Effects of chromatographic conditions on retention behaviour of different psychoactive agents in high-performance liquid chromatography: A machine-learning-based approach
Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three different psychotropic drugs; clonazepam, diazepam, and oxazepam) were considered for simulation using a machine learning approach. Methods: F...
Saved in:
Published in | Istanbul Journal of Pharmacy Vol. 54; no. 2; p. 133 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Istanbul University Press
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three different psychotropic drugs; clonazepam, diazepam, and oxazepam) were considered for simulation using a machine learning approach. Methods: For the simulation of selected psychoactive compounds using HPLC, different machine learning techniques were used in this study: adaptive neuro-fuzzy inference system, multilayer perceptron, Hammerstein-Weiner model, and a traditional linear model in the form of stepwise linear regression. Four evaluation criteria were used to assess the effectiveness of the models: coefficient of determination, root mean squared error, mean squared error, and correlation coefficient. Results: The results show that machine learning approaches, especially multilayer perceptions, are more reliable than classical linear models with an average coefficient of determination value of 0.98 in both calibration and validation phases. Conclusion: The performance results also demonstrate that these models can be improved using additional approaches, such as hybrid models, ensemble machine learning, evolving algorithms, and optimisation techniques. Keywords: Machine learning, clonazepam, diazepam, oxazepam, validation, evaluation metrics |
---|---|
AbstractList | Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three different psychotropic drugs; clonazepam, diazepam, and oxazepam) were considered for simulation using a machine learning approach. Methods: For the simulation of selected psychoactive compounds using HPLC, different machine learning techniques were used in this study: adaptive neuro-fuzzy inference system, multilayer perceptron, Hammerstein-Weiner model, and a traditional linear model in the form of stepwise linear regression. Four evaluation criteria were used to assess the effectiveness of the models: coefficient of determination, root mean squared error, mean squared error, and correlation coefficient. Results: The results show that machine learning approaches, especially multilayer perceptions, are more reliable than classical linear models with an average coefficient of determination value of 0.98 in both calibration and validation phases. Conclusion: The performance results also demonstrate that these models can be improved using additional approaches, such as hybrid models, ensemble machine learning, evolving algorithms, and optimisation techniques. Keywords: Machine learning, clonazepam, diazepam, oxazepam, validation, evaluation metrics |
Audience | Professional |
Author | Isik, Selin Usman, Abdullahi Garba Erdag, Emine |
Author_xml | – sequence: 1 fullname: Usman, Abdullahi Garba – sequence: 2 fullname: Erdag, Emine – sequence: 3 fullname: Isik, Selin |
BookMark | eNptUMFq3DAQ1SGBpNv8gyC5emNr5ZWc27Js2g2B9tCew1gaWQO25ErehfxSvrIKzaGFMofHvDfvDbxP7CLEgIzdNfVabLdtfX_MC4T-ND5995CmtaiFXDdCtHK7uWDXBXVVq01zxW5ypr6WUkmxaeU1ezs4h2bJPDpufIoTLHFIMHsy3MRgaaEYihp4wgXD-8Z79HCmeErvJkslIBWFz_nV-AhmoTNyGAqVOQXuafDVjMnFNEEwyEf6dSL777fXB77jExhPAasRIQUKQ9VDRsthnlOJ9Z_ZpYMx480HrtjPx8OP_dfq-duX4373XA1NK5aqt1r0CpRVDhBdr3EDxhkpnNUaLXRad64Fi6aRPWhQiNh0RtVdpxpVClux2z-5A4z4QsHFJYGZKJuXnW7qWnaidLli6_9clbE4UWkOHRX-L8NvfG-LNw |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 Istanbul University Press |
Copyright_xml | – notice: COPYRIGHT 2024 Istanbul University Press |
DOI | 10.26650/IstanbulJPharm.2024.1225463 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
ExternalDocumentID | A810049207 |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS M~E |
ID | FETCH-LOGICAL-g152t-bd82b7a7d7faeefb8e3acfc42fd88eda9889f5adec14ba8a7eee19c7099717463 |
ISSN | 2548-0731 |
IngestDate | Wed Oct 02 17:17:50 EDT 2024 Tue Oct 01 04:01:20 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g152t-bd82b7a7d7faeefb8e3acfc42fd88eda9889f5adec14ba8a7eee19c7099717463 |
ParticipantIDs | gale_infotracmisc_A810049207 gale_infotracacademiconefile_A810049207 |
PublicationCentury | 2000 |
PublicationDate | 20240801 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 20240801 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Istanbul Journal of Pharmacy |
PublicationYear | 2024 |
Publisher | Istanbul University Press |
Publisher_xml | – name: Istanbul University Press |
SSID | ssib044742354 |
Score | 2.3104823 |
Snippet | Background and Aims: High-pressure liquid chromatography (HPLC) data on the effects of various chromatographic conditions on the retention behaviour of three... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 133 |
SubjectTerms | Algorithms Antianxiety agents Benzodiazepines High performance liquid chromatography Machine learning Mathematical optimization Methyclothiazide |
Title | Effects of chromatographic conditions on retention behaviour of different psychoactive agents in high-performance liquid chromatography: A machine-learning-based approach |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa9swFBahg7HL2NjGunVDh8IOwRmWZVvuLYxsbaFjsAZ6K_rl1NA6XeocukP_oF33D-49W5aVUEa3HExwIj8l7-PpSfq-J0L2NU_gZVGxLEzEmUoikYoyirnNE5mVIuOoHT75mh3O-fFZejYa_Q5YS-tGTfTPe3Ul_-NVuAd-RZXsP3jWPxRuwHvwL1zBw3B9kI9nAxlDX6yWkHx2BagrjWxyUzmWGypWGkdrdLL8dbs50J-O0jgxlmyD31guWtlbVY-xmHF0HWgLLqsf68psWrvt1O1XLS3TRu4cikWEA6TxRcvDLPgIU1K1vhwH6fC3roa2X-Gf37i12akyME2WF9X4C-6N-CnAysiOmHYVUAOObqo2vH9HmX24osG459O5WW7fh22t5BAaYVYLTXI3frg43hWjdnhlQVCOu1Ib24MFpCYp0it7e8ftD51gjyYxa88JGAZJT12cCqyxVzCsYPCIQXTDsHpyN-uDGOe4992evud7-Zjs9_Y-_sWaywqC_Ob0GXnqPEGnHcqek5GtX5BfDmF0WdIthNEBYXRZU48w6hGGjTzCaIgw2iGMVjXdRhjtELZp7faATun9-KI9vl6S-efZ6afDyJ3uES0gZ2wiZQRTucxNXkprSyVsInWpOSuNENbIQoiiTKWxOuZKCplba-NC5yj1hml0lrwiO_Wytq8JTbVlGeM6lVLxtLRSaZUVViUKVzNMvEs-4B97jt5vVlJLJz2B1lj97Hzw6S7Z2_gmxFodfPzmwQ96S54M0N4jO81qbd9B-tqo9y1c_gDpVqt5 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+chromatographic+conditions+on+retention+behaviour+of+different+psychoactive+agents+in+high-performance+liquid+chromatography%3A+A+machine-learning-based+approach&rft.jtitle=Istanbul+Journal+of+Pharmacy&rft.au=Usman%2C+Abdullahi+Garba&rft.au=Erdag%2C+Emine&rft.au=Isik%2C+Selin&rft.date=2024-08-01&rft.pub=Istanbul+University+Press&rft.issn=2548-0731&rft.volume=54&rft.issue=2&rft.spage=133&rft_id=info:doi/10.26650%2FIstanbulJPharm.2024.1225463&rft.externalDocID=A810049207 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2548-0731&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2548-0731&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2548-0731&client=summon |