Using FGMRES to obtain backward stability in mixed precision
We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show...
Saved in:
Published in | Electronic transactions on numerical analysis Vol. 33; p. 31 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Institute of Computational Mathematics
01.08.2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1068-9613 1097-4067 |
Cover
Loading…
Abstract | We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution. Key words. FGMRES, mixed precision arithmetic, hybrid method, direct factorization, iterative methods, large sparse systems, error analysis AMS subject classifications. 65F05, 65F10, 65F50, 65G20, 65G50 |
---|---|
AbstractList | We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution. We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution. Key words. FGMRES, mixed precision arithmetic, hybrid method, direct factorization, iterative methods, large sparse systems, error analysis AMS subject classifications. 65F05, 65F10, 65F50, 65G20, 65G50 |
Audience | Academic |
Author | Arioli, M Duff, I.S |
Author_xml | – sequence: 1 fullname: Arioli, M – sequence: 2 fullname: Duff, I.S |
BookMark | eNptkE1LAzEQhoNUsK3-h4DnlXxsshvwUkpbCxVB7blMvpboblY2AfXfG9GDB3kP8_LwzBxmgWZxjO4MzSlRTVUT2cy-u2wrJSm_QIuUXgihqmZijm6PKcQOb3f3j5snnEc86gwhYg3m9R0mi1MGHfqQP3GhQ_hwFr9NzoQUxniJzj30yV39ziU6bjfP67vq8LDbr1eHqqOC5aoR3FpBrJeaKyqEaoVpiG5rY5hi0HgghmjpQBfggHlPueQeqLJMS-L4El3_3O2gd6cQ_ZgnMENI5rRiTLWqbiUr1s0_Vol1QzDlJT4U_mfhC-yDVik |
ContentType | Journal Article |
Copyright | COPYRIGHT 2008 Institute of Computational Mathematics |
Copyright_xml | – notice: COPYRIGHT 2008 Institute of Computational Mathematics |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1097-4067 |
ExternalDocumentID | A229894862 |
GeographicLocations | United Kingdom |
GeographicLocations_xml | – name: United Kingdom |
GroupedDBID | -~9 29G 2WC 5GY ACGFO AENEX ALMA_UNASSIGNED_HOLDINGS C1A E3Z EBS EJD IAO ICD IEA ITC LO0 OK1 P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-g152t-753dd50df6b39155985c70b84cc292a7fa0c0b6eabcc2ea2ff1363fa19d2b60e3 |
ISSN | 1068-9613 |
IngestDate | Wed Mar 19 02:45:09 EDT 2025 Sat Mar 08 20:24:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g152t-753dd50df6b39155985c70b84cc292a7fa0c0b6eabcc2ea2ff1363fa19d2b60e3 |
ParticipantIDs | gale_infotracmisc_A229894862 gale_infotracacademiconefile_A229894862 |
PublicationCentury | 2000 |
PublicationDate | 20080801 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 20080801 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Electronic transactions on numerical analysis |
PublicationYear | 2008 |
Publisher | Institute of Computational Mathematics |
Publisher_xml | – name: Institute of Computational Mathematics |
SSID | ssj0019425 |
Score | 1.890139 |
Snippet | We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 31 |
SubjectTerms | Error analysis (Mathematics) Iterative methods (Mathematics) Numerical analysis |
Title | Using FGMRES to obtain backward stability in mixed precision |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60Jy--xWqVPQgeJCXZJJsEvBSxVqF6sIXeyu5mV3qwAU1B_PXOPpoHiKiXJUyahOZbJjOzO9-H0AURGQ8SKr2IxzBATO-lIhaer1LGU0EEZbreMX6ko2n0MItntRSj6S4peV98fttX8h9UwQa46i7ZPyBb3RQMcAz4wggIw_grjO16__BuDK9RB5EF14n-Fdc1OV0egMjP7H01vX2viw9pOAGsqE6rJF9r4ZS1frhZSFiu7JKOZhSw9CX1FFkUtre6LnevLMfjff-5VU1Iq71sLsNs7lCwuhLrmuS4opFtVBEhoQR_SW07aV86W5ZAWmpVNtZONgwbXtL5_TbP9YAYMvhUf1A3w8AQgz751YpQFhkB3eqB7hPaCAYmu2jbRfF4YCHZQxtyuY92XESPnb98P0DXBiFsEcJlgS1CeI0QrhDCYDUI4QqhQzQd3k5uRp7Tq_BeIAoqPcj88jz2c0W5pd1PY5H4PI2EIBlhiWK-8DmVjINBMqJUENJQsSDLCae-DI9QZ1ks5THCMk6ISpSWTJQRHGc8B_eYZz6XcUiU6KJL_e_neq7CxBDMNVPA1ZrPa16_zC7qtX4J3kM0Tp_8fPoUbdWzpIc65dtKnkEUVvJzA88XJU85Bw |
linkProvider | EuDML: The European Digital Mathematics Library |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+FGMRES+to+obtain+backward+stability+in+mixed+precision&rft.jtitle=Electronic+transactions+on+numerical+analysis&rft.au=Arioli%2C+M&rft.au=Duff%2C+I.S&rft.date=2008-08-01&rft.pub=Institute+of+Computational+Mathematics&rft.issn=1068-9613&rft.eissn=1097-4067&rft.volume=33&rft.spage=31&rft.externalDocID=A229894862 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9613&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9613&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9613&client=summon |