Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humans

The field of computational reinforcement learning (RL) has proved extremely useful in research on human and animal behavior and brain function. However, the simple forms of RL considered in most empirical research do not scale well, making their relevance to complex, real-world behavior unclear. In...

Full description

Saved in:
Bibliographic Details
Published inComputational and Robotic Models of the Hierarchical Organization of Behavior pp. 271 - 291
Main Authors Ribas-Fernandes, José, Botvinick, Matthew, Niv, Yael, Córdova, Natalia, Schapiro, Anna, Diuk, Carlos
Format Reference Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2013
Subjects
Online AccessGet full text
ISBN364239874X
9783642398742
DOI10.1007/978-3-642-39875-9_12

Cover

Abstract The field of computational reinforcement learning (RL) has proved extremely useful in research on human and animal behavior and brain function. However, the simple forms of RL considered in most empirical research do not scale well, making their relevance to complex, real-world behavior unclear. In computational RL, one strategy for addressing the scaling problem is to introduce hierarchical structure, an approach that has intriguing parallels with human behavior. We have begun to investigate the potential relevance of hierarchical RL (HRL) to human and animal behavior and brain function. In the present chapter, we first review two results that show the existence of neural correlates to key predictions from HRL. Then, we focus on one aspect of this work, which deals with the question of how action hierarchies are initially established. Work in HRL suggests that hierarchy learning is accomplished by identifying useful subgoal states, and that this might in turn be accomplished through a structural analysis of the given task domain. We review results from a set of behavioral and neuroimaging experiments, in which we have investigated the relevance of these ideas to human learning and decision making.
AbstractList The field of computational reinforcement learning (RL) has proved extremely useful in research on human and animal behavior and brain function. However, the simple forms of RL considered in most empirical research do not scale well, making their relevance to complex, real-world behavior unclear. In computational RL, one strategy for addressing the scaling problem is to introduce hierarchical structure, an approach that has intriguing parallels with human behavior. We have begun to investigate the potential relevance of hierarchical RL (HRL) to human and animal behavior and brain function. In the present chapter, we first review two results that show the existence of neural correlates to key predictions from HRL. Then, we focus on one aspect of this work, which deals with the question of how action hierarchies are initially established. Work in HRL suggests that hierarchy learning is accomplished by identifying useful subgoal states, and that this might in turn be accomplished through a structural analysis of the given task domain. We review results from a set of behavioral and neuroimaging experiments, in which we have investigated the relevance of these ideas to human learning and decision making.
Author Niv, Yael
Schapiro, Anna
Ribas-Fernandes, José
Botvinick, Matthew
Córdova, Natalia
Diuk, Carlos
Author_xml – givenname: José
  surname: Ribas-Fernandes
  fullname: Ribas-Fernandes, José
– givenname: Matthew
  surname: Botvinick
  fullname: Botvinick, Matthew
– givenname: Yael
  surname: Niv
  fullname: Niv, Yael
– givenname: Natalia
  surname: Córdova
  fullname: Córdova, Natalia
– givenname: Anna
  surname: Schapiro
  fullname: Schapiro, Anna
– givenname: Carlos
  surname: Diuk
  fullname: Diuk, Carlos
BookMark eNo1kM1OAjEUhWvUREFewLjoC4ze_jCdujOgYkJiYliwazptBytDiy3w_FbQ1c09yXdy8g3QRYjBIXRH4J4AiAcpmopVNacVk40YV1IReoZGJWYlPGbyHA3-H768QqOcvwCAQF03IK7RcuoP3jqsg8WTGL73Lj3imXdJJ_Ppje7xh_Ohi8m4jQs7PHc6BR9WR2Ch8xpPnYmbbcx-52PAPuDZfqNDvkGXne6zG_3dIVq8PC8ms2r-_vo2eZpXK8JoGd6wFoBzAqSxEqxouzEj3NYCrJO0Y4w5KXVnhGGt4C2n3PJOGiE7y8mYDRE91eZtKrNcUm2M66wIqF9FqrhQTBUB6qhD_Soq0O0JWuneqUPqVV1zSYsXCuwHCfdiZg
ContentType Reference
Book Chapter
Copyright Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2013
DOI 10.1007/978-3-642-39875-9_12
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 9783642398759
3642398758
Editor Mirolli, Marco
Baldassarre, Gianluca
Editor_xml – sequence: 1
  givenname: Gianluca
  surname: Baldassarre
  fullname: Baldassarre, Gianluca
  email: gianluca.baldassarre@istc.cnr.it
– sequence: 2
  givenname: Marco
  surname: Mirolli
  fullname: Mirolli, Marco
  email: marco.mirolli@istc.cnr.it
EndPage 291
ExternalDocumentID CX6649200020
GroupedDBID -JY
-K2
0D6
0DA
20A
38.
A4J
AABBV
AARVG
AAUBL
AAWHR
ABFTD
ABMLC
ABMNI
ACBPT
ACRMW
AEJLV
AEKFX
AETDV
AEZAY
AFJMS
ALMA_UNASSIGNED_HOLDINGS
ARZOH
AZZ
BBABE
CZZ
EFU
I4C
IEZ
JJU
MA.
SBO
TPJZQ
UZ6
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-g1322-383b00441018d90d7bf5314d670de92f333e99afc7c3b74b424d4f9c79fd4153
ISBN 364239874X
9783642398742
IngestDate Tue Jul 29 20:35:06 EDT 2025
Thu Aug 14 15:53:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g1322-383b00441018d90d7bf5314d670de92f333e99afc7c3b74b424d4f9c79fd4153
PageCount 21
ParticipantIDs springer_books_10_1007_978_3_642_39875_9_12
gale_vrl_6649200020
PublicationCentury 2000
PublicationDate 20130000
2013
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 20130000
PublicationDecade 2010
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
PublicationTitle Computational and Robotic Models of the Hierarchical Organization of Behavior
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
SSID ssj0001066807
Score 1.5032026
Snippet The field of computational reinforcement learning (RL) has proved extremely useful in research on human and animal behavior and brain function. However, the...
SourceID springer
gale
SourceType Publisher
StartPage 271
SubjectTerms Adjacency Relation
Machine learning
Prediction Error
Reinforcement Learning
Slot Machine
Temporal Abstraction
Title Divide and Conquer: Hierarchical Reinforcement Learning and Task Decomposition in Humans
URI http://link.springer.com/10.1007/978-3-642-39875-9_12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wBcgAJieckHbigoxE6ccIOyqFoBh1VBvVl27KBqV4nU7fbAD-B3M-NHHtALXKIqSkbVN8nMZB7fEPIKXKIVjBdJbqs0AQ_BEv02NwnEplmjtWJK44Dzl6_F6hs_3-Sb2ezXqGvpZq_f1D-PzpX8j1bhHOgVp2T_QbO9UDgBv0G_cAQNw_GP4HeaZvW8Am4fQ8zluTnDTnfIv4r7zTwpMkaVqy3OGLuVJ1eT0Uu8INAj9h26F1twa0lMLscaga-m91_u3f6A45SXftbH7QsfyhsHZ9RjJz5WN_DuD2xnuoPy9hxJF9X4Wf2IM2G-jrHsWvBUbnfl5I9fWEfxWrtsZmSF9eOVa3V9CXYTm-NDBxomcVx1YpLUwAUTfVIjftuywnETikAYHuyr39cSXHXmF3395QXGjR8gJXFikkqGhu0pv_ZyUxS8ylxN9hY5gXgvT-fk5P3Z-efvQ7YOIrMyFaPZy2PSB7c-Laq7WGV9n9zuyYMfkJltF-ReXN1BgyVfkLsjHsqHZOMVQAFNGhTwjo7hpxP4aYTf3YDw0wn8dNtSD_8jsv50tl6ukrByI_nh0hKsZGjHOfK4mSo1QjdgpLkpRGpslTWMMVtVqqlFzbTgmmfc8KaqRdUYfNEfk3nbtfYJoQ1TRpTaQvijeZnVpWqEsqUyueJC2_SULBAredhdyUEBp-R1hE7im3UtI6024C2ZBLylw1si3k-PynhG7gyP1HMy3-9u7AuIHPf6ZVDrb2Ffaww
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computational+and+Robotic+Models+of+the+Hierarchical+Organization+of+Behavior&rft.au=Ribas-Fernandes%2C+Jos%C3%A9&rft.au=Botvinick%2C+Matthew&rft.au=Niv%2C+Yael&rft.au=C%C3%B3rdova%2C+Natalia&rft.atitle=Divide+and+Conquer%3A+Hierarchical+Reinforcement+Learning+and+Task+Decomposition+in+Humans&rft.date=2013-01-01&rft.isbn=9783642398759&rft.spage=271&rft.epage=291&rft_id=info:doi/10.1007%2F978-3-642-39875-9_12&rft.externalDocID=CX6649200020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642398742/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642398742/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9783642398742/sc.gif&client=summon&freeimage=true