Heterostructured d‐Ti3C2/TiO2/g‐C3N4 Nanocomposites with Enhanced Visible‐Light Photocatalytic Hydrogen Production Activity

The construction of a 2D–2D heterostructured composite is an efficient method to improve the photocatalytic hydrogen generation capability under visible light. In this work, simple heat treatment of a mixture of g‐C3N4 and delaminated Ti3C2 was used to prepare a series of d‐Ti3C2/TiO2/g‐C3N4 nanocom...

Full description

Saved in:
Bibliographic Details
Published inChemSusChem Vol. 11; no. 24; pp. 4226 - 4236
Main Authors Zhang, Mengyuan, Qin, Jiaqian, Rajendran, Saravanan, Zhang, Xinyu, Liu, Riping
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 20.12.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The construction of a 2D–2D heterostructured composite is an efficient method to improve the photocatalytic hydrogen generation capability under visible light. In this work, simple heat treatment of a mixture of g‐C3N4 and delaminated Ti3C2 was used to prepare a series of d‐Ti3C2/TiO2/g‐C3N4 nanocomposites. The d‐Ti3C2 not only acted as the support layer and resource to glue the anatase TiO2 particles and g‐C3N4 layers together but also served as the fast electron transfer channel to improve the photogenerated charge carriers’ separation efficiency. By tuning the g‐C3N4/d‐Ti3C2 mass ratio, heating temperature and soaking time, the d‐Ti3C2/TiO2/g‐C3N4 nanocomposite 4‐1‐350‐1 achieved an excellent H2 evolution rate of 1.62 mmol h−1 g−1 driven by a 300 W Xe lamp with a 420 nm cutoff filter. The heterostructured composite photocatalyst was stable even after 3 cycles, representing excellent potential for the practical application in solar energy conversion. Heterostructured d‐Ti3C2/TiO2/g‐C3N4! The photocatalytic activities of Ti3C2 and g‐C3N4 are critically dependent on the microstructure. A facile heating treatment of the Ti3C2 and g‐C3N4 mixture is used to obtain heterostructured d‐Ti3C2/TiO2/g‐C3N4 nanocomposites (see image). The TiO2 particles and g‐C3N4 nanosheets are glued together by the delaminated Ti3C2 layers, demonstrating excellent performance in visible‐light photocatalytic H2 evolution.
AbstractList The construction of a 2D–2D heterostructured composite is an efficient method to improve the photocatalytic hydrogen generation capability under visible light. In this work, simple heat treatment of a mixture of g‐C3N4 and delaminated Ti3C2 was used to prepare a series of d‐Ti3C2/TiO2/g‐C3N4 nanocomposites. The d‐Ti3C2 not only acted as the support layer and resource to glue the anatase TiO2 particles and g‐C3N4 layers together but also served as the fast electron transfer channel to improve the photogenerated charge carriers’ separation efficiency. By tuning the g‐C3N4/d‐Ti3C2 mass ratio, heating temperature and soaking time, the d‐Ti3C2/TiO2/g‐C3N4 nanocomposite 4‐1‐350‐1 achieved an excellent H2 evolution rate of 1.62 mmol h−1 g−1 driven by a 300 W Xe lamp with a 420 nm cutoff filter. The heterostructured composite photocatalyst was stable even after 3 cycles, representing excellent potential for the practical application in solar energy conversion.
The construction of a 2D–2D heterostructured composite is an efficient method to improve the photocatalytic hydrogen generation capability under visible light. In this work, simple heat treatment of a mixture of g‐C3N4 and delaminated Ti3C2 was used to prepare a series of d‐Ti3C2/TiO2/g‐C3N4 nanocomposites. The d‐Ti3C2 not only acted as the support layer and resource to glue the anatase TiO2 particles and g‐C3N4 layers together but also served as the fast electron transfer channel to improve the photogenerated charge carriers’ separation efficiency. By tuning the g‐C3N4/d‐Ti3C2 mass ratio, heating temperature and soaking time, the d‐Ti3C2/TiO2/g‐C3N4 nanocomposite 4‐1‐350‐1 achieved an excellent H2 evolution rate of 1.62 mmol h−1 g−1 driven by a 300 W Xe lamp with a 420 nm cutoff filter. The heterostructured composite photocatalyst was stable even after 3 cycles, representing excellent potential for the practical application in solar energy conversion. Heterostructured d‐Ti3C2/TiO2/g‐C3N4! The photocatalytic activities of Ti3C2 and g‐C3N4 are critically dependent on the microstructure. A facile heating treatment of the Ti3C2 and g‐C3N4 mixture is used to obtain heterostructured d‐Ti3C2/TiO2/g‐C3N4 nanocomposites (see image). The TiO2 particles and g‐C3N4 nanosheets are glued together by the delaminated Ti3C2 layers, demonstrating excellent performance in visible‐light photocatalytic H2 evolution.
Author Zhang, Mengyuan
Zhang, Xinyu
Qin, Jiaqian
Rajendran, Saravanan
Liu, Riping
Author_xml – sequence: 1
  givenname: Mengyuan
  surname: Zhang
  fullname: Zhang, Mengyuan
  organization: Yanshan University
– sequence: 2
  givenname: Jiaqian
  orcidid: 0000-0002-9166-3533
  surname: Qin
  fullname: Qin, Jiaqian
  email: jiaqian.q@chula.ac.th
  organization: Vidyasirimedhi Institute of Science and Technology
– sequence: 3
  givenname: Saravanan
  surname: Rajendran
  fullname: Rajendran, Saravanan
  organization: Universidad de Tarapacá
– sequence: 4
  givenname: Xinyu
  surname: Zhang
  fullname: Zhang, Xinyu
  email: xyzhang@ysu.edu.cn
  organization: Yanshan University
– sequence: 5
  givenname: Riping
  surname: Liu
  fullname: Liu, Riping
  organization: Yanshan University
BookMark eNo9kN9KwzAYxYMouE1vvS543S1J03-Xo0wnjG2wKd6FNE3bjK6ZSeronb6Bz-iTmDHZ1fkO_M534AzBdataAcADgmMEIZ5wY_gYQ5RAjBNyBQYoiYgfRuT9-nIH6BYMjdlBGME0igbgey6s0MpY3XHbaVF4xe_Xz1YGGZ5s5QpPKmezYEm8JWsVV_uDMtIK4x2lrb1ZW7OWu9CbNDJvhGMXsqqtt66VVZxZ1vRWcm_eF1pVovXWWhWuSKrWmzr5lLa_Azcla4y4_9cReH2abbO5v1g9v2TThV8hFBI_wCiNWcpKWOCEY5zHECNchGmASpZywmBBSI4FIzyKYyEYCpOcsZIXKMUwCYMReDz_PWj10Qlj6U51unWVFDuWBFECU0elZ-ooG9HTg5Z7pnuKID1tTE8b08vGNNtssosL_gC11njP
ContentType Journal Article
Copyright 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
8BQ
8FD
JG9
K9.
DOI 10.1002/cssc.201802284
DatabaseName Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
DatabaseTitle Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1864-564X
EndPage 4236
ExternalDocumentID CSSC201802284
Genre article
GrantInformation_xml – fundername: Thailand Research Fund
  funderid: RSA6080017
GroupedDBID ---
05W
0R~
1OC
29B
33P
4.4
5GY
5VS
66C
77Q
8-1
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AZVAB
BDRZF
BFHJK
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
HGLYW
HZ~
IX1
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
O9-
OIG
P2W
P4E
PQQKQ
ROL
SUPJJ
SV3
W99
WBKPD
WOHZO
WXSBR
WYJ
XV2
ZZTAW
~S-
7SR
8BQ
8FD
JG9
K9.
ID FETCH-LOGICAL-g1154-32197a9af0d28c22b70212d5931fa9c4a0d44b2ea4c677eea158baafcd1920853
IEDL.DBID DR2
ISSN 1864-5631
IngestDate Thu Aug 29 22:25:42 EDT 2024
Sat Aug 24 01:13:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-g1154-32197a9af0d28c22b70212d5931fa9c4a0d44b2ea4c677eea158baafcd1920853
ORCID 0000-0002-9166-3533
PQID 2158436809
PQPubID 986333
PageCount 11
ParticipantIDs proquest_journals_2158436809
wiley_primary_10_1002_cssc_201802284_CSSC201802284
PublicationCentury 2000
PublicationDate December 20, 2018
PublicationDateYYYYMMDD 2018-12-20
PublicationDate_xml – month: 12
  year: 2018
  text: December 20, 2018
  day: 20
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle ChemSusChem
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2011; 115
2017; 7
2017; 8
2017; 41
2013; 25
2013; 1
1991; 353
2017; 4
2015; 347
2015; 344
2013; 401
2017; 89
2017; 391
2012; 16
1994; 28
2012; 59
2012; 14
2013; 5
2014; 136
2017; 9
2018; 6
2012; 71
2013; 15
2001; 293
1979; 277
2013; 117
2011; 21
2011; 23
2017; 121
2017; 322
2012; 22
2014; 6
1985; 57
2018; 221
2009; 25
2007; 129
2015; 6
2015; 17
2014; 516
2015; 3
2016; 10
2004
2017; 29
2012; 37
2016; 18
2017; 695
2015; 8
2016; 6
2012; 2
2015; 27
2016; 2
2016; 3
2013; 38
2010; 257
2017; 13
2009; 8
1977; 99
2018; 51
2007; 41
2014; 39
2012; 48
2018; 11
2017; 189
2018; 10
2016; 8
2016; 9
1986; 209
References_xml – volume: 27
  start-page: 5314
  year: 2015
  end-page: 5323
  publication-title: Chem. Mater.
– volume: 4
  start-page: 1700577
  year: 2017
  publication-title: Adv. Mater. Interfaces
– volume: 2
  start-page: 1600255
  year: 2016
  publication-title: Adv. Electron. Mater.
– volume: 22
  start-page: 8083
  year: 2012
  end-page: 8091
  publication-title: J. Mater. Chem.
– volume: 9
  start-page: 11577
  year: 2017
  end-page: 11586
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 1870
  year: 2013
  end-page: 1875
  publication-title: Nanoscale
– volume: 293
  start-page: 269
  year: 2001
  publication-title: Science
– volume: 136
  start-page: 4113
  year: 2014
  end-page: 4116
  publication-title: J. Am. Chem. Soc.
– volume: 22
  start-page: 4763
  year: 2012
  end-page: 4770
  publication-title: Adv. Funct. Mater.
– volume: 48
  start-page: 12017
  year: 2012
  end-page: 12019
  publication-title: Chem. Commun.
– volume: 28
  start-page: 934
  year: 1994
  end-page: 938
  publication-title: Environ. Sci. Technol.
– volume: 277
  start-page: 637
  year: 1979
  publication-title: Nature
– volume: 516
  start-page: 78
  year: 2014
  publication-title: Nature
– volume: 10
  start-page: 9193
  year: 2016
  end-page: 9200
  publication-title: ACS Nano
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 14
  start-page: 16745
  year: 2012
  end-page: 16752
  publication-title: Phys. Chem. Chem. Phys.
– volume: 344
  start-page: 188
  year: 2015
  end-page: 195
  publication-title: Appl. Surf. Sci.
– volume: 23
  start-page: 4248
  year: 2011
  end-page: 4253
  publication-title: Adv. Mater.
– volume: 17
  start-page: 8070
  year: 2015
  end-page: 8077
  publication-title: Phys. Chem. Chem. Phys.
– volume: 23
  start-page: 4344
  year: 2011
  end-page: 4348
  publication-title: Chem. Mater.
– volume: 129
  start-page: 13790
  year: 2007
  end-page: 13791
  publication-title: J. Am. Chem. Soc.
– start-page: 26
  year: 2004
  end-page: 27
  publication-title: Chem. Commun.
– volume: 59
  start-page: 121
  year: 2012
  end-page: 127
  publication-title: Electrochim. Acta
– volume: 117
  start-page: 7178
  year: 2013
  end-page: 7185
  publication-title: J. Phys. Chem. C
– volume: 89
  start-page: 16
  year: 2017
  end-page: 25
  publication-title: Mater. Res. Bull.
– volume: 8
  start-page: 11034
  year: 2016
  end-page: 11043
  publication-title: Nanoscale
– volume: 9
  start-page: 34844
  year: 2017
  end-page: 34854
  publication-title: ACS Appl. Mater. Interfaces
– volume: 353
  start-page: 737
  year: 1991
  publication-title: Nature
– volume: 51
  start-page: 275302
  year: 2018
  publication-title: J. Phys. D
– volume: 347
  start-page: 970
  year: 2015
  publication-title: Science
– volume: 3
  start-page: 336
  year: 2016
  end-page: 347
  publication-title: Inorg. Chem. Front.
– volume: 6
  start-page: 7171
  year: 2014
  end-page: 7179
  publication-title: ACS Appl. Mater. Interfaces
– volume: 15
  start-page: 16883
  year: 2013
  end-page: 16890
  publication-title: Phys. Chem. Chem. Phys.
– volume: 6
  start-page: 46929
  year: 2016
  end-page: 46951
  publication-title: RSC Adv.
– volume: 13
  start-page: 1603938
  year: 2017
  publication-title: Small
– volume: 322
  start-page: 435
  year: 2017
  end-page: 444
  publication-title: Chem. Eng. J.
– volume: 115
  start-page: 7355
  year: 2011
  end-page: 7363
  publication-title: J. Phys. Chem. C
– volume: 5
  start-page: 1687
  year: 2017
  end-page: 1701
  publication-title: Energy Technol.
– volume: 25
  start-page: 2452
  year: 2013
  end-page: 2456
  publication-title: Adv. Mater.
– volume: 7
  start-page: 3275
  year: 2017
  end-page: 3282
  publication-title: Catal. Sci. Technol.
– volume: 401
  start-page: 70
  year: 2013
  end-page: 79
  publication-title: J. Colloid Interface Sci.
– volume: 5
  start-page: 16748
  year: 2017
  end-page: 16756
  publication-title: J. Mater. Chem. A
– volume: 41
  start-page: 1
  year: 2017
  end-page: 9
  publication-title: Nano Energy
– volume: 9
  start-page: 1490
  year: 2016
  end-page: 1497
  publication-title: ChemSusChem
– volume: 57
  start-page: 603
  year: 1985
  end-page: 619
  publication-title: Pure Appl. Chem.
– volume: 8
  start-page: 7580
  year: 2016
  end-page: 7587
  publication-title: Nanoscale
– volume: 257
  start-page: 887
  year: 2010
  end-page: 898
  publication-title: Appl. Surf. Sci.
– volume: 221
  start-page: 97
  year: 2018
  end-page: 107
  publication-title: Appl. Catal. B
– volume: 695
  start-page: 818
  year: 2017
  end-page: 826
  publication-title: J. Alloys Compd.
– volume: 6
  start-page: 5881
  year: 2015
  publication-title: Nat. Commun.
– volume: 16
  start-page: 61
  year: 2012
  end-page: 64
  publication-title: Electrochem. Commun.
– volume: 41
  start-page: 606
  year: 2007
  end-page: 612
  publication-title: Environ. Sci. Technol.
– volume: 21
  start-page: 14398
  year: 2011
  end-page: 14401
  publication-title: J. Mater. Chem.
– volume: 121
  start-page: 22114
  year: 2017
  end-page: 22122
  publication-title: J. Phys. Chem. C
– volume: 2
  start-page: 940
  year: 2012
  end-page: 948
  publication-title: ACS Catal.
– volume: 99
  start-page: 303
  year: 1977
  end-page: 304
  publication-title: J. Am. Chem. Soc.
– volume: 25
  start-page: 10397
  year: 2009
  end-page: 10401
  publication-title: Langmuir
– volume: 189
  start-page: 156
  year: 2017
  end-page: 159
  publication-title: Mater. Lett.
– volume: 8
  start-page: 1199
  year: 2015
  end-page: 1209
  publication-title: Nano Res.
– volume: 39
  start-page: 14927
  year: 2014
  end-page: 14934
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 6051
  year: 2016
  end-page: 6060
  publication-title: ACS Appl. Mater. Interfaces
– volume: 1
  start-page: 11754
  year: 2013
  end-page: 11761
  publication-title: J. Mater. Chem. A
– volume: 3
  start-page: 18622
  year: 2015
  end-page: 18635
  publication-title: J. Mater. Chem. A
– volume: 11
  start-page: 4149
  year: 2018
  end-page: 4168
  publication-title: Nano Res.
– volume: 10
  start-page: 5950
  year: 2018
  end-page: 5964
  publication-title: Nanoscale
– volume: 29
  start-page: 1605148
  year: 2017
  publication-title: Adv. Mater.
– volume: 6
  start-page: 4102
  year: 2018
  end-page: 4110
  publication-title: J. Mater. Chem. A
– volume: 38
  start-page: 6960
  year: 2013
  end-page: 6969
  publication-title: Int. J. Hydrogen Energy
– volume: 391
  start-page: 72
  year: 2017
  end-page: 123
  publication-title: Appl. Surf. Sci.
– volume: 8
  start-page: 13907
  year: 2017
  publication-title: Nat. Commun.
– volume: 18
  start-page: 28502
  year: 2016
  end-page: 28514
  publication-title: Phys. Chem. Chem. Phys.
– volume: 71
  start-page: 10
  year: 2012
  end-page: 16
  publication-title: Electrochim. Acta
– volume: 209
  start-page: 417
  year: 1986
  end-page: 428
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 37
  start-page: 11072
  year: 2012
  end-page: 11080
  publication-title: Int. J. Hydrogen Energy
SSID ssj0060966
Score 2.2922535
Snippet The construction of a 2D–2D heterostructured composite is an efficient method to improve the photocatalytic hydrogen generation capability under visible light....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 4226
SubjectTerms 2D materials
Anatase
Carbon nitride
Charge efficiency
Current carriers
Electron transfer
graphitic carbon nitride
Heat treatment
heterostructured composites
hydrogen evolution
Hydrogen production
Nanocomposites
Photocatalysis
Solar energy conversion
Titanium dioxide
Title Heterostructured d‐Ti3C2/TiO2/g‐C3N4 Nanocomposites with Enhanced Visible‐Light Photocatalytic Hydrogen Production Activity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcssc.201802284
https://www.proquest.com/docview/2158436809/abstract/
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LT8JAEMc3hotefBsfaPbgtbRstw-OpIEQo0gEDLdmd7sFomkNhQOe9Bv4Gf0kzrRQxaPeumk3bXdnpv9OZn9LyLVoCCuKpW8IpmODe5E2hKPqhg9qQ4INCGbjauS7rtsZ8puRM_qxir_gQ5QJN_SMPF6jgwuZmd_QUJVliCBEghmEWAjCSNNDVfRQ8qNc0Of58iLf5Ybj2vU1tdFi5mb3DX35U6Xmn5n2HhHrByyqS55qi7msqddf7Mb_vME-2V1pUNosjOaAbOnkkGwH663fjsh7B4tk0oItu5jpiEafbx-DqR0wczC9Z-YYmoHd5RSCc4pV6Vj6pTOKWV3aSiZ5WQF9nIK_PWu49hZTALQ3Sedpni9awp1pZxnNUrBf2iuos2AhtKmK3SyOybDdGgQdY7VXgzFGoI9hQ-TzYOJjK2K-Ykx6yI6PnIZdj0VDcbAIziXTgivX87QWdceXQsQqAokJss8-IZUkTfQpoZ4C0SJ95Wgr5i7jwgZdpuOGE0uGP0BnpLqeq3DlcFkIysVHmL4Fp1k-6OFLgesICzAzC3G4w3K4w6DfD8rW-V86XZAdPMbiFmZVSQUmRV-CRJnLq9wMvwDcveNg
link.rule.ids 315,786,790,1382,27957,27958,46329,46753
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtlkO5sCOWAj5wDU0dZ-mxiloFaAuCFnGLbMdpK1CCuhzgBG_AM_IkzCRNoRzhmMVKYs9Mfo_Gnwk5EzVhRrH0DMF0bHA30oawVdXwQG1IsAHBLFyN3O44QY9fPthFNSGuhcn5EPOEG3pGFq_RwTEhXfmmhqrxGBmEiDCDGLtMVsHn7WxWdTsnSDmg0LMFRp7DDduxqgW30WSVxfYLCvOnTs1-NM0NIotXzOtLHs-nE3muXn_RG__1DZtkfSZDaT23my2ypJNtUvKL3d92yHuAdTJpjpedjnREo8-3j-7Q8lmlO7xmlT4c-laHU4jPKRamY_WXHlNM7NJGMsgqC-j9EFzuScO9LcwC0JtBOkmzlNELPJkGL9EoBROmNzl4FoyE1lW-ocUu6TUbXT8wZts1GH1k-hgWBD8Xxj42I-YpxqSL-PjIrlnVWNQUB6PgXDItuHJcV2tRtT0pRKwiUJmg_Kw9spKkid4n1FWgW6SnbG3G3GFcWCDNdFyzY8lwDnRAysVghTOfG4cgXjzk6ZtwmWW9Hj7nxI4wZzOzELs7nHd36N_d-fOjw780OiWloNtuha2LztURWcPzWOvCzDJZgQHSx6BYJvIks8kvJAHngg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3JTsMwEIYtFgm4sCN2fOAamtrO0iMKVGUrFRTELfJaKlCDuhzgBG_AM_IkzCRtWY5wdBIriT0z-TMafyZkX1akb5yKPcms80RkrCcDXfZiUBsKbEAyjquRL-ph7Uac3gV331bxF3yIccINPSOP1-jgT8aVvqChutdDBCESzCDETpJpEXKGdn10NQZIhSDQ8_VFcSi8IOTlEbbRZ6Wf_X8IzO8yNf_OVBeIHD1hUV7ycDDoqwP98gve-J9XWCTzQxFKDwurWSITtrNMZpPR3m8r5K2GVTJZAZcddK2h5uP1vdnmCSs125es1IJmwuuCQnTOsCwda79sj2Jalx537vO6AnrbBod7tHDtOeYAaOM-62d5wugZ7kxrz6abgQHTRoGdBROhh7rYzmKV3FSPm0nNG27W4LWQ6ONxCH0RzLzzDYs1YypCeLwJKrzsZEULMAkhFLNS6DCKrJXlIFZSOm1AY4Lu42tkqpN17DqhkQbVomIdWN-JkAnJQZhZVwmcYvgHtEG2R3OVDj2ul4J0iZGm78Nplg96-lTwOtKCzMxSHO50PNxpcn2djFubf-m0R2YaR9X0_KR-tkXm8DAWujB_m0zB_NgdkCt9tZtb5CeKy-Yx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterostructured+d%E2%80%90Ti3C2%2FTiO2%2Fg%E2%80%90C3N4+Nanocomposites+with+Enhanced+Visible%E2%80%90Light+Photocatalytic+Hydrogen+Production+Activity&rft.jtitle=ChemSusChem&rft.au=Zhang%2C+Mengyuan&rft.au=Qin%2C+Jiaqian&rft.au=Rajendran%2C+Saravanan&rft.au=Zhang%2C+Xinyu&rft.date=2018-12-20&rft.issn=1864-5631&rft.eissn=1864-564X&rft.volume=11&rft.issue=24&rft.spage=4226&rft.epage=4236&rft_id=info:doi/10.1002%2Fcssc.201802284&rft.externalDBID=10.1002%252Fcssc.201802284&rft.externalDocID=CSSC201802284
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1864-5631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1864-5631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1864-5631&client=summon