Ultrahigh‐Capacity and Fire‐Resistant LiFePO4‐Based Composite Cathodes for Advanced Lithium‐Ion Batteries

The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 9; no. 10
Main Authors Li, Heng, Peng, Long, Wu, Dabei, Wu, Jin, Zhu, Ying‐Jie, Hu, Xianluo
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 13.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm−2) and areal capacity (16.4 mAh cm−2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window. An ultrahigh‐areal‐capacity, thermally stable (up to 750 °C), and fire‐resistant LiFePO4‐based nanocomposite cathode is fabricated through a facile bottom‐up self‐assembly strategy, which is a promising candidate for advanced high‐performance and safe batteries.
AbstractList The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm−2) and areal capacity (16.4 mAh cm−2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window.
The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell architectures as well as electroactive materials. Designing thick electrodes with more electroactive materials is a promising strategy to improve the energy density of lithium‐ion batteries (LIBs) without alternating the underlying chemistry. However, the progress toward thick, high areal capacity electrodes is severely limited by the sluggish electronic/ionic transport and easy deformability of conventional electrodes. A self‐supported ultrahigh‐capacity and fire‐resistant LiFePO4 (UCFR‐LFP)‐based nanocomposite cathode is demonstrated here. Benefiting from the structural and chemical uniqueness, the UCFR‐LFP electrodes demonstrate exceptional improvements in electrochemical performance and mass loading of active materials, and thermal stability. Notably, an ultrathick UCFR‐LFP electrode (1.35 mm) with remarkably high mass loading of active materials (108 mg cm−2) and areal capacity (16.4 mAh cm−2) is successfully achieved. Moreover, the 1D inorganic binder‐like ultralong hydroxyapatite nanowires (HAP NWs) enable the UCFR‐LFP electrode with excellent thermal stability (structural integrity up to 1000 °C and electrochemical activity up to 750 °C), fire‐resistance, and wide‐temperature operability. Such a unique UCFR‐LFP electrode offers a promising solution for next‐generation LIBs with high energy density, high safety, and wide operating‐temperature window. An ultrahigh‐areal‐capacity, thermally stable (up to 750 °C), and fire‐resistant LiFePO4‐based nanocomposite cathode is fabricated through a facile bottom‐up self‐assembly strategy, which is a promising candidate for advanced high‐performance and safe batteries.
Author Zhu, Ying‐Jie
Hu, Xianluo
Wu, Dabei
Peng, Long
Li, Heng
Wu, Jin
Author_xml – sequence: 1
  givenname: Heng
  surname: Li
  fullname: Li, Heng
  organization: University of Chinese Academy of Sciences
– sequence: 2
  givenname: Long
  surname: Peng
  fullname: Peng, Long
  organization: Huazhong University of Science and Technology
– sequence: 3
  givenname: Dabei
  surname: Wu
  fullname: Wu, Dabei
  organization: Huazhong University of Science and Technology
– sequence: 4
  givenname: Jin
  surname: Wu
  fullname: Wu, Jin
  organization: Chinese Academy of Sciences
– sequence: 5
  givenname: Ying‐Jie
  surname: Zhu
  fullname: Zhu, Ying‐Jie
  email: y.j.zhu@mail.sic.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Xianluo
  orcidid: 0000-0002-5769-167X
  surname: Hu
  fullname: Hu, Xianluo
  email: huxl@mail.hust.edu.cn
  organization: Huazhong University of Science and Technology
BookMark eNo9kE1PwkAQhjcGExG5em7iuTj70W17hAaUpIoxcm6m7ZYuoR90Fw03f4K_0V9iCYa5zMz7PplJ3lsyqJtaEXJPYUIB2COqupowoAGwkMMVGVJJhSsDAYPLzNkNGRuzhb5ESIHzIdmvd7bDUm_K3--fCFvMtD06WOfOQneq196V0cZibZ1YL9TbSvTaDI3Knaip2sZoq5wIbdnkyjhF0znT_BPrrPdjbUt9qHp-2dTODK1VnVbmjlwXuDNq_N9HZL2Yf0TPbrx6WkbT2N0wYOB6KHiQBqzIQIDHvBxzwcIsKLI0SNMsCDgoSaXPhRS8QOrlhSx6nzLMPd9HPiIP57tt1-wPythk2xy6un-ZMBqCTyWX0FPhmfrSO3VM2k5X2B0TCskp1uQUa3KJNZnOX18uG_8DiEVzmw
ContentType Journal Article
Copyright 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201802930
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201802930
Genre article
GrantInformation_xml – fundername: HUST Academic Frontier Youth Team
  funderid: 2016QYTD04
– fundername: National Natural Science Foundation of China
  funderid: 51772116; 51522205; 51472098; 21875277
– fundername: Science and Technology Commission of Shanghai
  funderid: 15JC1491001
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
AAESR
AAHQN
AAIHA
AAMMB
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADMLS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
ZZTAW
~S-
7SP
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-g2020-5a438b82fc040525dad429c8fcb8bbc8830e616734643fa15df6f9c812ad577a3
ISSN 1614-6832
IngestDate Fri Jul 25 12:04:08 EDT 2025
Wed Aug 20 07:26:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g2020-5a438b82fc040525dad429c8fcb8bbc8830e616734643fa15df6f9c812ad577a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5769-167X
PQID 2190716360
PQPubID 886389
PageCount 11
ParticipantIDs proquest_journals_2190716360
wiley_primary_10_1002_aenm_201802930_AENM201802930
PublicationCentury 2000
PublicationDate March 13, 2019
PublicationDateYYYYMMDD 2019-03-13
PublicationDate_xml – month: 03
  year: 2019
  text: March 13, 2019
  day: 13
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 12
2011; 334
2017; 7
2017; 42
2017; 2
2015; 5
2017; 3
2009; 21
2017; 27
2011; 40
2014; 26
2017; 29
2008; 3
2017; 355
2011; 133
2014; 258
2016; 6
2015; 25
2018; 8
2018; 3
2014; 5
2016; 1
2018; 2
2018; 4
2017; 17
2013; 13
2017; 11
2013; 236
2008; 319
2017; 12
2014; 14
2013; 135
2018; 30
2008; 20
2018; 12
2016; 28
2012; 24
2012; 159
2008; 451
2017; 543
2009; 38
2016; 8
2001; 414
2010; 9
2016; 45
References_xml – volume: 25
  start-page: 6029
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 3159
  year: 2018
  publication-title: ACS Nano
– volume: 8
  start-page: 34715
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 40
  start-page: 3764
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 1700595
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 38
  start-page: 2565
  year: 2009
  publication-title: Chem. Soc. Rev.
– volume: 27
  start-page: 1701264
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 236
  start-page: 265
  year: 2013
  publication-title: J. Power Sources
– volume: 6
  start-page: 1600218
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1800561
  year: 2018
  publication-title: Adv. Mater.
– volume: 20
  start-page: 7237
  year: 2008
  publication-title: Chem. Mater.
– volume: 26
  start-page: 5794
  year: 2014
  publication-title: Adv. Mater.
– volume: 3
  start-page: 22
  year: 2018
  publication-title: Nat. Energy
– volume: 3
  start-page: 259
  year: 2017
  publication-title: ChemNanoMat
– volume: 12
  start-page: 194
  year: 2017
  publication-title: Nat. Nanotechnol.
– volume: 4
  start-page: eaas9820
  year: 2018
  publication-title: Sci. Adv.
– volume: 5
  start-page: 1401207
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 30
  start-page: 1706745
  year: 2018
  publication-title: Adv. Mater.
– volume: 13
  start-page: 6136
  year: 2013
  publication-title: Nano Lett.
– volume: 45
  start-page: 5848
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 135
  start-page: 1167
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 543
  start-page: 95
  year: 2017
  publication-title: Nature
– volume: 2
  start-page: 2047
  year: 2018
  publication-title: Joule
– volume: 3
  start-page: eaao7233
  year: 2017
  publication-title: Sci. Adv.
– volume: 21
  start-page: 2710
  year: 2009
  publication-title: Adv. Mater.
– volume: 24
  start-page: 2294
  year: 2012
  publication-title: Adv. Mater.
– volume: 414
  start-page: 359
  year: 2001
  publication-title: Nature
– volume: 14
  start-page: 5677
  year: 2014
  publication-title: Nano Lett.
– volume: 29
  start-page: 1703548
  year: 2017
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1906
  year: 2017
  publication-title: Nano Lett.
– volume: 42
  start-page: 205
  year: 2017
  publication-title: Nano Energy
– volume: 3
  start-page: 600
  year: 2018
  publication-title: Nat. Energy
– volume: 7
  start-page: 1701099
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 28
  start-page: 3374
  year: 2016
  publication-title: Adv. Mater.
– volume: 4
  start-page: 45
  year: 2018
  publication-title: Nat. Rev. Mater.
– volume: 12
  start-page: 43
  year: 2015
  publication-title: Nano Energy
– volume: 11
  start-page: 4801
  year: 2017
  publication-title: ACS Nano
– volume: 29
  start-page: 1703729
  year: 2017
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1704436
  year: 2018
  publication-title: Adv. Mater.
– volume: 319
  start-page: 1069
  year: 2008
  publication-title: Science
– volume: 159
  start-page: A920
  year: 2012
  publication-title: J. Electrochem. Soc.
– volume: 3
  start-page: 31
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 5
  start-page: 5193
  year: 2014
  publication-title: Nat. Commun.
– volume: 8
  start-page: 1703031
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16099
  year: 2016
  publication-title: Nat. Energy
– volume: 29
  start-page: 1603922
  year: 2017
  publication-title: Adv. Mater.
– volume: 258
  start-page: 246
  year: 2014
  publication-title: J. Power Sources
– volume: 2
  start-page: 17108
  year: 2017
  publication-title: Nat. Energy
– volume: 355
  start-page: 267
  year: 2017
  publication-title: Science
– volume: 334
  start-page: 928
  year: 2011
  publication-title: Science
– volume: 9
  start-page: 353
  year: 2010
  publication-title: Nat. Mater.
– volume: 6
  start-page: 1501594
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 133
  start-page: 2132
  year: 2011
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1606042
  year: 2017
  publication-title: Adv. Mater.
– volume: 451
  start-page: 652
  year: 2008
  publication-title: Nature
– volume: 21
  start-page: 2299
  year: 2009
  publication-title: Adv. Mater.
SSID ssj0000491033
Score 2.6154006
Snippet The growing demand for advanced energy storage devices with high energy density and high safety has continuously driven the technical upgrades of cell...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Cathodes
Deformation
Electroactive materials
Electrochemical analysis
Electrodes
Energy storage
Fire resistance
Flux density
Formability
Hydroxyapatite
Lithium-ion batteries
Nanocomposites
Nanowires
Organic chemistry
Safety
self‐assembly
Storage batteries
Structural integrity
Structural stability
Thermal stability
ultrahigh capacity
Title Ultrahigh‐Capacity and Fire‐Resistant LiFePO4‐Based Composite Cathodes for Advanced Lithium‐Ion Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201802930
https://www.proquest.com/docview/2190716360
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdgMLxFMUCpoFO2SIx_Z4sgwlUamStIJEZGd5xmOIBC5QZ8OKL0B8I1_CGc8DR6pQYWMl17EdzT2-L997TMhTEas8ZjGPtJJVlPK4jkolsyjNdR5nFVyaMvPO8wU_XqUn62w9GPzodS1tW_lcfbt0ruR_tAoZ9GqmZP9Bs-GkEOAz9IstNIztlXS8-tjCViC9Di0LR_B9ygTWph4-NXVnv-eNvjChYtMiDZ_qs9M07HkJR1Z1hsE0cOluKPC80h1Rw7Ox7xGYbdoPm-2ncNRrwMaSc_o2RM9l64_QdqwQIbFdi9D7Y1-UrZ3PNBLXF3zWk73b2pZ7qTe7ohPHFe5KFWY6KonspOkVDWLPECNsiLhwtU_dl1l6J2-9R32QDi91CpZkttSNYR4wjHcj9yhoh317cVpMV7NZsZysl9fIPkPaAbu5P341n70NVTvkU_Ew6aY2_B_0TKBD9mL3Ejs5Sz_z6UKX5S1y0-UcdGwBdJsMdHOH3OgxUd4lXwKUfn3_6UFEASJqQARZgA918IGsAw4NwKEeOBTAoR4G1AEHvwdkaIDMPbKaTpZHx5F7G0f0npkaQ1amiZCC1Qp2P2NZVVaIZZSolRRSKiGSoeYxz5MUQW5d4kaveY39MSurLM_L5D7Za84b_YBQZAlSlSMulazhM9jIjPFyQ3UpMlyhPCCHfuUKd7tdFHCtCIcNvd0BYd1qFp8tIUthqbdZYda_COtfjCeLefj28O_nfESu_0HsIdlrv271Y4SbrXziMPAb0fJ_Ww
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrahigh%E2%80%90Capacity+and+Fire%E2%80%90Resistant+LiFePO4%E2%80%90Based+Composite+Cathodes+for+Advanced+Lithium%E2%80%90Ion+Batteries&rft.jtitle=Advanced+energy+materials&rft.au=Li%2C+Heng&rft.au=Long%2C+Peng&rft.au=Wu%2C+Dabei&rft.au=Wu%2C+Jin&rft.date=2019-03-13&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=9&rft.issue=10&rft_id=info:doi/10.1002%2Faenm.201802930&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon