Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value‐Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts
The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added pr...
Saved in:
Published in | Advanced functional materials Vol. 30; no. 10 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm−2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm−2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption.
New cobalt hydroxide@hydroxysulfide nanosheet electrocatalysts are developed to boost hydrogen fuel generation by coupling with selective oxidation of methanol to a value‐added formate. As a result, the electrolysis voltage is reduced to 1.497 V at a current density of 10 mA cm−2 and the Faradaic efficiencies are closed to 100% at the anode and cathode. |
---|---|
AbstractList | The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm−2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm−2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption.
New cobalt hydroxide@hydroxysulfide nanosheet electrocatalysts are developed to boost hydrogen fuel generation by coupling with selective oxidation of methanol to a value‐added formate. As a result, the electrolysis voltage is reduced to 1.497 V at a current density of 10 mA cm−2 and the Faradaic efficiencies are closed to 100% at the anode and cathode. The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the by‐product is worthless O2. Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH)2@HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH)2, the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm−2. Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm−2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption. |
Author | Hao, Panpan Li, Mei Deng, Xiaohui Chen, Shanyong Xiang, Kun Luo, Jing‐Li Fu, Xian‐Zhu Guo, Xuefeng Wu, Dan |
Author_xml | – sequence: 1 givenname: Kun orcidid: 0000-0003-0303-5703 surname: Xiang fullname: Xiang, Kun organization: Shenzhen University – sequence: 2 givenname: Dan surname: Wu fullname: Wu, Dan organization: Shenzhen University – sequence: 3 givenname: Xiaohui surname: Deng fullname: Deng, Xiaohui organization: Shenzhen University – sequence: 4 givenname: Mei surname: Li fullname: Li, Mei organization: Shenzhen University – sequence: 5 givenname: Shanyong surname: Chen fullname: Chen, Shanyong organization: Nanjing University – sequence: 6 givenname: Panpan surname: Hao fullname: Hao, Panpan organization: Nanjing University – sequence: 7 givenname: Xuefeng surname: Guo fullname: Guo, Xuefeng organization: Nanjing University – sequence: 8 givenname: Jing‐Li surname: Luo fullname: Luo, Jing‐Li organization: University of Alberta – sequence: 9 givenname: Xian‐Zhu orcidid: 0000-0003-1843-8927 surname: Fu fullname: Fu, Xian‐Zhu email: xz.fu@szu.edu.cn organization: Shenzhen University |
BookMark | eNo9kU1OwzAUhC1UJGhhy9oS64J_WifZUUKhSC1d8CN2kWs_UyM3LrEDZMcROAJn4ySkKurqzZNmvllMF3VKXwJCJ5ScUULYudRmdcYIzUgmKNlDh1RQ0eeEpZ2dps8HqBvCKyE0SfjgEP1ceh-iLV_whOEbKKGS0foS575eO9D4w8YlvgcHKtp3wPNPq7cGb_AM4lKW3mFbRo-fpKvh9-t7pHWby5ewsko67N-hamkL6SKeNLryLQEutqoJtTPti-9aTFgCxIDHm6rKKxmla0IMR2jfSBfg-P_20OP1-CGf9Kfzm9t8NO2_MCpIn0EmueIiJQOitMgGQ7qgIjHcwEJrIQinQ5ZKxSk1gsl0CMoYJhapUok0VPEeOt1y15V_qyHE4tXXVdlWFoyLLGnTjLWubOv6sA6aYl3ZlayagpJiM0GxmaDYTVCMrq5nu4__AbTzg2E |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201909610 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM201909610 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2019M663035 – fundername: National Natural Science Foundation of China funderid: 21902108; 21975163 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-g2160-2e9a3c368040cd69451b167f3febdd66031528ac311f62a85ecff26b8cc7af1c3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Mon Jul 14 07:51:45 EDT 2025 Wed Jan 22 16:36:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-g2160-2e9a3c368040cd69451b167f3febdd66031528ac311f62a85ecff26b8cc7af1c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0303-5703 0000-0003-1843-8927 |
PQID | 2369752822 |
PQPubID | 2045204 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2369752822 wiley_primary_10_1002_adfm_201909610_ADFM201909610 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2017; 5 2017; 7 2019; 9 2018; 28 2015; 6 2019; 6 2017; 3 2018; 140 2019; 31 2019; 10 2017; 46 2007; 164 2009 2017 2017; 56 129 2018; 44 2019; 141 2019; 240 2019; 244 2019; 241 2018; 47 2018; 6 2018; 8 2014; 5 2019; 60 2018; 292 2016 2016; 55 128 2018; 2 2018; 5 2018; 1 2020 2019; 21 2018 2018; 57 130 2010; 114 2017; 13 2019; 311 2016; 352 2019; 29 2018; 30 2018; 51 2016; 138 2018; 11 2018; 10 2018; 54 2012; 215 2012; 5 2018; 14 |
References_xml | – volume: 241 start-page: 521 year: 2019 publication-title: Appl. Catal., B – volume: 1 start-page: 4040 year: 2018 publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 8184 year: 2017 publication-title: ACS Catal. – volume: 44 start-page: 7 year: 2018 publication-title: Nano Energy – volume: 57 130 start-page: 7649 7775 year: 2018 2018 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 14 year: 2018 publication-title: Small – volume: 141 start-page: 6413 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 60 start-page: 894 year: 2019 publication-title: Nano Energy – volume: 10 start-page: 8739 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 96 year: 2018 publication-title: Nano Energy – volume: 56 129 start-page: 842 860 year: 2017 2017 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 244 start-page: 899 year: 2019 publication-title: Appl. Catal., B – volume: 47 year: 2018 publication-title: Dalton Trans. – volume: 240 year: 2019 publication-title: J. Cleaner Prod. – volume: 57 130 year: 2018 2018 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 114 start-page: 111 year: 2010 publication-title: J. Phys. Chem. C – volume: 215 start-page: 43 year: 2012 publication-title: J. Power Sources – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 4036 year: 2014 publication-title: Nat. Commun. – volume: 21 start-page: 6699 year: 2019 publication-title: Green Chem. – volume: 46 start-page: 337 year: 2017 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 7883 year: 2012 publication-title: Energy Environ. Sci. – volume: 6 year: 2015 publication-title: Nat. Commun. – volume: 3 start-page: 491 year: 2017 publication-title: ChemNanoMat – volume: 5 start-page: 6090 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 8 start-page: 5533 year: 2018 publication-title: ACS Catal. – volume: 6 year: 2018 publication-title: J. Mater. Chem. A – volume: 53 126 year: 2014 2014 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 55 128 start-page: 9913 year: 2016 2016 publication-title: Angew. Chem., Int. Ed. Angew. Chem. – volume: 10 year: 2018 publication-title: Nanoscale – volume: 7 start-page: 4564 year: 2017 publication-title: ACS Catal. – volume: 5 year: 2018 publication-title: Adv. Mater. Interfaces – volume: 31 year: 2019 publication-title: Adv. Mater. – year: 2020 publication-title: J. Mater. Chem. A – volume: 54 start-page: 5943 year: 2018 publication-title: Chem. Commun. – volume: 292 start-page: 347 year: 2018 publication-title: Electrochim. Acta – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 6 start-page: 3214 year: 2019 publication-title: ChemElectroChem – volume: 10 start-page: 2796 year: 2019 publication-title: Nat. Commun. – volume: 352 start-page: 333 year: 2016 publication-title: Science – volume: 51 start-page: 1571 year: 2018 publication-title: Acc. Chem. Res. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 29 start-page: 136 year: 2019 publication-title: J. Energy Chem. – volume: 10 start-page: 5335 year: 2019 publication-title: Nat. Commun. – volume: 11 start-page: 821 year: 2018 publication-title: ChemSusChem – volume: 138 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 140 start-page: 1142 year: 2018 publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 1536 year: 2018 publication-title: Energy Environ. Sci. – volume: 2 start-page: 323 year: 2018 publication-title: Mater. Chem. Front. – volume: 13 year: 2017 publication-title: Small – start-page: 4859 year: 2009 publication-title: Chem. Commun. – volume: 164 start-page: 9 year: 2007 publication-title: J. Power Sources – volume: 311 start-page: 244 year: 2019 publication-title: Electrochim. Acta |
SSID | ssj0017734 |
Score | 2.6554217 |
Snippet | The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H2), and the... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Cobalt cobalt hydroxide@hydroxysulfide coelectrolysis Coupling (molecular) Electric potential Electrocatalysts Electrodes Electrolysis Electronic structure Energy consumption formate hydrogen evolution Hydrogen evolution reactions Hydrogen production Materials science Methanol Nanosheets Organic chemistry Oxidation Oxygen evolution reactions Reaction kinetics Selectivity Surface properties Voltage Water splitting |
Title | Boosting H2 Generation Coupled with Selective Oxidation of Methanol into Value‐Added Chemical over Cobalt Hydroxide@Hydroxysulfide Nanosheets Electrocatalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201909610 https://www.proquest.com/docview/2369752822 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtNAFB2hsoFFX4CaklZ30a2bzNge2zvSPBRVBCRCUXbWPNsIK46wLRFWfAKfwLf1SzqPJE1Zlp1nMSOPzr13rq_PnIvQBTGYxlJlgYxJEkQRwUEaMR5QlmCmOY0zRx6ffKLjm-h6Fs92bvF7fYhtwc16hovX1sEZrzqPoqFManuT3BxoGXV3rCxhy2ZFX7b6UThJ_G9lii3BC882qo1d0nk6_Ul-uZulumNmdIDY5gU9u-T7ZVPzS_HrH-3G_9nBIdpf56DQ80ZzhF6oxTF6vaNM-Ab9vSrLyjKiYUzAS1NbBKFfNstCSbDlW5i6HjomXMLnn3PfmwlKDRNly_FlAfNFXcI3VjTq_vefnolwEjb6BGCZo2Y1zooaxitptjuX6oN_WlVNoc0QTOgvqzul6gqGvl2Pqzatqrp6i25Gw6_9cbBu5hDcEky7AVEZC0VIUxM1hKRZFGOOaaJDrbiU1Da7jknKRIixpoSlsRJaE8pTIRKmsQjfob1FuVAnCKgmoivTzAQjGjGT46QhM1aWspDyiOluC7U3YOZrj6xyEtIsiS1ptoWIQyVfej2P3Cs3k9zikW_xyHuD0WQ7On3OpPfoFbGf546y1kZ79Y9GnZkcpubn6GVvMPk4PXf2-gDp1-7a |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbtQwFH4qZQEs-EcUCrwFLNOOncRJFkgMnY5S2ikStGh2wb8wIppUJBEMK47AEbgCV-EInAQ7ngwtS6Qu2MWLWNH7z_Pn7wE8plansdJZoGKaBFFESZBGXASMJ4QbweKsA49PDll-HL2YxtM1-NHfhfH8EKuGm_OMLl47B3cN6e0_rKFcGXeV3Ga0zNYAS1zlvl58sn9t9dO9kVXxE0rHu0c7ebAcLBC8o4QNAqozHsqQpdaCpWJZFBNBWGJCo4VSzA1ejmnKZUiIYZSnsZbGUCZSKRNuiAztvhfgohsj7uj6R69WjFUkSfxBNiMOUkamPU_kgG6f_d4zFe3purhLbONr8LMXicezfNhqG7Elv_zFFvlfyew6XF2W2Tj0fnED1vT8Jlw5Rb54C74_r6ragb4xp-jZt52R4k7VnpRaoetQ4-tuTJDNCPjy88yPn8LK4ES7E4eqxNm8qfANL1v96-u3oQ3iCnsKBnTgWLub4GWD-UJZ-c6UfuafFnVbGrtEm92q-r3WTY27fiJR11Bb1E19G47PRUR3YH1ezfVdQGaoHKg0s_GWRdyWcWnIrSOlPGQi4mawAZu99RTLoFMXNGRZEjtc8AbQzgyKE09ZUnhyalo4_Rcr_RfD0XiyWt37l5cewaX8aHJQHOwd7t-Hy9R1IzqE3iasNx9b_cCWbI142DkJwtvztrDfOtpLjg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbtQwFH4qRUKwaPkVLQXeApZpYydxkgUSQ6ejKWUKAopml9qxTUeNJiOSCKYrjsAROAJX4QqcBDueDC1LpC7YxYtY0fvP8-fvATyhRqeRVKknIxp7YUiJl4RceIzHhGvBorQFj48O2fAofDmOxivwo7sL4_ghlg036xltvLYOPpN65w9pKJfa3iQ3CS01JcACVnmg5p_NT1v1bL9vNPyU0sHe-92ht5gr4H2khPkeVSkP8oAlxoBzydIwIoKwWAdaCSmZnbsc0YTnASGaUZ5EKteaMpHkecw1yQOz7xW4GjI_tcMi-m-XhFUkjt05NiMWUUbGHU2kT3cufu-FgvZ8WdzmtcE6_Owk4uAsp9tNLbbzs7_IIv8nkd2EtUWRjT3nFbdgRU1vw41z1It34PuLsqws5BuHFB33tjVR3C2bWaEk2v40vmuHBJl8gK-_TNzwKSw1jpQ9bygLnEzrEj_wolG_vn7rmRAusSNgQAuNNbsJXtQ4nEsj3olUz93TvGoKbZZocltZnShVV7jn5hG17bR5VVd34ehSRHQPVqflVN0HZJrmvkxSE21ZyE0RlwTcuFHCAyZCrv0N2OqMJ1uEnCqjAUvjyKKCN4C2VpDNHGFJ5qipaWb1ny31n_X6g9FytfkvLz2Ga2_6g-zV_uHBA7hObSuihedtwWr9qVEPTb1Wi0etiyAcX7aB_Qb2Iko9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+H2+Generation+Coupled+with+Selective+Oxidation+of+Methanol+into+Value%E2%80%90Added+Chemical+over+Cobalt+Hydroxide%40Hydroxysulfide+Nanosheets+Electrocatalysts&rft.jtitle=Advanced+functional+materials&rft.au=Xiang%2C+Kun&rft.au=Wu%2C+Dan&rft.au=Deng%2C+Xiaohui&rft.au=Li%2C+Mei&rft.date=2020-03-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=10&rft_id=info:doi/10.1002%2Fadfm.201909610&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |