Differential Equations.--Shape optimization for a nonlinear elliptic problem related to thermal insulation
In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal insulation problem with a convection term, where [OMEGA] is a bounded connected open set in [Please download the PDF to view the mathematical...
Saved in:
Published in | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni Vol. 35; no. 1; p. 105 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
European Mathematical Society Publishing House
01.03.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1120-6330 |
DOI | 10.4171/RLM/1035 |
Cover
Abstract | In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal insulation problem with a convection term, where [OMEGA] is a bounded connected open set in [Please download the PDF to view the mathematical expression] and [Please download the PDF to view the mathematical expression] is a compact set. The Euler-Lagrange equation relative to [Please download the PDF to view the mathematical expression] is a p-Laplace equation, [Please download the PDF to view the mathematical expression], with a Robin boundary condition with parameter [beta] > 0. The main aim is to study extremum problems for [Please download the PDF to view the mathematical expression], among domains D with given geometrical constraints and [OMEGA] \ D of fixed thickness. In the planar case, we show that under perimeter constraint the disk maximizes [Please download the PDF to view the mathematical expression]. In the n -dimensional case we restrict our analysis to convex sets showing that the same is true for the ball but under different geometrical constraints. KEYWORDS.--Shape optimization, optimal insulation, mixed boundary conditions. MATHEMATICS SUBJECT CLASSIFICATION 2020. - 35J25 (primary); 49Q10 (secondary). |
---|---|
AbstractList | In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal insulation problem with a convection term, where [OMEGA] is a bounded connected open set in [Please download the PDF to view the mathematical expression] and [Please download the PDF to view the mathematical expression] is a compact set. The Euler-Lagrange equation relative to [Please download the PDF to view the mathematical expression] is a p-Laplace equation, [Please download the PDF to view the mathematical expression], with a Robin boundary condition with parameter [beta] > 0. The main aim is to study extremum problems for [Please download the PDF to view the mathematical expression], among domains D with given geometrical constraints and [OMEGA] \ D of fixed thickness. In the planar case, we show that under perimeter constraint the disk maximizes [Please download the PDF to view the mathematical expression]. In the n -dimensional case we restrict our analysis to convex sets showing that the same is true for the ball but under different geometrical constraints. KEYWORDS.--Shape optimization, optimal insulation, mixed boundary conditions. MATHEMATICS SUBJECT CLASSIFICATION 2020. - 35J25 (primary); 49Q10 (secondary). |
Audience | Academic |
Author | Barbato, Rosa |
Author_xml | – sequence: 1 fullname: Barbato, Rosa |
BookMark | eNotUM1qAyEY9JBCk7TQR_AFNtHV1XgMafoDWwr9OZdv42dicDV1zaVP3yUtcxiYYWZgZmQSU0RC7jhbSK758q19WXImmgmZcl6zSgnBrslsGI6MSa3qZkqO9945zBiLh0C332coPsVhUVXvBzghTafie_9zUalLmQIdR4KPCJliCH70d_SUUxewpxkDFLS0JFoOmPux0sfhHC7xG3LlIAx4-89z8vmw_dg8Ve3r4_Nm3VZ7zkypOmVEJy04ZpW01q2E08xpZLbRK2cRZadcLaTVYFCBNDUI3SmUtjYoEMScLP569xDwy0eXSobdCIu9340POT_q61XNpOGGNeIXrM5fLg |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 European Mathematical Society Publishing House |
Copyright_xml | – notice: COPYRIGHT 2024 European Mathematical Society Publishing House |
DOI | 10.4171/RLM/1035 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | A820491905 |
GroupedDBID | -~X 123 AENEX AKZPS ALMA_UNASSIGNED_HOLDINGS AMVHM AUREJ E3Z EBS EJD GROUPED_DOAJ H13 IAO ITC OK1 REW VH7 |
ID | FETCH-LOGICAL-g109t-b693b4daf0d64ddf83f70f7e0d578fdee4b6f234d7a9e6a492a37b6e4d29e3ea3 |
ISSN | 1120-6330 |
IngestDate | Tue Jun 10 21:02:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-g109t-b693b4daf0d64ddf83f70f7e0d578fdee4b6f234d7a9e6a492a37b6e4d29e3ea3 |
ParticipantIDs | gale_infotracacademiconefile_A820491905 |
PublicationCentury | 2000 |
PublicationDate | 20240301 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 20240301 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni |
PublicationYear | 2024 |
Publisher | European Mathematical Society Publishing House |
Publisher_xml | – name: European Mathematical Society Publishing House |
SSID | ssj0047625 |
Score | 2.2927434 |
Snippet | In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal... |
SourceID | gale |
SourceType | Aggregation Database |
StartPage | 105 |
SubjectTerms | Analysis Differential equations |
Title | Differential Equations.--Shape optimization for a nonlinear elliptic problem related to thermal insulation |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6uGwHtLFNY4zJByQOkSFNnKQ-og1UTZQDA4kbsmN7yzRaVtwL--f3XvzaBMEBdokqK36N8n557_l9MrbrLMBEWSNQdwrpR1oo6wpR-0wZMFFHmUbXwOS0HF_Ib5fF5WDwt19dEsx-ffdoXcn_cBXWgK9YJfsMzq6IwgL8Bv7CFTgM1yfx-CtNNwno9j76s6DEHCG-_9Q3LpmBOLimOsuYLZlMY2cMPU-wEecNdmulkTKxqgXMz2iMgrz-HRPVO9Ytm9WG0CQWs6Zw1kSbXg-E9V3rVMQyrAZP-rVr9oF5U9tgNny3NNHUOVonLqHwOW5tOp_q3Oh2uFNyNrvVfbdEJru8rOgrW8YSJqvus9jdhDJRey628WxBUagogId4nM0pVkMSOjY0uYfEKG6Hbcn2AzUghxWqgbOTSeuXoO3322ofgukjFZhDxQu2nlVVjPHjeTyqcQlaomgn89ADxc7FSPoACB8gWVLjPYPk_DXboJMEP4yweMMGbrrJXnUv4vYt-9UHCH8AEN4HCAeAcM1XAOFLgHACCCeA8DDjBBDeAeQduzg-Ov8yFjRcQ_wYpioIU6rcSKt9aktprR_lvkp95VILMtxb56QpfZZLW2nlSi0VfLSVKZ20mXK50_l7tgaP5D4wXqMdqWtXFkCqKEbGwIdfmlR6-AvQqFtsD1_TFbIozHWtqfIDdmPzsauOFR-ffOc2e9mh7hNbC_OF2wHzMJjPLRv_ATw7cQs |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Equations.--Shape+optimization+for+a+nonlinear+elliptic+problem+related+to+thermal+insulation&rft.jtitle=Atti+della+Accademia+nazionale+dei+Lincei.+Rendiconti+Lincei.+Matematica+e+applicazioni&rft.au=Barbato%2C+Rosa&rft.date=2024-03-01&rft.pub=European+Mathematical+Society+Publishing+House&rft.issn=1120-6330&rft.volume=35&rft.issue=1&rft.spage=105&rft_id=info:doi/10.4171%2FRLM%2F1035&rft.externalDocID=A820491905 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-6330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-6330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-6330&client=summon |