDxeMMEKJaOgHdEwbRisuJT8quua8kqqhn9BJzo-FV4qIYzT-dGYwdoBzfLVLB2HCGv8AN7l_DfwdRjO8_H2-TgC4NcVMecy4jwnf-odfw4Tnfe-dhzDiNoYnSNnHgGOP2yXDY8Rt2eRdGU02BjNCPkUfezNk-PxWZ2h1PV-1t9VieXPXXi6qB0YVrWrBegC1VoZJZrVSSmsu19Y2TFtXG061lWAlZ9JpZiURvJGaNX1DteM9n6Gvh7XbFH_vII_dxmcHw2ACxF3uWM21YKIpr5mhs__Qx7hLoRxXKCFFLakUhdIH6o8fYOq2yW9MmjpKun0A3T6A7j2A7vL-bv7u-CvnZH0z
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
2020 Wiley-VCH GmbH.
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
– notice: 2020 Wiley-VCH GmbH.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.202010651
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 23298
ExternalDocumentID ANIE202010651
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21674090; 91956123; 51973186; 21802030
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-g2181-462fee8d8a272b98889937dbb529bc4a319b7eb7327c92b706357925f519c3f3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 01:25:36 EDT 2025
Fri Jul 25 10:22:38 EDT 2025
Wed Jan 22 16:31:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 51
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2181-462fee8d8a272b98889937dbb529bc4a319b7eb7327c92b706357925f519c3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8935-964X
PQID 2467647176
PQPubID 946352
PageCount 8
ParticipantIDs proquest_miscellaneous_2439626543
proquest_journals_2467647176
wiley_primary_10_1002_anie_202010651_ANIE202010651
PublicationCentury 2000
PublicationDate December 14, 2020
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: December 14, 2020
  day: 14
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2010; 12
2017; 7
2013; 4
2004; 126
2019; 52
2019; 55
2020 2020; 59 132
1999; 121
2020; 56
2012; 14
2017; 9
2014; 136
2016; 263
2020; 8
2018; 6
2018; 8
2014; 4
2019; 61
2019; 21
2010; 110
2015 2015; 54 127
2013; 113
2016; 358
2014; 7
2006; 128
2019; 7
2001; 123
2019; 9
2019; 4
2015; 17
2004; 104
2015; 5
2017; 60
2015; 3
2019; 5
2020; 142
2019; 2
2019; 34
2020; 37
2002; 4
2010 2010; 49 122
2018; 61
2016; 18
2017; 375
2011; 4
2019; 141
2015; 8
2016; 16
2015; 7
2019 2019; 58 131
2016; 6
2012; 2
2016 2016; 55 128
2018; 118
2017; 10
2013; 378
2013; 135
2014; 79
2017; 19
2011 2011; 50 123
2016; 138
2012; 48
2012; 45
2012; 5
2016; 9
2012; 41
References_xml – volume: 2
  start-page: 2029
  year: 2012
  end-page: 2035
  publication-title: ACS Catal.
– volume: 8
  start-page: 2436
  year: 2015
  end-page: 2454
  publication-title: ChemSusChem
– volume: 118
  start-page: 434
  year: 2018
  end-page: 504
  publication-title: Chem. Rev.
– volume: 60
  start-page: 958
  year: 2017
  end-page: 963
  publication-title: Sci. China Chem.
– volume: 136
  start-page: 15270
  year: 2014
  end-page: 15279
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 115
  year: 2019
  end-page: 148
  publication-title: J. CO2 Util.
– volume: 61
  start-page: 1486
  year: 2018
  end-page: 1493
  publication-title: Sci. China Chem.
– volume: 55
  start-page: 1360
  year: 2019
  end-page: 1373
  publication-title: Chem. Commun.
– volume: 4
  start-page: 4545
  year: 2013
  end-page: 4561
  publication-title: Polym. Chem.
– volume: 123
  start-page: 11498
  year: 2001
  end-page: 11499
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 2184
  year: 2017
  end-page: 2193
  publication-title: Green Chem.
– volume: 7
  start-page: 13257
  year: 2019
  end-page: 13269
  publication-title: ACS Sustainable Chem. Eng.
– volume: 52
  start-page: 2892
  year: 2019
  end-page: 2903
  publication-title: Acc. Chem. Res.
– volume: 48
  start-page: 4489
  year: 2012
  end-page: 4491
  publication-title: Chem. Commun.
– volume: 118
  start-page: 372
  year: 2018
  end-page: 433
  publication-title: Chem. Rev.
– volume: 6
  start-page: 2574
  year: 2018
  end-page: 2582
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  start-page: 419
  year: 2018
  end-page: 450
  publication-title: ACS Catal.
– volume: 50 123
  start-page: 8510 8662
  year: 2011 2011
  end-page: 8537 8690
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 6392
  year: 2017
  end-page: 6397
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 732
  year: 2019
  end-page: 745
  publication-title: Nat. Energy
– volume: 56
  start-page: 4273
  year: 2020
  end-page: 4275
  publication-title: Chem. Commun.
– volume: 7
  start-page: 3268
  year: 2014
  end-page: 3271
  publication-title: ChemSusChem
– volume: 21
  start-page: 406
  year: 2019
  end-page: 448
  publication-title: Green Chem.
– volume: 8
  start-page: 6882
  year: 2018
  end-page: 6893
  publication-title: ACS Catal.
– volume: 3
  start-page: 2817
  year: 2015
  end-page: 2822
  publication-title: ACS Sustainable Chem. Eng.
– volume: 59 132
  start-page: 5830 5879
  year: 2020 2020
  end-page: 5836 5885
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 263
  start-page: 69
  year: 2016
  end-page: 74
  publication-title: Catal. Today
– volume: 18
  start-page: 4611
  year: 2016
  end-page: 4615
  publication-title: Green Chem.
– volume: 110
  start-page: 4554
  year: 2010
  end-page: 4581
  publication-title: Chem. Rev.
– volume: 104
  start-page: 4303
  year: 2004
  end-page: 4418
  publication-title: Chem. Rev.
– volume: 17
  start-page: 1966
  year: 2015
  end-page: 1987
  publication-title: Green Chem.
– volume: 5
  start-page: 1353
  year: 2015
  end-page: 1370
  publication-title: ACS Catal.
– volume: 5
  start-page: 2314
  year: 2015
  end-page: 2321
  publication-title: Catal. Sci. Technol.
– volume: 5
  start-page: 6773
  year: 2015
  end-page: 6779
  publication-title: ACS Catal.
– volume: 138
  start-page: 14194
  year: 2016
  end-page: 14197
  publication-title: J. Am. Chem. Soc.
– volume: 79
  start-page: 9771
  year: 2014
  end-page: 9777
  publication-title: J. Org. Chem.
– volume: 135
  start-page: 5348
  year: 2013
  end-page: 5351
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 16910 17058
  year: 2020 2020
  end-page: 16917 17065
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 121
  start-page: 4526
  year: 1999
  end-page: 4527
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 5084
  year: 2011
  end-page: 5092
  publication-title: Energy Environ. Sci.
– volume: 8
  start-page: 2589
  year: 2018
  end-page: 2594
  publication-title: ACS Catal.
– volume: 12
  start-page: 5728
  year: 2010
  end-page: 5731
  publication-title: Org. Lett.
– volume: 8
  start-page: 9945
  year: 2018
  end-page: 9957
  publication-title: ACS Catal.
– volume: 7
  start-page: 10633
  year: 2019
  end-page: 10640
  publication-title: ACS Sustainable Chem. Eng.
– volume: 61
  start-page: 214
  year: 2019
  end-page: 269
  publication-title: Catal. Rev. Sci. Eng.
– volume: 142
  start-page: 4955
  year: 2020
  end-page: 4957
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 459
  year: 2015
  end-page: 467
  publication-title: ChemCatChem
– volume: 19
  start-page: 3769
  year: 2017
  end-page: 3779
  publication-title: Green Chem.
– volume: 7
  start-page: 3532
  year: 2017
  end-page: 3539
  publication-title: ACS Catal.
– volume: 54 127
  start-page: 134 136
  year: 2015 2015
  end-page: 138 140
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 2028 2068
  year: 2016 2016
  end-page: 2031 2071
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 232
  year: 2016
  end-page: 242
  publication-title: Green Chem.
– volume: 7
  start-page: 2367
  year: 2017
  end-page: 2373
  publication-title: ACS Catal.
– volume: 2
  start-page: 62
  year: 2019
  end-page: 70
  publication-title: Nat. Catal.
– volume: 9
  start-page: 1895
  year: 2019
  end-page: 1906
  publication-title: ACS Catal.
– volume: 5
  start-page: 2032
  year: 2012
  end-page: 2038
  publication-title: ChemSusChem
– volume: 135
  start-page: 1228
  year: 2013
  end-page: 1231
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 1274
  year: 2017
  end-page: 1282
  publication-title: ChemSusChem
– volume: 128
  start-page: 1664
  year: 2006
  end-page: 1674
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 7993
  year: 2020
  end-page: 8003
  publication-title: ACS Sustainable Chem. Eng.
– volume: 9
  start-page: 1019
  year: 2017
  end-page: 1024
  publication-title: Nat. Chem.
– volume: 9
  start-page: 749
  year: 2016
  end-page: 755
  publication-title: ChemSusChem
– volume: 4
  start-page: 1749
  year: 2014
  end-page: 1758
  publication-title: Catal. Sci. Technol.
– volume: 126
  start-page: 3732
  year: 2004
  end-page: 3733
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 1462
  year: 2012
  end-page: 1484
  publication-title: Chem. Soc. Rev.
– volume: 375
  start-page: 50
  year: 2017
  publication-title: Top. Curr. Chem.
– volume: 5
  start-page: 3081
  year: 2017
  end-page: 3086
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 4636
  year: 2015
  end-page: 4643
  publication-title: Catal. Sci. Technol.
– volume: 141
  start-page: 19487
  year: 2019
  end-page: 19497
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 2853
  year: 2015
  end-page: 2858
  publication-title: Green Chem.
– volume: 58 131
  start-page: 9984 10089
  year: 2019 2019
  end-page: 9988 10093
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 5
  start-page: 3232
  year: 2019
  end-page: 3242
  publication-title: Chem
– volume: 4
  start-page: 2561
  year: 2002
  end-page: 2563
  publication-title: Org. Lett.
– volume: 21
  start-page: 3456
  year: 2019
  end-page: 3463
  publication-title: Green Chem.
– volume: 8
  start-page: 665
  year: 2018
  end-page: 672
  publication-title: ACS Catal.
– volume: 37
  start-page: 39
  year: 2020
  end-page: 44
  publication-title: J. CO2 Util.
– volume: 7
  start-page: 2651
  year: 2017
  end-page: 2684
  publication-title: Catal. Sci. Technol.
– volume: 5
  start-page: 7295
  year: 2017
  end-page: 7301
  publication-title: ACS Sustainable Chem. Eng.
– volume: 14
  start-page: 209
  year: 2012
  end-page: 216
  publication-title: Green Chem.
– volume: 19
  start-page: 4070
  year: 2017
  end-page: 4073
  publication-title: Org. Lett.
– volume: 6
  start-page: 6906
  year: 2016
  end-page: 6910
  publication-title: ACS Catal.
– volume: 378
  start-page: 326
  year: 2013
  end-page: 332
  publication-title: J. Mol. Catal. A
– volume: 358
  start-page: 622
  year: 2016
  end-page: 630
  publication-title: Adv. Synth. Catal.
– volume: 142
  start-page: 12245
  year: 2020
  end-page: 12255
  publication-title: J. Am. Chem. Soc.
– volume: 45
  start-page: 5916
  year: 2012
  end-page: 5922
  publication-title: Macromolecules
– volume: 49 122
  start-page: 9822 10016
  year: 2010 2010
  end-page: 9837 10032
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 16
  start-page: 384
  year: 2016
  end-page: 390
  publication-title: J. CO2 Util.
– volume: 59 132
  start-page: 8689 8767
  year: 2020 2020
  end-page: 8697 8775
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 9
  start-page: 1799
  year: 2019
  end-page: 1809
  publication-title: ACS Catal.
– volume: 113
  start-page: 6621
  year: 2013
  end-page: 6658
  publication-title: Chem. Rev.
– volume: 19
  start-page: 3707
  year: 2017
  end-page: 3728
  publication-title: Green Chem.
SSID ssj0028806
Score 2.6350784
Snippet A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 23291
SubjectTerms Carbon dioxide
Carbonates
Catalysts
CO2 capture
cooperative mechanisms
Crystal structure
cyclic carbonates
cycloaddition
Epoxides
High temperature
Intermediates
metal-free catalysts
Metals
Reaction intermediates
Recyclability
Thermal stability
Title Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO2 to Cyclic Carbonates
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010651
https://www.proquest.com/docview/2467647176
https://www.proquest.com/docview/2439626543
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QLnDhjRgvBYkjHcNNX0dUNgESIPGQdquSNEUI1KG2O4wTP4HfyC_BTreycYRbqzRRW8fxZ8f-wtiR8SIRZKF2hDLooKRdgzoHxkHLh_ga0tQDqh2-vvEvHsXVwBvMVPHX_BBNwI00w67XpOBSlSc_pKFUgY3-He3m-raGmhK2CBXdNfxRgJOzLi9yXYdOoZ-yNnbhZL77HL6cRanWzPRXmJy-YJ1d8tIZVaqj339xN_7nC1bZ8gSD8rN60qyxBZOvs8V4evTbBqvuUXJUU3XMz0dFfSHzlCPGHGvbwK8Novavj89-YQyPKQY0LquSIwTmlDryOuY9S06BNo3HlNluw3J8mPH4Fng15DGO9Kyxa6EogG_KTfbQ7z3EF87keAbniXCBI3zIjAnTUEIAKkJXmrBOqpQHkdJConKrwKjAhUBHoIIuUd9F4GUIGrWbuVuslQ9zs824kafKlRAJ4YYCZKhOQ621UsIL0hS96Dbbm0onmahYmQAu8T6a1sBvs8OmGX8U7XjI3AxH9IwbocfmCRwCrCiSt5rEI6npmiEhISSNEJKzm8tec7fzl067bAmvhc1D8_dYqypGZh-BS6UO7OT8BubG5b0
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QOIwLb8RgQJA4Ura56es4lU0DtiHBkLhVTZoiBOrQ1h3GiZ_Ab-SXYLdreRzh1jZN1dZx8tmxPzN2oi1POLGrDCE1GihRU6POgTZw5UN8DVFkAeUOD4Z2705c3ltFNCHlwuT8EKXDjTQjm69Jwckh3fhiDaUUbDTwaDvXpiTqZSrrnVlVNyWDFODwzBOMTNOgOvQFb2MTGj_7_0CY33FqttB015gsXjGPL3k6m6XyTL3-Ym_81zess9UFDOXtfNxssCWdbLKqX1R_22LpLQqP0qpO-flskh-EScQRZs5V1sAHGoH7x9t7d6I198kNNJ-mU44omFP0yPOcdzJ-ClzWuE_B7Zlnjo9j7l8DT8fcxyc9Kuw6keTD19NtNup2Rn7PWFRoMB4IGhjChlhrN3JDcEB6aE0T3ImktMCTSoSo39LR0jHBUR5Ip0nsdx5YMeJGZcbmDqsk40TvMq7DljRD8IQwXQGhK1uuUkpKYTlRhIZ0jdUL8QQLLZsGgLO8jaurY9fYcdmMP4o2PcJEj2d0j-mh0WYJfARksghech6PIGdshoCEEJRCCNrDi055tveXTkes2hsN-kH_Yni1z1boOkXAtESdVdLJTB8gjknlYTZSPwFO9unN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSMCFHVEoYCSOpLQTZzuitBVrQSxSb1G8BCFQWrXpoZz4BL6RL2EmacNyhFsSx1GSmbHfjGeeGTs0TiC8xFeWkAYdFF03aHNgLJz5EF-D1g5Q7fBVxz19EOddp_utir_ghygDbmQZ-XhNBt7XyfEXaShVYKN_R6u5LtVQzwm37pNeN29LAilA7Szqi2zbom3op7SNdTj-2f8HwPwOU_N5pr3M4ukbFuklz7VRJmvq9Rd5438-YYUtTUAoPym0ZpXNmHSNLYTTvd_WWXaHoqOiqiPeHA2KgzjVHEHmWOUN_MogbP94e28PjOEhBYHGw2zIEQNzyh15GfNWzk6BkxoPKbU9j8vxXsLDa-BZj4f4pCeFXQeSIvhmuMHu26378NSa7M9gPRIwsIQLiTG-9mPwQAboSxPY0VI6EEglYrRu6Rnp2eCpAKRXJ-67AJwEUaOyE3uTzaa91GwxbuKGtGMIhLB9AbEvG75SSkrheFqjG11h1al0oomNDSPAMd7FudVzK-ygbMYfRUsecWp6I7rHDtBlcwQ-AnJRRP2CxSMq-JohIiFEpRCik85Zqzzb_kunfTZ_02xHl2edix22SJcp_aUhqmw2G4zMLoKYTO7levoJt_fohQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable%2C+Durable%2C+and+Recyclable+Metal-Free+Catalysts+for+Highly+Efficient+Conversion+of+CO2+to+Cyclic+Carbonates&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Yao-Yao&rft.au=Yang%2C+Guan-Wen&rft.au=Xie%2C+Rui&rft.au=Yang%2C+Li&rft.date=2020-12-14&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=23291&rft_id=info:doi/10.1002%2Fanie.202010651&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon