Knowledge Discovery in Scheduling Systems Using Evolutionary Bilevel Optimization and Visual Analytics

Scheduling systems are subject to a variety of influencing factors, some of which (e.g. number of vehicles or employees) can be determined by the company itself. Since these framework conditions can have a major impact on the scheduling system’s performance, their determination is an important manag...

Full description

Saved in:
Bibliographic Details
Published inEvolutionary Multi-Criterion Optimization Vol. 11411; pp. 439 - 450
Main Authors Schulte, Julian, Feldkamp, Niclas, Bergmann, Sören, Nissen, Volker
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Scheduling systems are subject to a variety of influencing factors, some of which (e.g. number of vehicles or employees) can be determined by the company itself. Since these framework conditions can have a major impact on the scheduling system’s performance, their determination is an important management task. The difficulty of this task increases when conflicting objectives have to be considered, such as costs and performance. Even though evolutionary bilevel optimization can be used to solve this kind of strategic multi-objective problems, it remains hard to gain deeper insights into the scheduling system’s behavior by only analyzing the obtained set of Pareto optimal solutions. In this paper, we propose an approach for knowledge discovery in scheduling systems by applying visual analytics on the whole set of evaluated individuals during the evolutionary algorithm. The proposed concept of bilevel innovization is demonstrated by using a nested NSGA-II to solve a strategic personnel planning problem and subsequently applying visual analytics to support decision making regarding the number of employees and implemented shifts. The results show that bilevel innovization can be used to get a better understanding of a scheduling system’s behavior and to support the decision making process in a strategic planning context.
AbstractList Scheduling systems are subject to a variety of influencing factors, some of which (e.g. number of vehicles or employees) can be determined by the company itself. Since these framework conditions can have a major impact on the scheduling system’s performance, their determination is an important management task. The difficulty of this task increases when conflicting objectives have to be considered, such as costs and performance. Even though evolutionary bilevel optimization can be used to solve this kind of strategic multi-objective problems, it remains hard to gain deeper insights into the scheduling system’s behavior by only analyzing the obtained set of Pareto optimal solutions. In this paper, we propose an approach for knowledge discovery in scheduling systems by applying visual analytics on the whole set of evaluated individuals during the evolutionary algorithm. The proposed concept of bilevel innovization is demonstrated by using a nested NSGA-II to solve a strategic personnel planning problem and subsequently applying visual analytics to support decision making regarding the number of employees and implemented shifts. The results show that bilevel innovization can be used to get a better understanding of a scheduling system’s behavior and to support the decision making process in a strategic planning context.
Author Bergmann, Sören
Schulte, Julian
Nissen, Volker
Feldkamp, Niclas
Author_xml – sequence: 1
  givenname: Julian
  surname: Schulte
  fullname: Schulte, Julian
  email: julian.schulte@tu-ilmenau.de
– sequence: 2
  givenname: Niclas
  surname: Feldkamp
  fullname: Feldkamp, Niclas
– sequence: 3
  givenname: Sören
  surname: Bergmann
  fullname: Bergmann, Sören
– sequence: 4
  givenname: Volker
  surname: Nissen
  fullname: Nissen, Volker
BookMark eNpVkMtSGzEQRUVwUrGN_4CFfkCJniPNkvAuqGLBY6vSaNq2gtA4o7FT5uvRABtWurrdt6v7zNAkdQkQOmb0F6NU_661IYJQQQnjqjaEWaEO0KLYopjvHvuGpqxijAgh68MvNS0naFo0J0WKH2jGqKmF5EqYn2iR819KKWesUlxN0fImdf8jtCvAZyH7bgf9HoeE7_0a2m0MaYXv93mAl4wf8_g733VxO4QuudL4J0TYQcR3myG8hFc3-tilFj-FvHURnyQX90Pw-Qh9X7qYYfH5ztHjxfnD6RW5vbu8Pj25JauykSJcg_YKgOpKau0Z58umdUVWDfeG6cbU3IPhWmovoZyhK1571zaVLNfUSswR_5ibN33ZFnrbdN1ztozakawtmKywBY59p2hHsiUkP0Kbvvu3hTxYGFMe0tC76NduM0Cfrao5k0ZbYYyVSok3xj95Lg
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 519.29999999999995
DOI 10.1007/978-3-030-12598-1_35
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Computer Science
EISBN 9783030125981
303012598X
EISSN 1611-3349
Editor Goodman, Erik
Miettinen, Kaisa
Klamroth, Kathrin
Mostaghim, Sanaz
Reed, Patrick
Coello Coello, Carlos A
Deb, Kalyanmoy
Editor_xml – sequence: 1
  fullname: Goodman, Erik
– sequence: 2
  fullname: Miettinen, Kaisa
– sequence: 3
  fullname: Klamroth, Kathrin
– sequence: 4
  fullname: Coello Coello, Carlos A
– sequence: 5
  fullname: Mostaghim, Sanaz
– sequence: 6
  fullname: Reed, Patrick
– sequence: 7
  fullname: Deb, Kalyanmoy
EndPage 450
ExternalDocumentID EBC5921487_388_455
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-g2115-27e7c5ee076477c122fbda4776b2c817b892ce82747c4e0027629cadb64525953
ISBN 9783030125974
3030125971
ISSN 0302-9743
IngestDate Tue Jul 29 20:19:09 EDT 2025
Thu May 29 15:52:46 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g2115-27e7c5ee076477c122fbda4776b2c817b892ce82747c4e0027629cadb64525953
OCLC 1089342538
PQID EBC5921487_388_455
PageCount 12
ParticipantIDs springer_books_10_1007_978_3_030_12598_1_35
proquest_ebookcentralchapters_5921487_388_455
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 10th International Conference, EMO 2019, East Lansing, MI, USA, March 10-13, 2019, Proceedings
PublicationTitle Evolutionary Multi-Criterion Optimization
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
SSID ssj0002116525
ssj0002792
Score 2.151763
Snippet Scheduling systems are subject to a variety of influencing factors, some of which (e.g. number of vehicles or employees) can be determined by the company...
SourceID springer
proquest
SourceType Publisher
StartPage 439
SubjectTerms Evolutionary bilevel optimization
Innovization
Scheduling
Staffing
Visual analytics
Title Knowledge Discovery in Scheduling Systems Using Evolutionary Bilevel Optimization and Visual Analytics
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921487&ppg=455
http://link.springer.com/10.1007/978-3-030-12598-1_35
Volume 11411
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXK9tJyKKWtSj-QD70hVxvHTpwjoG0RlPZQQNys2HEqJLqVmoUDv74z_sgmKRe4RJHlOJafM_E8zxsT8mlec2kaJRivbcOEMBmrYN3KWmEKAZayFHPUDp9-L47OxfGlvFwfdOnVJSvz2d7dqyt5DKpQBriiSvYByPaNQgHcA75wBYThOln8jmnWwKPfxrYx7s3raBmeWwDvBUB_gCX4HSWWw1lxkig0TLtpMXzT6_5-AnTNTcjOHVKY74VYgtFLDsCC3LrrUeN-8-HiqkMVik9wskrh85FKQPXSiEpIVOKEjBzwYftfR-5njv4UR5dkZE8zEeznf9Z5GJABjzJ8FnxYHRKWjJNhCzkp9P_cxcGhrDi4cKXOldJQaYNslErOyNP9xfG3i55e45hWiEtU86ROZiHf0rrTAyXlfX0a-RyTbXK_-jjbIpuoSKEoFYFeviRP3HKbvIj-A43WuYOidERHKtsmz0_7tLzdK9L28NMefnq1pGv4aYSfevjpEH4a4adD-CnATwP8tIf_NTn_sjg7PGLxoA32C8YJNYmutNK5eYmyZJtx3pqmhtvCcKuy0qiKW6eQwLDCIZNR8MrWjfG74pXM35DZ8s_SvSXUzaEqVGtdYURhilrB_1O0SsiqVnVudwhLg6p9OECMQbZhCDs9gXeH7KWR11i90ynPNkCmcw2QaQ-ZRsjePbD19-TZ-jv4QGarvzfuIywyV2Y3Tqh_Ial8WQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Evolutionary+Multi-Criterion+Optimization&rft.atitle=Knowledge+Discovery+in+Scheduling+Systems+Using+Evolutionary+Bilevel+Optimization+and+Visual+Analytics&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030125974&rft.volume=11411&rft_id=info:doi/10.1007%2F978-3-030-12598-1_35&rft.externalDBID=455&rft.externalDocID=EBC5921487_388_455
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921487-l.jpg