An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation

We present a new iterative method for the computation of approximate solutions to large-scale continuous-time algebraic Riccati equations. The proposed method is a projection method onto an extended block Krylov subspace, which can be seen as a sum of two block Krylov subspaces in A and [A.sup.-1]....

Full description

Saved in:
Bibliographic Details
Published inElectronic transactions on numerical analysis Vol. 33; p. 53
Main Authors Heyouni, M, Jbilou, K
Format Journal Article
LanguageEnglish
Published Institute of Computational Mathematics 01.08.2008
Subjects
Online AccessGet full text
ISSN1068-9613
1097-4067

Cover

Abstract We present a new iterative method for the computation of approximate solutions to large-scale continuous-time algebraic Riccati equations. The proposed method is a projection method onto an extended block Krylov subspace, which can be seen as a sum of two block Krylov subspaces in A and [A.sup.-1]. We give some theoretical results and present numerical experiments for large and sparse problems. These numerical tests show the efficiency of the proposed scheme as compared to the block Arnoldi and Newton-ADI methods. Key words. Block Arnoldi; Extended block Krylov; Low rank; Riccati equations. AMS subject classifications. 65F10, 65F30
AbstractList We present a new iterative method for the computation of approximate solutions to large-scale continuous-time algebraic Riccati equations. The proposed method is a projection method onto an extended block Krylov subspace, which can be seen as a sum of two block Krylov subspaces in A and [A.sup.-1]. We give some theoretical results and present numerical experiments for large and sparse problems. These numerical tests show the efficiency of the proposed scheme as compared to the block Arnoldi and Newton-ADI methods.
We present a new iterative method for the computation of approximate solutions to large-scale continuous-time algebraic Riccati equations. The proposed method is a projection method onto an extended block Krylov subspace, which can be seen as a sum of two block Krylov subspaces in A and [A.sup.-1]. We give some theoretical results and present numerical experiments for large and sparse problems. These numerical tests show the efficiency of the proposed scheme as compared to the block Arnoldi and Newton-ADI methods. Key words. Block Arnoldi; Extended block Krylov; Low rank; Riccati equations. AMS subject classifications. 65F10, 65F30
Audience Academic
Author Jbilou, K
Heyouni, M
Author_xml – sequence: 1
  fullname: Heyouni, M
– sequence: 2
  fullname: Jbilou, K
BookMark eNptj0tLxDAUhYOM4Mzofwi4jjSPps2yDL5gQBBdD2ly04mmCTYp-PPtoAsXw1ncy-F8l3s2aBVThAu0ppVqiKhkszrtsiVKUn6FNjl_VBVVgtVrlLqI4btAtGBxH5L5xN0UU7Ae6zCkyZfjiF2acNDTACQbHQDnFObiU8w4OVyOgE2Kxcc5zZkUP8IJhX7S3uBXb4wuHsPXrE_INbp0OmS4-Ztb9P5w_7Z7IvuXx-ddtycDrVkhtXBGCOdUJUAI29retpxyJWrmoK-NbIxxTDa67bW1TlhgXJhKU8p5o5jlW3T7e3dYHj746FKZtBl9NoeOMdUq0UqxpO7OpBZZGP1SCpxf_H_ADyBaagU
ContentType Journal Article
Copyright COPYRIGHT 2008 Institute of Computational Mathematics
Copyright_xml – notice: COPYRIGHT 2008 Institute of Computational Mathematics
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1097-4067
ExternalDocumentID A229894864
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID -~9
29G
2WC
5GY
ACGFO
AENEX
ALMA_UNASSIGNED_HOLDINGS
C1A
E3Z
EBS
EJD
IAO
ICD
IEA
ITC
LO0
OK1
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-g152t-54fc44ff904e44d8dbd83139452feb5c67ccf267a8baddf4de234c0a1133792d3
ISSN 1068-9613
IngestDate Wed Mar 19 02:45:09 EDT 2025
Sat Mar 08 20:24:09 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g152t-54fc44ff904e44d8dbd83139452feb5c67ccf267a8baddf4de234c0a1133792d3
ParticipantIDs gale_infotracmisc_A229894864
gale_infotracacademiconefile_A229894864
PublicationCentury 2000
PublicationDate 20080801
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 20080801
  day: 01
PublicationDecade 2000
PublicationTitle Electronic transactions on numerical analysis
PublicationYear 2008
Publisher Institute of Computational Mathematics
Publisher_xml – name: Institute of Computational Mathematics
SSID ssj0019425
Score 2.052179
Snippet We present a new iterative method for the computation of approximate solutions to large-scale continuous-time algebraic Riccati equations. The proposed method...
SourceID gale
SourceType Aggregation Database
StartPage 53
SubjectTerms Differential equations
Iterative methods (Mathematics)
Numerical analysis
Title An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LT9wwEICthVMvLaUgoLTyoRKHVZA3dh6-NapaISTKBSRuyHZsumKbCDY50F_PTOI4oaoq4BJFTrLZ9ecde8bzIOSLFSmmHc86q00klGKRZM5EqRIuyTJVcoaBwmc_05NLcXqVXM1mX6fRJY0-Nn_-GVfyGqrQBlwxSvYFZMOHQgOcA184AmE4PotxgRn6eyM2eqCb23lxX-F20lytbmpQ-3_97twIV-juHa0Bh52HbzR4B6Cz-rJq63YdYaF5fBQ3k9HBfmnQoDe3d-3Ib7Dij-VzmrHkeLf3ULX9LhAmIegznowG1wcQLssnRthTvVzV7WhwHSwQefB_81rp1Kuhr0Ux2DHPQurZieURlFCQsWkfgnpsfZuE4cL6yhyDYOZ8IlkTPs5YwY-wiLsE8nkqNsgGX3TJRM9Z2EWSoiu6G17op93JAuJii7z1K39a9Bjfk5mttsk7rwVQL2PXH0hdVHSgSjuq1FOlgSoFqnRClQaqtHYUeoP-RZUGqtRTpQPVHXL54_vFt5PIl8WIbmCx1USJcEYI5yQTVogyL3WZw2-XIomd1YlJM2NcnGYq1zB5OVHamAvD1GLBeSbjku-Szaqu7B6hi1Qax3GJprRg3CpQb4VkWqKaX-pknxxhh13jXwIGk1E-ZgOexrRh12P_75PDJ3eCkDKTywf_v_yRvBkH1iHZbO5b-wkWe43-3BF9BJrVYP8
linkProvider EuDML: The European Digital Mathematics Library
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+extended+block+Arnoldi+algorithm+for+large-scale+solutions+of+the+continuous-time+algebraic+Riccati+equation&rft.jtitle=Electronic+transactions+on+numerical+analysis&rft.au=Heyouni%2C+M&rft.au=Jbilou%2C+K&rft.date=2008-08-01&rft.pub=Institute+of+Computational+Mathematics&rft.issn=1068-9613&rft.eissn=1097-4067&rft.volume=33&rft.spage=53&rft.externalDocID=A229894864
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1068-9613&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1068-9613&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1068-9613&client=summon