Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti3C2 MXene and 1T‐Phase WS2 Nanosheets

Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio‐monitoring devices for personal health. However, traditional energy storage systems with defined size and shape have inherent limitations in satisfying the performance requirements fo...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 30; no. 39
Main Authors Vaghasiya, Jayraj V., Mayorga‐Martinez, Carmen C., Vyskočil, Jan, Sofer, Zdeněk, Pumera, Martin
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio‐monitoring devices for personal health. However, traditional energy storage systems with defined size and shape have inherent limitations in satisfying the performance requirements for flexible electronics. To overcome this constraint, three different configurations of flexible asymmetric supercapacitor (FASC) are fabricated on polyester/cellulose blend (PCB) cloth substrate using Ti3C2 nanosheet (NS) and 1T WS2 NS as electrodes, and aqueous pluronic gel as an electrolyte. Benefiting from the 2D material electrodes, the interdigitated FASC configuration exhibits excellent performance, flexibility, cyclic stability, wearability and can be configured into multiple units and shapes, which far exceed that exhibited by the textile‐based FASC. Furthermore, the arbitrary (“AFN”) and sandwich (“FLOWER”) configurations Ti3C2 NS/1T WS2 NS FASC can be assembled directly on a PCB cloth substrate, thereby offering good structural integrity coupled with ease of assembly into integrated circuits of different shapes. More specifically, a lightweight, flexible, and wearable bio‐monitoring system is developed by integrating force sensing device with interdigitated FASC, which can be used to monitor the physical status of human body during various activities. A potential application of this system in healthcare is successfully demonstrated and discussed. An integrated bio‐monitoring system with a Ti3C2 NS/1T WS2 NS based flexible supercapacitor and force sensor device is developed. The proof of concept for practical application of this system is demonstrated by monitoring live artery pulse and feet alignment analysis on a human subject.
AbstractList Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio‐monitoring devices for personal health. However, traditional energy storage systems with defined size and shape have inherent limitations in satisfying the performance requirements for flexible electronics. To overcome this constraint, three different configurations of flexible asymmetric supercapacitor (FASC) are fabricated on polyester/cellulose blend (PCB) cloth substrate using Ti3C2 nanosheet (NS) and 1T WS2 NS as electrodes, and aqueous pluronic gel as an electrolyte. Benefiting from the 2D material electrodes, the interdigitated FASC configuration exhibits excellent performance, flexibility, cyclic stability, wearability and can be configured into multiple units and shapes, which far exceed that exhibited by the textile‐based FASC. Furthermore, the arbitrary (“AFN”) and sandwich (“FLOWER”) configurations Ti3C2 NS/1T WS2 NS FASC can be assembled directly on a PCB cloth substrate, thereby offering good structural integrity coupled with ease of assembly into integrated circuits of different shapes. More specifically, a lightweight, flexible, and wearable bio‐monitoring system is developed by integrating force sensing device with interdigitated FASC, which can be used to monitor the physical status of human body during various activities. A potential application of this system in healthcare is successfully demonstrated and discussed. An integrated bio‐monitoring system with a Ti3C2 NS/1T WS2 NS based flexible supercapacitor and force sensor device is developed. The proof of concept for practical application of this system is demonstrated by monitoring live artery pulse and feet alignment analysis on a human subject.
Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio‐monitoring devices for personal health. However, traditional energy storage systems with defined size and shape have inherent limitations in satisfying the performance requirements for flexible electronics. To overcome this constraint, three different configurations of flexible asymmetric supercapacitor (FASC) are fabricated on polyester/cellulose blend (PCB) cloth substrate using Ti3C2 nanosheet (NS) and 1T WS2 NS as electrodes, and aqueous pluronic gel as an electrolyte. Benefiting from the 2D material electrodes, the interdigitated FASC configuration exhibits excellent performance, flexibility, cyclic stability, wearability and can be configured into multiple units and shapes, which far exceed that exhibited by the textile‐based FASC. Furthermore, the arbitrary (“AFN”) and sandwich (“FLOWER”) configurations Ti3C2 NS/1T WS2 NS FASC can be assembled directly on a PCB cloth substrate, thereby offering good structural integrity coupled with ease of assembly into integrated circuits of different shapes. More specifically, a lightweight, flexible, and wearable bio‐monitoring system is developed by integrating force sensing device with interdigitated FASC, which can be used to monitor the physical status of human body during various activities. A potential application of this system in healthcare is successfully demonstrated and discussed.
Author Mayorga‐Martinez, Carmen C.
Vyskočil, Jan
Sofer, Zdeněk
Pumera, Martin
Vaghasiya, Jayraj V.
Author_xml – sequence: 1
  givenname: Jayraj V.
  surname: Vaghasiya
  fullname: Vaghasiya, Jayraj V.
  organization: University of Chemistry and Technology Prague
– sequence: 2
  givenname: Carmen C.
  surname: Mayorga‐Martinez
  fullname: Mayorga‐Martinez, Carmen C.
  organization: University of Chemistry and Technology Prague
– sequence: 3
  givenname: Jan
  surname: Vyskočil
  fullname: Vyskočil, Jan
  organization: University of Chemistry and Technology Prague
– sequence: 4
  givenname: Zdeněk
  surname: Sofer
  fullname: Sofer, Zdeněk
  organization: University of Chemistry and Technology Prague
– sequence: 5
  givenname: Martin
  orcidid: 0000-0001-5846-2951
  surname: Pumera
  fullname: Pumera, Martin
  email: Martin.Pumera@ceitec.vutbr.cz
  organization: Brno University of Technology
BookMark eNo9kM1OwkAUhScGExHdup7EdXF--jNdAoqSgJqAgV0z7dzCEDqtMyWExIWP4DP6JLbBsDr35p57TvJdo44pDSB0R0mfEsIepMqLPiOMEB5G_AJ1aUhDjxMmOueZrq7QtXNbQmgUcb-LviamhrWVNSg81GVRGl2XVps1noNxrR50vcFLkFamO8ADdywKqK3O8Hxfgc1kJbP2xeGhdE1IafBC8xHDsxUYwNIoTBe_3z_vm-aMl3OGX6Up3QagdjfoMpc7B7f_2kMf46fF6MWbvj1PRoOpt6Yi4l6WCl_kGQsYESnlinMVZ36UEyCxpCIAJhVQDlkoUp4xxQGoSoPUj5SIhR_zHro_5Va2_NyDq5NtubemqUyY7wciigQljSs-uQ56B8eksrqQ9phQkrR4kxZvcsabDB7Hs_PG_wBCL3Qg
ContentType Journal Article
Copyright 2020 Wiley‐VCH GmbH
Copyright_xml – notice: 2020 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202003673
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202003673
Genre article
GrantInformation_xml – fundername: Grant Agency of the Czech Republic
  funderid: EXPRO: 19–26896X
– fundername: National Research Committee
  funderid: 2014‐A01938‐39
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-g1873-cb848fc25208b13d33d9c47f0e09a185e2ade13ec68b3c2d3ee1db5b47d898493
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Jul 25 04:48:06 EDT 2025
Wed Jan 22 16:31:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g1873-cb848fc25208b13d33d9c47f0e09a185e2ade13ec68b3c2d3ee1db5b47d898493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5846-2951
PQID 2445877810
PQPubID 2045204
PageCount 10
ParticipantIDs proquest_journals_2445877810
wiley_primary_10_1002_adfm_202003673_ADFM202003673
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 317
2017; 7
2017; 8
2017; 41
2013; 3
2017; 2
2019; 11
2019; 10
2019; 13
2019; 12
2019; 58
2020; 17
2020; 16
2019; 19
2014; 24
2020; 14
2020; 10
2013; 8
2018; 44
2012; 12
2013; 5
2014; 61
2017; 9
2018; 49
2018; 8
2013; 15
2018; 3
2018; 2
2018; 259
2018; 1
2019; 24
2020; 92
2010; 4
2015; 56
2019; 7
2019; 4
2015; 5
2019; 6
2016; 19
2015; 3
2015; 51
2017; 27
2018; 345
2016; 10
2016; 685
2016; 51
2020; 32
2015; 9
2016; 4
2016; 6
2015; 27
2018; 118
2017; 11
2017; 13
2019; 48
2020; 24
2014
2018; 10
2016; 26
2016; 8
2018; 14
2017; 228
References_xml – volume: 27
  year: 2017
  publication-title: Adv. Funct. Mater.
– volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 2788
  year: 2020
  publication-title: ACS Nano
– volume: 4
  start-page: 241
  year: 2019
  publication-title: Nat. Energy
– volume: 5
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  year: 2013
  publication-title: RSC Adv.
– volume: 24
  start-page: 2263
  year: 2019
  publication-title: Molecules
– volume: 49
  start-page: 644
  year: 2018
  publication-title: Nano Energy
– volume: 24
  start-page: 3535
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 14
  year: 2018
  publication-title: Small
– volume: 24
  start-page: 113
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 685
  start-page: 194
  year: 2016
  publication-title: J. Alloys Compd.
– volume: 2
  year: 2018
  publication-title: Small Methods
– volume: 44
  year: 2018
  publication-title: Ceram. Int.
– volume: 48
  start-page: 3229
  year: 2019
  publication-title: Chem. Soc. Rev.
– year: 2014
– volume: 6
  start-page: 3982
  year: 2019
  publication-title: ChemElectroChem
– volume: 27
  start-page: 339
  year: 2015
  publication-title: Adv. Mater.
– volume: 7
  start-page: 8984
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 331
  year: 2019
  publication-title: Nano Res.
– volume: 19
  start-page: 1143
  year: 2019
  publication-title: Nano Lett.
– volume: 4
  start-page: 4403
  year: 2010
  publication-title: ACS Nano
– volume: 16
  year: 2020
  publication-title: Small
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 228
  start-page: 282
  year: 2017
  publication-title: Electrochim. Acta
– volume: 10
  year: 2016
  publication-title: ACS Nano
– volume: 9
  start-page: 8801
  year: 2015
  publication-title: ACS Nano
– volume: 51
  start-page: 8450
  year: 2015
  publication-title: Chem. Commun.
– volume: 9
  start-page: 3023
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 513
  year: 2016
  publication-title: Nano Energy
– volume: 10
  start-page: 522
  year: 2019
  publication-title: Nat. Commun.
– volume: 8
  start-page: 536
  year: 2017
  publication-title: Nat. Commun.
– volume: 3
  year: 2018
  publication-title: Adv. Mater. Technol.
– volume: 12
  start-page: 5218
  year: 2012
  publication-title: Nano Lett.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 3
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 4
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 17
  year: 2020
  publication-title: Mater. Today Energy
– volume: 92
  start-page: 2452
  year: 2020
  publication-title: Anal. Chem.
– volume: 259
  start-page: 752
  year: 2018
  publication-title: Electrochim. Acta
– volume: 345
  start-page: 186
  year: 2018
  publication-title: Chem. Eng. J.
– volume: 5
  start-page: 9443
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 13
  year: 2019
  publication-title: ACS Nano
– volume: 2
  year: 2017
  publication-title: Nat. Rev. Mater.
– volume: 6
  year: 2016
  publication-title: RSC Adv.
– volume: 61
  start-page: 49
  year: 2014
  publication-title: TrAC Trends Anal. Chem.
– volume: 41
  start-page: 261
  year: 2017
  publication-title: Nano Energy
– volume: 317
  start-page: 1026
  year: 2017
  publication-title: Chem. Eng. J.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 19
  start-page: 165
  year: 2016
  publication-title: Nano Energy
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 973
  year: 2013
  publication-title: Biomed. Microdevices
– volume: 58
  start-page: 624
  year: 2019
  publication-title: Nano Energy
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 8
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: NPG Asia Mater.
– volume: 51
  start-page: 3431
  year: 2016
  publication-title: J. Mater. Sci.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 8
  start-page: 100
  year: 2013
  publication-title: Nat. Nanotechnol.
– volume: 118
  start-page: 9233
  year: 2018
  publication-title: Chem. Rev.
– volume: 11
  start-page: 9490
  year: 2017
  publication-title: ACS Nano
– volume: 4
  start-page: 4659
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 13
  year: 2017
  publication-title: Small
– volume: 56
  start-page: 24
  year: 2015
  publication-title: Electrochem. Commun.
– volume: 1
  start-page: 7006
  year: 2018
  publication-title: ACS Appl. Nano Mater.
SSID ssj0017734
Score 2.601695
Snippet Research on wearable sensing technologies has been gaining considerable attention in the development of portable bio‐monitoring devices for personal health....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms 2D materials
Asymmetry
Biomonitoring
Cloth
Configuration management
Electrodes
Energy storage
Flexible components
flexible supercapacitors
health monitoring systems
Integrated circuits
Materials science
MXenes
Nanosheets
Portable equipment
Storage systems
Structural integrity
Substrates
Supercapacitors
textile power sources
Textiles
Two dimensional materials
wearable bioelectronics
Wearable technology
Title Integrated Biomonitoring Sensing with Wearable Asymmetric Supercapacitors Based on Ti3C2 MXene and 1T‐Phase WS2 Nanosheets
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202003673
https://www.proquest.com/docview/2445877810
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLUQLDDwRhQK8sCaEttJ7IylUAGiCNFWdIv8CiDUtCLtAGLgE_hGvgTfpC2FEZQhiSxLyc19HDnnHiN0JISK41BRzzmH9AIeKi-WUeq5asO55FwYXah9Xkfn3eCyF_bmuvhLfYjZghtERpGvIcClyo-_RUOlSaGTHMhVEQe5TyBsASq6nelHEc7L38oRAYIX6U1VG316_HP6D3w5j1KLMtNcQ3L6gCW75Kk2Hqmafv2l3fifN1hHqxMMiuul02ygBZttopU5ZcIt9HYxlZEw-ORx0C8iH4ZwGxjv7gwLuPjOxQn0XuF6_tLvw-ZcGrfHQ_usXQ3WMCXHJ65OGjzIcOeRNShu9Vx2xTIzmHQ-3z9uHtwwvmtT7PL8IH-wdpRvo27zrNM49yYbNXj3RHDmaSUCkWoaUl8owgxjJtYBT33rx9IBAkulsYRZHQnFNDXMWmJUqAJuRCyCmO2gxWyQ2V2EQyq0TF2SEMIGqZ9KDkcktTRCRYxXUHX6oZJJtOWJgyihcH5F_AqihcWTYanVkZSqzDQBWyczWyf102Zrdrf3l0n7aBmuS7pZFS2Onsf2wOGTkTpES_XT1lX7sPDFL6_84Ks
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDsCBHbHjA9dAbCexcyxLVZYiRIvoLfIWQKgpIu0BxIFP4Bv5EjxJU5YjKIcosUZKJrN5MvMGoV0hVByHinpOOKQX8FB5sYxSz3kbziXnwugC7fMialwHp52wqiaEXpgSH2KUcAPNKOw1KDgkpPe_UEOlSaGVHKqrIs7G0SSM9S52VVcjBCnCefljOSJQ4kU6FW6jT_d_0v-IML_HqYWjqc8hVT1iWV_ysDfoqz398gu98V_vMI9mh2EorpVys4DGbLaIZr6BEy6h15MKScLgg_tet1B-WMItKHp3Z8jh4hunKtB-hWv5c7cL87k0bg0e7ZN2blgDSY4PnKs0uJfh9j07pLjZcQYWy8xg0v54e7-8c8v4pkWxM_W9_M7afr6MruvH7cOGN5zV4N0SwZmnlQhEqmlIfaEIM4yZWAc89a0fSxcTWCqNJczqSCimqWHWEqNCFXAjYhHEbAVNZL3MriIcUqFl6uyEEDZI_VRyOCKppREqYnwNbVZfKhkqXJ64KCUUTrSIv4ZowfLksYTrSEpgZpoAr5MRr5PaUb05ulr_C9EOmmq0m-fJ-cnF2Qaahvtl9dkmmug_DeyWC1f6arsQyE-qj-My
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT8IwFG4UE6MP3o0oah98na7ttnaPIBLvMQKRt6W3CTEMwuBB44M_wd_oL7HdAMFHzR6WtTnJdnouX7pzvgJwwpgIQ19gxxgHdzzqCyfkQeyYbEMpp5QpmbF93geXTe-65bdmuvhzfojphpv1jCxeWwfvq_jshzSUq9h2ktviqoCSRbDkBS6zdl19nBJIIUrz_8oBshVeqDWhbXTx2bz8HMCchalZnqmtAz55w7y85OV0NBSn8u0XeeN_PmEDrI1BKCznVrMJFnSyBVZnqAm3wfvVhEdCwUqn181c307Bui15N3e7gwufjKPY5itYTl-7XXs6l4T1UV8PpEnC0oqksGISpYK9BDY65BzDu5YJr5AnCqLG18fnQ9tMw6c6hibQ99K21sN0BzRrF43zS2d8UoPzjBgljhTMY7HEPnaZQEQRokLp0djVbsgNItCYK42IlgETRGJFtEZK-MKjioXMC8kuKCS9RO8B6GMmeWyiBGPai92YU3sFXHLFREBoEZQmCxWN3S2NDEbxmTEs5BYBzjQe9XOyjiinZcaR1XU01XVUrtbupk_7fxE6BssP1Vp0e3V_cwBW7HBeelYCheFgpA8NVhmKo8wcvwEx2uHq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+Biomonitoring+Sensing+with+Wearable+Asymmetric+Supercapacitors+Based+on+Ti3C2+MXene+and+1T%E2%80%90Phase+WS2+Nanosheets&rft.jtitle=Advanced+functional+materials&rft.au=Vaghasiya%2C+Jayraj+V.&rft.au=Mayorga%E2%80%90Martinez%2C+Carmen+C.&rft.au=Vysko%C4%8Dil%2C+Jan&rft.au=Sofer%2C+Zden%C4%9Bk&rft.date=2020-09-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=30&rft.issue=39&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadfm.202003673&rft.externalDBID=10.1002%252Fadfm.202003673&rft.externalDocID=ADFM202003673
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon