Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO2 to Cyclic Carbonates
A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 59; no. 51; pp. 23291 - 23298 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
14.12.2020
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal‐free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal‐free catalysts and state‐of‐the‐art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure–performance relationships, kinetic studies, and key reaction intermediates.
A highly active bifunctional organoboron catalyst with the advantages of scalable preparation, thermostability, and recyclability was reported for the cyclization of CO2 and epoxides. An intramolecular cooperative mechanism was substantiated by investigations into the crystal structure of the catalysts, structure– performance relationships, kinetic studies, and the key reaction intermediates. |
---|---|
AbstractList | A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal‐free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal‐free catalysts and state‐of‐the‐art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure–performance relationships, kinetic studies, and key reaction intermediates. A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal‐free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal‐free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal‐free catalysts and state‐of‐the‐art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure–performance relationships, kinetic studies, and key reaction intermediates. A highly active bifunctional organoboron catalyst with the advantages of scalable preparation, thermostability, and recyclability was reported for the cyclization of CO2 and epoxides. An intramolecular cooperative mechanism was substantiated by investigations into the crystal structure of the catalysts, structure– performance relationships, kinetic studies, and the key reaction intermediates. A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal-free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal-free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal-free catalysts and state-of-the-art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure-performance relationships, kinetic studies, and key reaction intermediates.A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and recyclability is reported. The metal-free catalysts show high reactivity towards a wide scope of cyclic carbonates (14 examples) and can withstand a high temperature up to 150 °C. Compared with the current metal-free catalytic systems that use mol % catalyst loading, the catalytic capacity of the catalyst described herein can be enhanced by three orders of magnitude (epoxide/cat.=200 000/1, mole ratio) in the presence of a cocatalyst. This feature greatly narrows the gap between metal-free catalysts and state-of-the-art metallic systems. An intramolecular cooperative mechanism is proposed and certified on the basis of investigations on crystal structures, structure-performance relationships, kinetic studies, and key reaction intermediates. |
Author | Zhang, Yao‐Yao Yang, Li Li, Bo Wu, Guang‐Peng Yang, Guan‐Wen Xie, Rui |
Author_xml | – sequence: 1 givenname: Yao‐Yao surname: Zhang fullname: Zhang, Yao‐Yao organization: Zhejiang University – sequence: 2 givenname: Guan‐Wen surname: Yang fullname: Yang, Guan‐Wen organization: Zhejiang University – sequence: 3 givenname: Rui surname: Xie fullname: Xie, Rui organization: Zhejiang University – sequence: 4 givenname: Li surname: Yang fullname: Yang, Li organization: Zhejiang University – sequence: 5 givenname: Bo surname: Li fullname: Li, Bo organization: Hangzhou Normal University – sequence: 6 givenname: Guang‐Peng orcidid: 0000-0001-8935-964X surname: Wu fullname: Wu, Guang‐Peng email: gpwu@zju.edu.cn organization: Zhejiang University |
BookMark | eNpdkbtuGzEQRYnAAWLLaVMTcJPC6_Cxy0dprOUHoFhAon5BUrMOjRWpkCsH2-UT_I3-ElOR4SLV3Is5MxjMPUFHIQZA6AslF5QQ9s0EDxeMMEKJaOgHdEwbRisuJT8quua8kqqhn9BJzo-FV4qIYzT-dGYwdoBzfLVLB2HCGv8AN7l_DfwdRjO8_H2-TgC4NcVMecy4jwnf-odfw4Tnfe-dhzDiNoYnSNnHgGOP2yXDY8Rt2eRdGU02BjNCPkUfezNk-PxWZ2h1PV-1t9VieXPXXi6qB0YVrWrBegC1VoZJZrVSSmsu19Y2TFtXG061lWAlZ9JpZiURvJGaNX1DteM9n6Gvh7XbFH_vII_dxmcHw2ACxF3uWM21YKIpr5mhs__Qx7hLoRxXKCFFLakUhdIH6o8fYOq2yW9MmjpKun0A3T6A7j2A7vL-bv7u-CvnZH0z |
ContentType | Journal Article |
Copyright | 2020 Wiley‐VCH GmbH 2020 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2020 Wiley‐VCH GmbH – notice: 2020 Wiley-VCH GmbH. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.202010651 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 23298 |
ExternalDocumentID | ANIE202010651 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21674090; 91956123; 51973186; 21802030 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-g2181-462fee8d8a272b98889937dbb529bc4a319b7eb7327c92b706357925f519c3f3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 01:25:36 EDT 2025 Fri Jul 25 10:22:38 EDT 2025 Wed Jan 22 16:31:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 51 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2181-462fee8d8a272b98889937dbb529bc4a319b7eb7327c92b706357925f519c3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8935-964X |
PQID | 2467647176 |
PQPubID | 946352 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2439626543 proquest_journals_2467647176 wiley_primary_10_1002_anie_202010651_ANIE202010651 |
PublicationCentury | 2000 |
PublicationDate | December 14, 2020 |
PublicationDateYYYYMMDD | 2020-12-14 |
PublicationDate_xml | – month: 12 year: 2020 text: December 14, 2020 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2010; 12 2017; 7 2013; 4 2004; 126 2019; 52 2019; 55 2020 2020; 59 132 1999; 121 2020; 56 2012; 14 2017; 9 2014; 136 2016; 263 2020; 8 2018; 6 2018; 8 2014; 4 2019; 61 2019; 21 2010; 110 2015 2015; 54 127 2013; 113 2016; 358 2014; 7 2006; 128 2019; 7 2001; 123 2019; 9 2019; 4 2015; 17 2004; 104 2015; 5 2017; 60 2015; 3 2019; 5 2020; 142 2019; 2 2019; 34 2020; 37 2002; 4 2010 2010; 49 122 2018; 61 2016; 18 2017; 375 2011; 4 2019; 141 2015; 8 2016; 16 2015; 7 2019 2019; 58 131 2016; 6 2012; 2 2016 2016; 55 128 2018; 118 2017; 10 2013; 378 2013; 135 2014; 79 2017; 19 2011 2011; 50 123 2016; 138 2012; 48 2012; 45 2012; 5 2016; 9 2012; 41 |
References_xml | – volume: 2 start-page: 2029 year: 2012 end-page: 2035 publication-title: ACS Catal. – volume: 8 start-page: 2436 year: 2015 end-page: 2454 publication-title: ChemSusChem – volume: 118 start-page: 434 year: 2018 end-page: 504 publication-title: Chem. Rev. – volume: 60 start-page: 958 year: 2017 end-page: 963 publication-title: Sci. China Chem. – volume: 136 start-page: 15270 year: 2014 end-page: 15279 publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 115 year: 2019 end-page: 148 publication-title: J. CO2 Util. – volume: 61 start-page: 1486 year: 2018 end-page: 1493 publication-title: Sci. China Chem. – volume: 55 start-page: 1360 year: 2019 end-page: 1373 publication-title: Chem. Commun. – volume: 4 start-page: 4545 year: 2013 end-page: 4561 publication-title: Polym. Chem. – volume: 123 start-page: 11498 year: 2001 end-page: 11499 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 2184 year: 2017 end-page: 2193 publication-title: Green Chem. – volume: 7 start-page: 13257 year: 2019 end-page: 13269 publication-title: ACS Sustainable Chem. Eng. – volume: 52 start-page: 2892 year: 2019 end-page: 2903 publication-title: Acc. Chem. Res. – volume: 48 start-page: 4489 year: 2012 end-page: 4491 publication-title: Chem. Commun. – volume: 118 start-page: 372 year: 2018 end-page: 433 publication-title: Chem. Rev. – volume: 6 start-page: 2574 year: 2018 end-page: 2582 publication-title: ACS Sustainable Chem. Eng. – volume: 8 start-page: 419 year: 2018 end-page: 450 publication-title: ACS Catal. – volume: 50 123 start-page: 8510 8662 year: 2011 2011 end-page: 8537 8690 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 6392 year: 2017 end-page: 6397 publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 732 year: 2019 end-page: 745 publication-title: Nat. Energy – volume: 56 start-page: 4273 year: 2020 end-page: 4275 publication-title: Chem. Commun. – volume: 7 start-page: 3268 year: 2014 end-page: 3271 publication-title: ChemSusChem – volume: 21 start-page: 406 year: 2019 end-page: 448 publication-title: Green Chem. – volume: 8 start-page: 6882 year: 2018 end-page: 6893 publication-title: ACS Catal. – volume: 3 start-page: 2817 year: 2015 end-page: 2822 publication-title: ACS Sustainable Chem. Eng. – volume: 59 132 start-page: 5830 5879 year: 2020 2020 end-page: 5836 5885 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 263 start-page: 69 year: 2016 end-page: 74 publication-title: Catal. Today – volume: 18 start-page: 4611 year: 2016 end-page: 4615 publication-title: Green Chem. – volume: 110 start-page: 4554 year: 2010 end-page: 4581 publication-title: Chem. Rev. – volume: 104 start-page: 4303 year: 2004 end-page: 4418 publication-title: Chem. Rev. – volume: 17 start-page: 1966 year: 2015 end-page: 1987 publication-title: Green Chem. – volume: 5 start-page: 1353 year: 2015 end-page: 1370 publication-title: ACS Catal. – volume: 5 start-page: 2314 year: 2015 end-page: 2321 publication-title: Catal. Sci. Technol. – volume: 5 start-page: 6773 year: 2015 end-page: 6779 publication-title: ACS Catal. – volume: 138 start-page: 14194 year: 2016 end-page: 14197 publication-title: J. Am. Chem. Soc. – volume: 79 start-page: 9771 year: 2014 end-page: 9777 publication-title: J. Org. Chem. – volume: 135 start-page: 5348 year: 2013 end-page: 5351 publication-title: J. Am. Chem. Soc. – volume: 59 132 start-page: 16910 17058 year: 2020 2020 end-page: 16917 17065 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 121 start-page: 4526 year: 1999 end-page: 4527 publication-title: J. Am. Chem. Soc. – volume: 4 start-page: 5084 year: 2011 end-page: 5092 publication-title: Energy Environ. Sci. – volume: 8 start-page: 2589 year: 2018 end-page: 2594 publication-title: ACS Catal. – volume: 12 start-page: 5728 year: 2010 end-page: 5731 publication-title: Org. Lett. – volume: 8 start-page: 9945 year: 2018 end-page: 9957 publication-title: ACS Catal. – volume: 7 start-page: 10633 year: 2019 end-page: 10640 publication-title: ACS Sustainable Chem. Eng. – volume: 61 start-page: 214 year: 2019 end-page: 269 publication-title: Catal. Rev. Sci. Eng. – volume: 142 start-page: 4955 year: 2020 end-page: 4957 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 459 year: 2015 end-page: 467 publication-title: ChemCatChem – volume: 19 start-page: 3769 year: 2017 end-page: 3779 publication-title: Green Chem. – volume: 7 start-page: 3532 year: 2017 end-page: 3539 publication-title: ACS Catal. – volume: 54 127 start-page: 134 136 year: 2015 2015 end-page: 138 140 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 55 128 start-page: 2028 2068 year: 2016 2016 end-page: 2031 2071 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 18 start-page: 232 year: 2016 end-page: 242 publication-title: Green Chem. – volume: 7 start-page: 2367 year: 2017 end-page: 2373 publication-title: ACS Catal. – volume: 2 start-page: 62 year: 2019 end-page: 70 publication-title: Nat. Catal. – volume: 9 start-page: 1895 year: 2019 end-page: 1906 publication-title: ACS Catal. – volume: 5 start-page: 2032 year: 2012 end-page: 2038 publication-title: ChemSusChem – volume: 135 start-page: 1228 year: 2013 end-page: 1231 publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 1274 year: 2017 end-page: 1282 publication-title: ChemSusChem – volume: 128 start-page: 1664 year: 2006 end-page: 1674 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 7993 year: 2020 end-page: 8003 publication-title: ACS Sustainable Chem. Eng. – volume: 9 start-page: 1019 year: 2017 end-page: 1024 publication-title: Nat. Chem. – volume: 9 start-page: 749 year: 2016 end-page: 755 publication-title: ChemSusChem – volume: 4 start-page: 1749 year: 2014 end-page: 1758 publication-title: Catal. Sci. Technol. – volume: 126 start-page: 3732 year: 2004 end-page: 3733 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 1462 year: 2012 end-page: 1484 publication-title: Chem. Soc. Rev. – volume: 375 start-page: 50 year: 2017 publication-title: Top. Curr. Chem. – volume: 5 start-page: 3081 year: 2017 end-page: 3086 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 4636 year: 2015 end-page: 4643 publication-title: Catal. Sci. Technol. – volume: 141 start-page: 19487 year: 2019 end-page: 19497 publication-title: J. Am. Chem. Soc. – volume: 17 start-page: 2853 year: 2015 end-page: 2858 publication-title: Green Chem. – volume: 58 131 start-page: 9984 10089 year: 2019 2019 end-page: 9988 10093 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 5 start-page: 3232 year: 2019 end-page: 3242 publication-title: Chem – volume: 4 start-page: 2561 year: 2002 end-page: 2563 publication-title: Org. Lett. – volume: 21 start-page: 3456 year: 2019 end-page: 3463 publication-title: Green Chem. – volume: 8 start-page: 665 year: 2018 end-page: 672 publication-title: ACS Catal. – volume: 37 start-page: 39 year: 2020 end-page: 44 publication-title: J. CO2 Util. – volume: 7 start-page: 2651 year: 2017 end-page: 2684 publication-title: Catal. Sci. Technol. – volume: 5 start-page: 7295 year: 2017 end-page: 7301 publication-title: ACS Sustainable Chem. Eng. – volume: 14 start-page: 209 year: 2012 end-page: 216 publication-title: Green Chem. – volume: 19 start-page: 4070 year: 2017 end-page: 4073 publication-title: Org. Lett. – volume: 6 start-page: 6906 year: 2016 end-page: 6910 publication-title: ACS Catal. – volume: 378 start-page: 326 year: 2013 end-page: 332 publication-title: J. Mol. Catal. A – volume: 358 start-page: 622 year: 2016 end-page: 630 publication-title: Adv. Synth. Catal. – volume: 142 start-page: 12245 year: 2020 end-page: 12255 publication-title: J. Am. Chem. Soc. – volume: 45 start-page: 5916 year: 2012 end-page: 5922 publication-title: Macromolecules – volume: 49 122 start-page: 9822 10016 year: 2010 2010 end-page: 9837 10032 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 16 start-page: 384 year: 2016 end-page: 390 publication-title: J. CO2 Util. – volume: 59 132 start-page: 8689 8767 year: 2020 2020 end-page: 8697 8775 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 9 start-page: 1799 year: 2019 end-page: 1809 publication-title: ACS Catal. – volume: 113 start-page: 6621 year: 2013 end-page: 6658 publication-title: Chem. Rev. – volume: 19 start-page: 3707 year: 2017 end-page: 3728 publication-title: Green Chem. |
SSID | ssj0028806 |
Score | 2.6350784 |
Snippet | A series of highly active organoboron catalysts for the coupling of CO2 and epoxides with the advantages of scalable preparation, thermostability, and... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 23291 |
SubjectTerms | Carbon dioxide Carbonates Catalysts CO2 capture cooperative mechanisms Crystal structure cyclic carbonates cycloaddition Epoxides High temperature Intermediates metal-free catalysts Metals Reaction intermediates Recyclability Thermal stability |
Title | Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO2 to Cyclic Carbonates |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.202010651 https://www.proquest.com/docview/2467647176 https://www.proquest.com/docview/2439626543 |
Volume | 59 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QLnDhjRgvBYkjHcNNX0dUNgESIPGQdquSNEUI1KG2O4wTP4HfyC_BTreycYRbqzRRW8fxZ8f-wtiR8SIRZKF2hDLooKRdgzoHxkHLh_ga0tQDqh2-vvEvHsXVwBvMVPHX_BBNwI00w67XpOBSlSc_pKFUgY3-He3m-raGmhK2CBXdNfxRgJOzLi9yXYdOoZ-yNnbhZL77HL6cRanWzPRXmJy-YJ1d8tIZVaqj339xN_7nC1bZ8gSD8rN60qyxBZOvs8V4evTbBqvuUXJUU3XMz0dFfSHzlCPGHGvbwK8Novavj89-YQyPKQY0LquSIwTmlDryOuY9S06BNo3HlNluw3J8mPH4Fng15DGO9Kyxa6EogG_KTfbQ7z3EF87keAbniXCBI3zIjAnTUEIAKkJXmrBOqpQHkdJConKrwKjAhUBHoIIuUd9F4GUIGrWbuVuslQ9zs824kafKlRAJ4YYCZKhOQ621UsIL0hS96Dbbm0onmahYmQAu8T6a1sBvs8OmGX8U7XjI3AxH9IwbocfmCRwCrCiSt5rEI6npmiEhISSNEJKzm8tec7fzl067bAmvhc1D8_dYqypGZh-BS6UO7OT8BubG5b0 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QOIwLb8RgQJA4Ura56es4lU0DtiHBkLhVTZoiBOrQ1h3GiZ_Ab-SXYLdreRzh1jZN1dZx8tmxPzN2oi1POLGrDCE1GihRU6POgTZw5UN8DVFkAeUOD4Z2705c3ltFNCHlwuT8EKXDjTQjm69Jwckh3fhiDaUUbDTwaDvXpiTqZSrrnVlVNyWDFODwzBOMTNOgOvQFb2MTGj_7_0CY33FqttB015gsXjGPL3k6m6XyTL3-Ym_81zess9UFDOXtfNxssCWdbLKqX1R_22LpLQqP0qpO-flskh-EScQRZs5V1sAHGoH7x9t7d6I198kNNJ-mU44omFP0yPOcdzJ-ClzWuE_B7Zlnjo9j7l8DT8fcxyc9Kuw6keTD19NtNup2Rn7PWFRoMB4IGhjChlhrN3JDcEB6aE0T3ImktMCTSoSo39LR0jHBUR5Ip0nsdx5YMeJGZcbmDqsk40TvMq7DljRD8IQwXQGhK1uuUkpKYTlRhIZ0jdUL8QQLLZsGgLO8jaurY9fYcdmMP4o2PcJEj2d0j-mh0WYJfARksghech6PIGdshoCEEJRCCNrDi055tveXTkes2hsN-kH_Yni1z1boOkXAtESdVdLJTB8gjknlYTZSPwFO9unN |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUQSMCFHVEoYCSOpLQTZzuitBVrQSxSb1G8BCFQWrXpoZz4BL6RL2EmacNyhFsSx1GSmbHfjGeeGTs0TiC8xFeWkAYdFF03aHNgLJz5EF-D1g5Q7fBVxz19EOddp_utir_ghygDbmQZ-XhNBt7XyfEXaShVYKN_R6u5LtVQzwm37pNeN29LAilA7Szqi2zbom3op7SNdTj-2f8HwPwOU_N5pr3M4ukbFuklz7VRJmvq9Rd5438-YYUtTUAoPym0ZpXNmHSNLYTTvd_WWXaHoqOiqiPeHA2KgzjVHEHmWOUN_MogbP94e28PjOEhBYHGw2zIEQNzyh15GfNWzk6BkxoPKbU9j8vxXsLDa-BZj4f4pCeFXQeSIvhmuMHu26378NSa7M9gPRIwsIQLiTG-9mPwQAboSxPY0VI6EEglYrRu6Rnp2eCpAKRXJ-67AJwEUaOyE3uTzaa91GwxbuKGtGMIhLB9AbEvG75SSkrheFqjG11h1al0oomNDSPAMd7FudVzK-ygbMYfRUsecWp6I7rHDtBlcwQ-AnJRRP2CxSMq-JohIiFEpRCik85Zqzzb_kunfTZ_02xHl2edix22SJcp_aUhqmw2G4zMLoKYTO7levoJt_fohQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scalable%2C+Durable%2C+and+Recyclable+Metal-Free+Catalysts+for+Highly+Efficient+Conversion+of+CO2+to+Cyclic+Carbonates&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Yao-Yao&rft.au=Yang%2C+Guan-Wen&rft.au=Xie%2C+Rui&rft.au=Yang%2C+Li&rft.date=2020-12-14&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=59&rft.issue=51&rft.spage=23291&rft_id=info:doi/10.1002%2Fanie.202010651&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |