Differential Equations.--Shape optimization for a nonlinear elliptic problem related to thermal insulation

In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal insulation problem with a convection term, where [OMEGA] is a bounded connected open set in [Please download the PDF to view the mathematical...

Full description

Saved in:
Bibliographic Details
Published inAtti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni Vol. 35; no. 1; p. 105
Main Author Barbato, Rosa
Format Journal Article
LanguageEnglish
Published European Mathematical Society Publishing House 01.03.2024
Subjects
Online AccessGet full text
ISSN1120-6330
DOI10.4171/RLM/1035

Cover

Abstract In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal insulation problem with a convection term, where [OMEGA] is a bounded connected open set in [Please download the PDF to view the mathematical expression] and [Please download the PDF to view the mathematical expression] is a compact set. The Euler-Lagrange equation relative to [Please download the PDF to view the mathematical expression] is a p-Laplace equation, [Please download the PDF to view the mathematical expression], with a Robin boundary condition with parameter [beta] > 0. The main aim is to study extremum problems for [Please download the PDF to view the mathematical expression], among domains D with given geometrical constraints and [OMEGA] \ D of fixed thickness. In the planar case, we show that under perimeter constraint the disk maximizes [Please download the PDF to view the mathematical expression]. In the n -dimensional case we restrict our analysis to convex sets showing that the same is true for the ball but under different geometrical constraints. KEYWORDS.--Shape optimization, optimal insulation, mixed boundary conditions. MATHEMATICS SUBJECT CLASSIFICATION 2020. - 35J25 (primary); 49Q10 (secondary).
AbstractList In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal insulation problem with a convection term, where [OMEGA] is a bounded connected open set in [Please download the PDF to view the mathematical expression] and [Please download the PDF to view the mathematical expression] is a compact set. The Euler-Lagrange equation relative to [Please download the PDF to view the mathematical expression] is a p-Laplace equation, [Please download the PDF to view the mathematical expression], with a Robin boundary condition with parameter [beta] > 0. The main aim is to study extremum problems for [Please download the PDF to view the mathematical expression], among domains D with given geometrical constraints and [OMEGA] \ D of fixed thickness. In the planar case, we show that under perimeter constraint the disk maximizes [Please download the PDF to view the mathematical expression]. In the n -dimensional case we restrict our analysis to convex sets showing that the same is true for the ball but under different geometrical constraints. KEYWORDS.--Shape optimization, optimal insulation, mixed boundary conditions. MATHEMATICS SUBJECT CLASSIFICATION 2020. - 35J25 (primary); 49Q10 (secondary).
Audience Academic
Author Barbato, Rosa
Author_xml – sequence: 1
  fullname: Barbato, Rosa
BookMark eNotUM1qAyEY9JBCk7TQR_AFNtHV1XgMafoDWwr9OZdv42dicDV1zaVP3yUtcxiYYWZgZmQSU0RC7jhbSK758q19WXImmgmZcl6zSgnBrslsGI6MSa3qZkqO9945zBiLh0C332coPsVhUVXvBzghTafie_9zUalLmQIdR4KPCJliCH70d_SUUxewpxkDFLS0JFoOmPux0sfhHC7xG3LlIAx4-89z8vmw_dg8Ve3r4_Nm3VZ7zkypOmVEJy04ZpW01q2E08xpZLbRK2cRZadcLaTVYFCBNDUI3SmUtjYoEMScLP569xDwy0eXSobdCIu9340POT_q61XNpOGGNeIXrM5fLg
ContentType Journal Article
Copyright COPYRIGHT 2024 European Mathematical Society Publishing House
Copyright_xml – notice: COPYRIGHT 2024 European Mathematical Society Publishing House
DOI 10.4171/RLM/1035
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID A820491905
GroupedDBID -~X
123
AENEX
AKZPS
ALMA_UNASSIGNED_HOLDINGS
AMVHM
AUREJ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
IAO
ITC
OK1
REW
VH7
ID FETCH-LOGICAL-g109t-b693b4daf0d64ddf83f70f7e0d578fdee4b6f234d7a9e6a492a37b6e4d29e3ea3
ISSN 1120-6330
IngestDate Tue Jun 10 21:02:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-g109t-b693b4daf0d64ddf83f70f7e0d578fdee4b6f234d7a9e6a492a37b6e4d29e3ea3
ParticipantIDs gale_infotracacademiconefile_A820491905
PublicationCentury 2000
PublicationDate 20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 20240301
  day: 01
PublicationDecade 2020
PublicationTitle Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PublicationYear 2024
Publisher European Mathematical Society Publishing House
Publisher_xml – name: European Mathematical Society Publishing House
SSID ssj0047625
Score 2.2927434
Snippet In this paper, we consider a minimization problem of a nonlinear functional [Please download the PDF to view the mathematical expression] related to a thermal...
SourceID gale
SourceType Aggregation Database
StartPage 105
SubjectTerms Analysis
Differential equations
Title Differential Equations.--Shape optimization for a nonlinear elliptic problem related to thermal insulation
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9swFLc6uGwHtLFNY4zJByQOkSFNnKQ-og1UTZQDA4kbsmN7yzRaVtwL--f3XvzaBMEBdokqK36N8n557_l9MrbrLMBEWSNQdwrpR1oo6wpR-0wZMFFHmUbXwOS0HF_Ib5fF5WDwt19dEsx-ffdoXcn_cBXWgK9YJfsMzq6IwgL8Bv7CFTgM1yfx-CtNNwno9j76s6DEHCG-_9Q3LpmBOLimOsuYLZlMY2cMPU-wEecNdmulkTKxqgXMz2iMgrz-HRPVO9Ytm9WG0CQWs6Zw1kSbXg-E9V3rVMQyrAZP-rVr9oF5U9tgNny3NNHUOVonLqHwOW5tOp_q3Oh2uFNyNrvVfbdEJru8rOgrW8YSJqvus9jdhDJRey628WxBUagogId4nM0pVkMSOjY0uYfEKG6Hbcn2AzUghxWqgbOTSeuXoO3322ofgukjFZhDxQu2nlVVjPHjeTyqcQlaomgn89ADxc7FSPoACB8gWVLjPYPk_DXboJMEP4yweMMGbrrJXnUv4vYt-9UHCH8AEN4HCAeAcM1XAOFLgHACCCeA8DDjBBDeAeQduzg-Ov8yFjRcQ_wYpioIU6rcSKt9aktprR_lvkp95VILMtxb56QpfZZLW2nlSi0VfLSVKZ20mXK50_l7tgaP5D4wXqMdqWtXFkCqKEbGwIdfmlR6-AvQqFtsD1_TFbIozHWtqfIDdmPzsauOFR-ffOc2e9mh7hNbC_OF2wHzMJjPLRv_ATw7cQs
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+Equations.--Shape+optimization+for+a+nonlinear+elliptic+problem+related+to+thermal+insulation&rft.jtitle=Atti+della+Accademia+nazionale+dei+Lincei.+Rendiconti+Lincei.+Matematica+e+applicazioni&rft.au=Barbato%2C+Rosa&rft.date=2024-03-01&rft.pub=European+Mathematical+Society+Publishing+House&rft.issn=1120-6330&rft.volume=35&rft.issue=1&rft.spage=105&rft_id=info:doi/10.4171%2FRLM%2F1035&rft.externalDocID=A820491905
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-6330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-6330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-6330&client=summon