Using FGMRES to obtain backward stability in mixed precision

We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show...

Full description

Saved in:
Bibliographic Details
Published inElectronic transactions on numerical analysis Vol. 33; p. 31
Main Authors Arioli, M, Duff, I.S
Format Journal Article
LanguageEnglish
Published Institute of Computational Mathematics 01.08.2008
Subjects
Online AccessGet full text
ISSN1068-9613
1097-4067

Cover

Loading…
Abstract We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution. Key words. FGMRES, mixed precision arithmetic, hybrid method, direct factorization, iterative methods, large sparse systems, error analysis AMS subject classifications. 65F05, 65F10, 65F50, 65G20, 65G50
AbstractList We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution.
We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable solution. Our aim is to obtain double-precision accuracy even when the system is ill-conditioned. We examine the use of iterative refinement and show by example that it may not converge. We then show both theoretically and practically that the use of FGMRES will give us the result that we desire with fairly mild conditions on the matrix and the direct factorization. We perform extensive experiments on dense matrices using MATLAB and indicate how our work extends to sparse matrix factorization and solution. Key words. FGMRES, mixed precision arithmetic, hybrid method, direct factorization, iterative methods, large sparse systems, error analysis AMS subject classifications. 65F05, 65F10, 65F50, 65G20, 65G50
Audience Academic
Author Arioli, M
Duff, I.S
Author_xml – sequence: 1
  fullname: Arioli, M
– sequence: 2
  fullname: Duff, I.S
BookMark eNptkE1LAzEQhoNUsK3-h4DnlXxsshvwUkpbCxVB7blMvpboblY2AfXfG9GDB3kP8_LwzBxmgWZxjO4MzSlRTVUT2cy-u2wrJSm_QIuUXgihqmZijm6PKcQOb3f3j5snnEc86gwhYg3m9R0mi1MGHfqQP3GhQ_hwFr9NzoQUxniJzj30yV39ziU6bjfP67vq8LDbr1eHqqOC5aoR3FpBrJeaKyqEaoVpiG5rY5hi0HgghmjpQBfggHlPueQeqLJMS-L4El3_3O2gd6cQ_ZgnMENI5rRiTLWqbiUr1s0_Vol1QzDlJT4U_mfhC-yDVik
ContentType Journal Article
Copyright COPYRIGHT 2008 Institute of Computational Mathematics
Copyright_xml – notice: COPYRIGHT 2008 Institute of Computational Mathematics
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1097-4067
ExternalDocumentID A229894862
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID -~9
29G
2WC
5GY
ACGFO
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
E3Z
EBS
EJD
IAO
ICD
IEA
ITC
LO0
OK1
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-g152t-753dd50df6b39155985c70b84cc292a7fa0c0b6eabcc2ea2ff1363fa19d2b60e3
ISSN 1068-9613
IngestDate Wed Mar 19 02:45:09 EDT 2025
Sat Mar 08 20:24:09 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g152t-753dd50df6b39155985c70b84cc292a7fa0c0b6eabcc2ea2ff1363fa19d2b60e3
ParticipantIDs gale_infotracmisc_A229894862
gale_infotracacademiconefile_A229894862
PublicationCentury 2000
PublicationDate 20080801
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 20080801
  day: 01
PublicationDecade 2000
PublicationTitle Electronic transactions on numerical analysis
PublicationYear 2008
Publisher Institute of Computational Mathematics
Publisher_xml – name: Institute of Computational Mathematics
SSID ssj0019425
Score 1.890139
Snippet We consider the triangular factorization of matrices in single-precision arithmetic and show how these factors can be used to obtain a backward stable...
SourceID gale
SourceType Aggregation Database
StartPage 31
SubjectTerms Error analysis (Mathematics)
Iterative methods (Mathematics)
Numerical analysis
Title Using FGMRES to obtain backward stability in mixed precision
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60Jy--xWqVPQgeJCXZJJsEvBSxVqF6sIXeyu5mV3qwAU1B_PXOPpoHiKiXJUyahOZbJjOzO9-H0AURGQ8SKr2IxzBATO-lIhaer1LGU0EEZbreMX6ko2n0MItntRSj6S4peV98fttX8h9UwQa46i7ZPyBb3RQMcAz4wggIw_grjO16__BuDK9RB5EF14n-Fdc1OV0egMjP7H01vX2viw9pOAGsqE6rJF9r4ZS1frhZSFiu7JKOZhSw9CX1FFkUtre6LnevLMfjff-5VU1Iq71sLsNs7lCwuhLrmuS4opFtVBEhoQR_SW07aV86W5ZAWmpVNtZONgwbXtL5_TbP9YAYMvhUf1A3w8AQgz751YpQFhkB3eqB7hPaCAYmu2jbRfF4YCHZQxtyuY92XESPnb98P0DXBiFsEcJlgS1CeI0QrhDCYDUI4QqhQzQd3k5uRp7Tq_BeIAoqPcj88jz2c0W5pd1PY5H4PI2EIBlhiWK-8DmVjINBMqJUENJQsSDLCae-DI9QZ1ks5THCMk6ISpSWTJQRHGc8B_eYZz6XcUiU6KJL_e_neq7CxBDMNVPA1ZrPa16_zC7qtX4J3kM0Tp_8fPoUbdWzpIc65dtKnkEUVvJzA88XJU85Bw
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+FGMRES+to+obtain+backward+stability+in+mixed+precision&rft.jtitle=Electronic+transactions+on+numerical+analysis&rft.au=Arioli%2C+M&rft.au=Duff%2C+I.S&rft.date=2008-08-01&rft.pub=Institute+of+Computational+Mathematics&rft.issn=1068-9613&rft.eissn=1097-4067&rft.volume=33&rft.spage=31&rft.externalDocID=A229894862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9613&client=summon