Effects of chromatographic conditions on retention behaviour of different psychoactive agents in high-performance liquid chromatography: A machine-learning-based approach

Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three different psychotropic drugs; clonazepam, diazepam, and oxazepam) were considered for simulation using a machine learning approach. Methods: F...

Full description

Saved in:
Bibliographic Details
Published inIstanbul Journal of Pharmacy Vol. 54; no. 2; p. 133
Main Authors Usman, Abdullahi Garba, Erdag, Emine, Isik, Selin
Format Journal Article
LanguageEnglish
Published Istanbul University Press 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three different psychotropic drugs; clonazepam, diazepam, and oxazepam) were considered for simulation using a machine learning approach. Methods: For the simulation of selected psychoactive compounds using HPLC, different machine learning techniques were used in this study: adaptive neuro-fuzzy inference system, multilayer perceptron, Hammerstein-Weiner model, and a traditional linear model in the form of stepwise linear regression. Four evaluation criteria were used to assess the effectiveness of the models: coefficient of determination, root mean squared error, mean squared error, and correlation coefficient. Results: The results show that machine learning approaches, especially multilayer perceptions, are more reliable than classical linear models with an average coefficient of determination value of 0.98 in both calibration and validation phases. Conclusion: The performance results also demonstrate that these models can be improved using additional approaches, such as hybrid models, ensemble machine learning, evolving algorithms, and optimisation techniques. Keywords: Machine learning, clonazepam, diazepam, oxazepam, validation, evaluation metrics
AbstractList Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three different psychotropic drugs; clonazepam, diazepam, and oxazepam) were considered for simulation using a machine learning approach. Methods: For the simulation of selected psychoactive compounds using HPLC, different machine learning techniques were used in this study: adaptive neuro-fuzzy inference system, multilayer perceptron, Hammerstein-Weiner model, and a traditional linear model in the form of stepwise linear regression. Four evaluation criteria were used to assess the effectiveness of the models: coefficient of determination, root mean squared error, mean squared error, and correlation coefficient. Results: The results show that machine learning approaches, especially multilayer perceptions, are more reliable than classical linear models with an average coefficient of determination value of 0.98 in both calibration and validation phases. Conclusion: The performance results also demonstrate that these models can be improved using additional approaches, such as hybrid models, ensemble machine learning, evolving algorithms, and optimisation techniques. Keywords: Machine learning, clonazepam, diazepam, oxazepam, validation, evaluation metrics
Audience Professional
Author Isik, Selin
Usman, Abdullahi Garba
Erdag, Emine
Author_xml – sequence: 1
  fullname: Usman, Abdullahi Garba
– sequence: 2
  fullname: Erdag, Emine
– sequence: 3
  fullname: Isik, Selin
BookMark eNptUMFq3DAQ1SGBpNv8gyC5emNr5ZWc27Js2g2B9tCew1gaWQO25ErehfxSvrIKzaGFMofHvDfvDbxP7CLEgIzdNfVabLdtfX_MC4T-ND5995CmtaiFXDdCtHK7uWDXBXVVq01zxW5ypr6WUkmxaeU1ezs4h2bJPDpufIoTLHFIMHsy3MRgaaEYihp4wgXD-8Z79HCmeErvJkslIBWFz_nV-AhmoTNyGAqVOQXuafDVjMnFNEEwyEf6dSL777fXB77jExhPAasRIQUKQ9VDRsthnlOJ9Z_ZpYMx480HrtjPx8OP_dfq-duX4373XA1NK5aqt1r0CpRVDhBdr3EDxhkpnNUaLXRad64Fi6aRPWhQiNh0RtVdpxpVClux2z-5A4z4QsHFJYGZKJuXnW7qWnaidLli6_9clbE4UWkOHRX-L8NvfG-LNw
ContentType Journal Article
Copyright COPYRIGHT 2024 Istanbul University Press
Copyright_xml – notice: COPYRIGHT 2024 Istanbul University Press
DOI 10.26650/IstanbulJPharm.2024.1225463
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID A810049207
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
M~E
ID FETCH-LOGICAL-g152t-bd82b7a7d7faeefb8e3acfc42fd88eda9889f5adec14ba8a7eee19c7099717463
ISSN 2548-0731
IngestDate Wed Oct 02 17:17:50 EDT 2024
Tue Oct 01 04:01:20 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g152t-bd82b7a7d7faeefb8e3acfc42fd88eda9889f5adec14ba8a7eee19c7099717463
ParticipantIDs gale_infotracmisc_A810049207
gale_infotracacademiconefile_A810049207
PublicationCentury 2000
PublicationDate 20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 20240801
  day: 01
PublicationDecade 2020
PublicationTitle Istanbul Journal of Pharmacy
PublicationYear 2024
Publisher Istanbul University Press
Publisher_xml – name: Istanbul University Press
SSID ssib044742354
Score 2.3104823
Snippet Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three...
SourceID gale
SourceType Aggregation Database
StartPage 133
SubjectTerms Algorithms
Antianxiety agents
Benzodiazepines
High performance liquid chromatography
Machine learning
Mathematical optimization
Methyclothiazide
Title Effects of chromatographic conditions on retention behaviour of different psychoactive agents in high-performance liquid chromatography: A machine-learning-based approach
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBahg7HL2NjGunVDh8IOwRmWZVvuLYxsbaFjsAZ6K_rl1NA6XeocukP_oF33D-49W5aVUEa3HExwIj8l7-PpSfq-J0L2NU_gZVGxLEzEmUoikYoyirnNE5mVIuOoHT75mh3O-fFZejYa_Q5YS-tGTfTPe3Ul_-NVuAd-RZXsP3jWPxRuwHvwL1zBw3B9kI9nAxlDX6yWkHx2BagrjWxyUzmWGypWGkdrdLL8dbs50J-O0jgxlmyD31guWtlbVY-xmHF0HWgLLqsf68psWrvt1O1XLS3TRu4cikWEA6TxRcvDLPgIU1K1vhwH6fC3roa2X-Gf37i12akyME2WF9X4C-6N-CnAysiOmHYVUAOObqo2vH9HmX24osG459O5WW7fh22t5BAaYVYLTXI3frg43hWjdnhlQVCOu1Ib24MFpCYp0it7e8ftD51gjyYxa88JGAZJT12cCqyxVzCsYPCIQXTDsHpyN-uDGOe4992evud7-Zjs9_Y-_sWaywqC_Ob0GXnqPEGnHcqek5GtX5BfDmF0WdIthNEBYXRZU48w6hGGjTzCaIgw2iGMVjXdRhjtELZp7faATun9-KI9vl6S-efZ6afDyJ3uES0gZ2wiZQRTucxNXkprSyVsInWpOSuNENbIQoiiTKWxOuZKCplba-NC5yj1hml0lrwiO_Wytq8JTbVlGeM6lVLxtLRSaZUVViUKVzNMvEs-4B97jt5vVlJLJz2B1lj97Hzw6S7Z2_gmxFodfPzmwQ96S54M0N4jO81qbd9B-tqo9y1c_gDpVqt5
link.rule.ids 315,783,787,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+chromatographic+conditions+on+retention+behaviour+of+different+psychoactive+agents+in+high-performance+liquid+chromatography%3A+A+machine-learning-based+approach&rft.jtitle=Istanbul+Journal+of+Pharmacy&rft.au=Usman%2C+Abdullahi+Garba&rft.au=Erdag%2C+Emine&rft.au=Isik%2C+Selin&rft.date=2024-08-01&rft.pub=Istanbul+University+Press&rft.issn=2548-0731&rft.volume=54&rft.issue=2&rft.spage=133&rft_id=info:doi/10.26650%2FIstanbulJPharm.2024.1225463&rft.externalDocID=A810049207
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-0731&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-0731&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-0731&client=summon