Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value‐Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts

The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added pr...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 10
Main Authors Xiang, Kun, Wu, Dan, Deng, Xiaohui, Li, Mei, Chen, Shanyong, Hao, Panpan, Guo, Xuefeng, Luo, Jing‐Li, Fu, Xian‐Zhu
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm−2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm−2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption. New cobalt hydroxide@hydroxysulfide nanosheet electrocatalysts are developed to boost hydrogen fuel generation by coupling with selective oxidation of methanol to a value‐added formate. As a result, the electrolysis voltage is reduced to 1.497 V at a current density of 10 mA cm−2 and the Faradaic efficiencies are closed to 100% at the anode and cathode.
AbstractList The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm−2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm−2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption. New cobalt hydroxide@hydroxysulfide nanosheet electrocatalysts are developed to boost hydrogen fuel generation by coupling with selective oxidation of methanol to a value‐added formate. As a result, the electrolysis voltage is reduced to 1.497 V at a current density of 10 mA cm−2 and the Faradaic efficiencies are closed to 100% at the anode and cathode.
The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm−2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm−2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption.
Author Hao, Panpan
Li, Mei
Deng, Xiaohui
Chen, Shanyong
Xiang, Kun
Luo, Jing‐Li
Fu, Xian‐Zhu
Guo, Xuefeng
Wu, Dan
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0000-0003-0303-5703
  surname: Xiang
  fullname: Xiang, Kun
  organization: Shenzhen University
– sequence: 2
  givenname: Dan
  surname: Wu
  fullname: Wu, Dan
  organization: Shenzhen University
– sequence: 3
  givenname: Xiaohui
  surname: Deng
  fullname: Deng, Xiaohui
  organization: Shenzhen University
– sequence: 4
  givenname: Mei
  surname: Li
  fullname: Li, Mei
  organization: Shenzhen University
– sequence: 5
  givenname: Shanyong
  surname: Chen
  fullname: Chen, Shanyong
  organization: Nanjing University
– sequence: 6
  givenname: Panpan
  surname: Hao
  fullname: Hao, Panpan
  organization: Nanjing University
– sequence: 7
  givenname: Xuefeng
  surname: Guo
  fullname: Guo, Xuefeng
  organization: Nanjing University
– sequence: 8
  givenname: Jing‐Li
  surname: Luo
  fullname: Luo, Jing‐Li
  organization: University of Alberta
– sequence: 9
  givenname: Xian‐Zhu
  orcidid: 0000-0003-1843-8927
  surname: Fu
  fullname: Fu, Xian‐Zhu
  email: xz.fu@szu.edu.cn
  organization: Shenzhen University
BookMark eNo9kU1OwzAUhC1UJGhhy9oS64J_WifZUUKhSC1d8CN2kWs_UyM3LrEDZMcROAJn4ySkKurqzZNmvllMF3VKXwJCJ5ScUULYudRmdcYIzUgmKNlDh1RQ0eeEpZ2dps8HqBvCKyE0SfjgEP1ceh-iLV_whOEbKKGS0foS575eO9D4w8YlvgcHKtp3wPNPq7cGb_AM4lKW3mFbRo-fpKvh9-t7pHWby5ewsko67N-hamkL6SKeNLryLQEutqoJtTPti-9aTFgCxIDHm6rKKxmla0IMR2jfSBfg-P_20OP1-CGf9Kfzm9t8NO2_MCpIn0EmueIiJQOitMgGQ7qgIjHcwEJrIQinQ5ZKxSk1gsl0CMoYJhapUok0VPEeOt1y15V_qyHE4tXXVdlWFoyLLGnTjLWubOv6sA6aYl3ZlayagpJiM0GxmaDYTVCMrq5nu4__AbTzg2E
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201909610
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM201909610
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2019M663035
– fundername: National Natural Science Foundation of China
  funderid: 21902108; 21975163
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g2160-2e9a3c368040cd69451b167f3febdd66031528ac311f62a85ecff26b8cc7af1c3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Mon Jul 14 07:51:45 EDT 2025
Wed Jan 22 16:36:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g2160-2e9a3c368040cd69451b167f3febdd66031528ac311f62a85ecff26b8cc7af1c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0303-5703
0000-0003-1843-8927
PQID 2369752822
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2369752822
wiley_primary_10_1002_adfm_201909610_ADFM201909610
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2017; 5
2017; 7
2019; 9
2018; 28
2015; 6
2019; 6
2017; 3
2018; 140
2019; 31
2019; 10
2017; 46
2007; 164
2009
2017 2017; 56 129
2018; 44
2019; 141
2019; 240
2019; 244
2019; 241
2018; 47
2018; 6
2018; 8
2014; 5
2019; 60
2018; 292
2016 2016; 55 128
2018; 2
2018; 5
2018; 1
2020
2019; 21
2018 2018; 57 130
2010; 114
2017; 13
2019; 311
2016; 352
2019; 29
2018; 30
2018; 51
2016; 138
2018; 11
2018; 10
2018; 54
2012; 215
2012; 5
2018; 14
References_xml – volume: 241
  start-page: 521
  year: 2019
  publication-title: Appl. Catal., B
– volume: 1
  start-page: 4040
  year: 2018
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 8184
  year: 2017
  publication-title: ACS Catal.
– volume: 44
  start-page: 7
  year: 2018
  publication-title: Nano Energy
– volume: 57 130
  start-page: 7649 7775
  year: 2018 2018
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 141
  start-page: 6413
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 60
  start-page: 894
  year: 2019
  publication-title: Nano Energy
– volume: 10
  start-page: 8739
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 47
  start-page: 96
  year: 2018
  publication-title: Nano Energy
– volume: 56 129
  start-page: 842 860
  year: 2017 2017
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 244
  start-page: 899
  year: 2019
  publication-title: Appl. Catal., B
– volume: 47
  year: 2018
  publication-title: Dalton Trans.
– volume: 240
  year: 2019
  publication-title: J. Cleaner Prod.
– volume: 57 130
  year: 2018 2018
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 114
  start-page: 111
  year: 2010
  publication-title: J. Phys. Chem. C
– volume: 215
  start-page: 43
  year: 2012
  publication-title: J. Power Sources
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 5
  start-page: 4036
  year: 2014
  publication-title: Nat. Commun.
– volume: 21
  start-page: 6699
  year: 2019
  publication-title: Green Chem.
– volume: 46
  start-page: 337
  year: 2017
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 7883
  year: 2012
  publication-title: Energy Environ. Sci.
– volume: 6
  year: 2015
  publication-title: Nat. Commun.
– volume: 3
  start-page: 491
  year: 2017
  publication-title: ChemNanoMat
– volume: 5
  start-page: 6090
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 8
  start-page: 5533
  year: 2018
  publication-title: ACS Catal.
– volume: 6
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 53 126
  year: 2014 2014
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 9913
  year: 2016 2016
  publication-title: Angew. Chem., Int. Ed. Angew. Chem.
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 7
  start-page: 4564
  year: 2017
  publication-title: ACS Catal.
– volume: 5
  year: 2018
  publication-title: Adv. Mater. Interfaces
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– year: 2020
  publication-title: J. Mater. Chem. A
– volume: 54
  start-page: 5943
  year: 2018
  publication-title: Chem. Commun.
– volume: 292
  start-page: 347
  year: 2018
  publication-title: Electrochim. Acta
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 3214
  year: 2019
  publication-title: ChemElectroChem
– volume: 10
  start-page: 2796
  year: 2019
  publication-title: Nat. Commun.
– volume: 352
  start-page: 333
  year: 2016
  publication-title: Science
– volume: 51
  start-page: 1571
  year: 2018
  publication-title: Acc. Chem. Res.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 136
  year: 2019
  publication-title: J. Energy Chem.
– volume: 10
  start-page: 5335
  year: 2019
  publication-title: Nat. Commun.
– volume: 11
  start-page: 821
  year: 2018
  publication-title: ChemSusChem
– volume: 138
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 140
  start-page: 1142
  year: 2018
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 1536
  year: 2018
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 323
  year: 2018
  publication-title: Mater. Chem. Front.
– volume: 13
  year: 2017
  publication-title: Small
– start-page: 4859
  year: 2009
  publication-title: Chem. Commun.
– volume: 164
  start-page: 9
  year: 2007
  publication-title: J. Power Sources
– volume: 311
  start-page: 244
  year: 2019
  publication-title: Electrochim. Acta
SSID ssj0017734
Score 2.6554217
Snippet The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Cobalt
cobalt hydroxide@hydroxysulfide
coelectrolysis
Coupling (molecular)
Electric potential
Electrocatalysts
Electrodes
Electrolysis
Electronic structure
Energy consumption
formate
hydrogen evolution
Hydrogen evolution reactions
Hydrogen production
Materials science
Methanol
Nanosheets
Organic chemistry
Oxidation
Oxygen evolution reactions
Reaction kinetics
Selectivity
Surface properties
Voltage
Water splitting
Title Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value‐Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909610
https://www.proquest.com/docview/2369752822
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB2hsoFFX4CaklZ30a2bzNge2zvSPBRVBCRCUXbWPNsIK46wLRFWfAKfwLf1SzqPJE1Zlp1nMSOPzr13rq_PnIvQBTGYxlJlgYxJEkQRwUEaMR5QlmCmOY0zRx6ffKLjm-h6Fs92bvF7fYhtwc16hovX1sEZrzqPoqFManuT3BxoGXV3rCxhy2ZFX7b6UThJ_G9lii3BC882qo1d0nk6_Ul-uZulumNmdIDY5gU9u-T7ZVPzS_HrH-3G_9nBIdpf56DQ80ZzhF6oxTF6vaNM-Ab9vSrLyjKiYUzAS1NbBKFfNstCSbDlW5i6HjomXMLnn3PfmwlKDRNly_FlAfNFXcI3VjTq_vefnolwEjb6BGCZo2Y1zooaxitptjuX6oN_WlVNoc0QTOgvqzul6gqGvl2Pqzatqrp6i25Gw6_9cbBu5hDcEky7AVEZC0VIUxM1hKRZFGOOaaJDrbiU1Da7jknKRIixpoSlsRJaE8pTIRKmsQjfob1FuVAnCKgmoivTzAQjGjGT46QhM1aWspDyiOluC7U3YOZrj6xyEtIsiS1ptoWIQyVfej2P3Cs3k9zikW_xyHuD0WQ7On3OpPfoFbGf546y1kZ79Y9GnZkcpubn6GVvMPk4PXf2-gDp1-7a
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbtQwFH4qZQEs-EcUCrwFLNOOncRJFkgMnY5S2ikStGh2wb8wIppUJBEMK47AEbgCV-EInAQ7ngwtS6Qu2MWLWNH7z_Pn7wE8plansdJZoGKaBFFESZBGXASMJ4QbweKsA49PDll-HL2YxtM1-NHfhfH8EKuGm_OMLl47B3cN6e0_rKFcGXeV3Ga0zNYAS1zlvl58sn9t9dO9kVXxE0rHu0c7ebAcLBC8o4QNAqozHsqQpdaCpWJZFBNBWGJCo4VSzA1ejmnKZUiIYZSnsZbGUCZSKRNuiAztvhfgohsj7uj6R69WjFUkSfxBNiMOUkamPU_kgG6f_d4zFe3purhLbONr8LMXicezfNhqG7Elv_zFFvlfyew6XF2W2Tj0fnED1vT8Jlw5Rb54C74_r6ragb4xp-jZt52R4k7VnpRaoetQ4-tuTJDNCPjy88yPn8LK4ES7E4eqxNm8qfANL1v96-u3oQ3iCnsKBnTgWLub4GWD-UJZ-c6UfuafFnVbGrtEm92q-r3WTY27fiJR11Bb1E19G47PRUR3YH1ezfVdQGaoHKg0s_GWRdyWcWnIrSOlPGQi4mawAZu99RTLoFMXNGRZEjtc8AbQzgyKE09ZUnhyalo4_Rcr_RfD0XiyWt37l5cewaX8aHJQHOwd7t-Hy9R1IzqE3iasNx9b_cCWbI142DkJwtvztrDfOtpLjg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbtQwFH4qRUKwaPkVLQXeApZpYydxkgUSQ6ejKWUKAopml9qxTUeNJiOSCKYrjsAROAJX4QqcBDueDC1LpC7YxYtY0fvP8-fvATyhRqeRVKknIxp7YUiJl4RceIzHhGvBorQFj48O2fAofDmOxivwo7sL4_ghlg036xltvLYOPpN65w9pKJfa3iQ3CS01JcACVnmg5p_NT1v1bL9vNPyU0sHe-92ht5gr4H2khPkeVSkP8oAlxoBzydIwIoKwWAdaCSmZnbsc0YTnASGaUZ5EKteaMpHkecw1yQOz7xW4GjI_tcMi-m-XhFUkjt05NiMWUUbGHU2kT3cufu-FgvZ8WdzmtcE6_Owk4uAsp9tNLbbzs7_IIv8nkd2EtUWRjT3nFbdgRU1vw41z1It34PuLsqws5BuHFB33tjVR3C2bWaEk2v40vmuHBJl8gK-_TNzwKSw1jpQ9bygLnEzrEj_wolG_vn7rmRAusSNgQAuNNbsJXtQ4nEsj3olUz93TvGoKbZZocltZnShVV7jn5hG17bR5VVd34ehSRHQPVqflVN0HZJrmvkxSE21ZyE0RlwTcuFHCAyZCrv0N2OqMJ1uEnCqjAUvjyKKCN4C2VpDNHGFJ5qipaWb1ny31n_X6g9FytfkvLz2Ga2_6g-zV_uHBA7hObSuihedtwWr9qVEPTb1Wi0etiyAcX7aB_Qb2Iko9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+H2+Generation+Coupled+with+Selective+Oxidation+of+Methanol+into+Value%E2%80%90Added+Chemical+over+Cobalt+Hydroxide%40Hydroxysulfide+Nanosheets+Electrocatalysts&rft.jtitle=Advanced+functional+materials&rft.au=Xiang%2C+Kun&rft.au=Wu%2C+Dan&rft.au=Deng%2C+Xiaohui&rft.au=Li%2C+Mei&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.201909610&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon