Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms

Ecology Letters (2011) 14: 397-406 ABSTRACT: Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversit...

Full description

Saved in:
Bibliographic Details
Published inEcology letters Vol. 14; no. 4; pp. 397 - 406
Main Authors Schnitzer, Stefan A, Bongers, Frans
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2011
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ecology Letters (2011) 14: 397-406 ABSTRACT: Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO₂. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
AbstractList Ecology Letters (2011) 14: 397-406 ABSTRACT: Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO₂. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO2. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
Ecology Letters (2011) 14: 397-406 Abstract Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO2. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO₂. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO2. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.Original Abstract: Ecology Letters (2011) 14: 397-406
Ecology Letters (2011) 14: 397–406 Tropical forests are experiencing large‐scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO2. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large‐scale, long‐term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO₂. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass. Lianas permeate most lowland tropical forests, where they can have a huge effect on tree diversity, recruitment, growth and survival, which, in turn, can alter tree community composition, carbon storage and carbon, nutrient and water fluxes. Consequently, increasing liana abundance and biomass have potentially profound ramifications for tropical forest composition and functioning. Currently, eight studies support the pattern of increasing liana abundance and biomass in American tropical and subtropical forests, whereas two studies, both from Africa, do not. The putative mechanisms to explain increasing lianas include increasing evapotranspirative demand, increasing forest disturbance and turnover, changes in land use and fragmentation and elevated atmospheric CO₂. Each of these mechanisms probably contributes to the observed patterns of increasing liana abundance and biomass, and the mechanisms are likely to be interrelated and synergistic. To determine whether liana increases are occurring throughout the tropics and to determine the mechanisms responsible for the observed patterns, a widespread network of large-scale, long-term monitoring plots combined with observational and manipulative studies that more directly investigate the putative mechanisms are essential.
Author Schnitzer, Stefan A.
Bongers, Frans
Author_xml – sequence: 1
  fullname: Schnitzer, Stefan A
– sequence: 2
  fullname: Bongers, Frans
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24021909$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21314879$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhiNURD_gL0CEhOCyi-3YTlyJA1TbUqkUKorKzZokk8XbxAl2Qrf_Hru77IEDzMUjzfOOZjzvYbJne4tJklIypyHeruaUSzojjBdzRiidEyoUma8fJQe7wt4uz77vJ4ferwihTOX0SbLPaEZ5kauDBM9t5RC8scu0NWAhhXKyNdgKU7B1Wpq-A-9TY9PR9YOpoE2b3qEf_XGKHbplVA4wjuisf5AM0wij-YVph9UPsMZ3_mnyuIHW47Pte5Rcny6uTz7OLj6fnZ-8v5g1QgoyU1WDpRC8KYqaYlVzhJrnUFHaQBiZSSzrTKlSCp4XgMhK0VSVDCFUKVR2lBxv2t7BEm0YDK224CrjdQ9Gt6Z04O713eS0beMzTKXXnEiiSBC_3ogH1_-cwoK6M77CtgWL_eR1IfM8YzkX_yeFzItCSRrIN_8kqSA0k5KpiL78C131k7Pht2I_RjgRMkDPt9BUdljrwZkubvTnngF4tQXAh1M1LhwybL_jOGFUkci92_6UafF-V6dER3_plY7W0dFGOvpLP_hLr_XiYhGzoJ9t9MaPuN7pwd1qmWe50DeXZ_rL5Sd5-uHqSt8E_sWGb6DXsHRhpm9fQ-eMUCWY4ln2GxHz3r4
ContentType Journal Article
Copyright 2011 Blackwell Publishing Ltd/CNRS
2015 INIST-CNRS
2011 Blackwell Publishing Ltd/CNRS.
Wageningen University & Research
Copyright_xml – notice: 2011 Blackwell Publishing Ltd/CNRS
– notice: 2015 INIST-CNRS
– notice: 2011 Blackwell Publishing Ltd/CNRS.
– notice: Wageningen University & Research
DBID FBQ
BSCLL
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
7ST
7U6
SOI
QVL
DOI 10.1111/j.1461-0248.2011.01590.x
DatabaseName AGRIS
Istex
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Ecology Abstracts
Entomology Abstracts (Full archive)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environment Abstracts
NARCIS:Publications
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Entomology Abstracts
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Ecology Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
DatabaseTitleList
AGRICOLA

Entomology Abstracts
MEDLINE
Ecology Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Forestry
EISSN 1461-0248
EndPage 406
ExternalDocumentID oai_library_wur_nl_wurpubs_406090
2288281381
21314879
24021909
ELE1590
ark_67375_WNG_PNM6FBQQ_W
US201301952943
Genre reviewArticle
Research Support, U.S. Gov't, Non-P.H.S
Review
Research Support, Non-U.S. Gov't
Journal Article
Feature
GeographicLocations Africa
GeographicLocations_xml – name: Africa
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ABTAH
ABWRO
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOD
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
N~3
O66
O9-
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAMMB
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7SN
7SS
7U9
C1K
H94
M7N
7S9
L.6
7X8
7ST
7U6
SOI
-
02
0R
1AW
31
3N
AAPBV
GA
HZ
IA
KM
NF
P4A
PQEST
QVL
RIG
UNR
WT
Y3
ID FETCH-LOGICAL-f5650-9cfeb554f88d1ecd4ead47ac11fa21326ebd399b65478aee2b5fcc666659b593
IEDL.DBID DR2
ISSN 1461-023X
1461-0248
IngestDate Fri Feb 05 18:07:58 EST 2021
Fri Jul 11 12:13:00 EDT 2025
Fri Jul 11 16:04:20 EDT 2025
Fri Jul 11 05:59:48 EDT 2025
Fri Jul 25 10:47:34 EDT 2025
Mon Jul 21 05:50:10 EDT 2025
Mon Jul 21 09:16:21 EDT 2025
Wed Jan 22 17:07:47 EST 2025
Wed Oct 30 09:53:14 EDT 2024
Wed Dec 27 19:19:03 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Modification
disturbance
Carbon dioxide
Tropical forest
Biomass
Perturbation
CO
structural changes
Land use
Dynamical climatology
Climate change
liana increases
Global change
Liana
tropical forests
Planetary scale
land use change
Drought
Language English
License CC BY 4.0
2011 Blackwell Publishing Ltd/CNRS.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f5650-9cfeb554f88d1ecd4ead47ac11fa21326ebd399b65478aee2b5fcc666659b593
Notes http://dx.doi.org/10.1111/j.1461-0248.2011.01590.x
ark:/67375/WNG-PNM6FBQQ-W
ArticleID:ELE1590
istex:D641D387902CC53C64F1FDC031C2D6EDE8228D7A
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
ObjectType-Article-2
PMID 21314879
PQID 856204056
PQPubID 32390
PageCount 10
ParticipantIDs wageningen_narcis_oai_library_wur_nl_wurpubs_406090
proquest_miscellaneous_867732745
proquest_miscellaneous_856788961
proquest_miscellaneous_1501366291
proquest_journals_856204056
pubmed_primary_21314879
pascalfrancis_primary_24021909
wiley_primary_10_1111_j_1461_0248_2011_01590_x_ELE1590
istex_primary_ark_67375_WNG_PNM6FBQQ_W
fao_agris_US201301952943
ProviderPackageCode QVL
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
– name: England
– name: Paris
PublicationTitle Ecology letters
PublicationTitleAlternate Ecol Lett
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Blackwell
Publisher_xml – name: Blackwell Publishing Ltd
– name: Blackwell
References Slik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114-120.
Restom, T.G. & Nepstad, D.C. (2004). Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia. For. Ecol. Manag., 190, 109-118.
Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G. & Wright, S.J. (2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc. Natl Acad. Sci. USA, 100, 572-576.
Laurance, W.F., Laurance, S.G., Ferreira, L.V., Rankin-de Merona, J.M., Gascon, C. & Lovejoy, T.E. (1997). Biomass collapse in Amazonian forest fragments. Science, 278, 1117-1118.
Madeira, B.G., Espírito-Santo, M.M., Neto, S.D., Nunes, Y., Sánchez Azofeifa, G.A., Fernandes, G.W. et al. (2009). Changes in tree and liana communities along successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol., 201, 291-304.
Nepstad, D.C., Tohver, I.M. & Ray, D. (2007). Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology, 88, 2259-69.
Toledo-Aceves, T. & Swaine, M.D. (2008a). Above- and below-ground competition between the liana Acacia kameruensis and tree seedlings in contrasting light environments. Plant Ecol., 196, 233-244.
Allen, B.P., Sharitz, R.R. & Goebel, P.C. (2007). Are lianas increasing in importance in temperate floodplain forests in the southeastern United States? For. Ecol. Manag., 242, 17-23.
Wright, S.J., Calderón, O., Hernandéz, A. & Paton, S. (2004). Are lianas increasing in importance in tropical forests? A 17-year record from Panamá. Ecology, 85, 484-489.
Toledo-Aceves, T. & Swaine, M.D. (2008b). Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. J. Veg. Sci., 19, 717-728.
Chen, Y.-J., Bongers, F., Cao, K.-F. & Cai, Z.-Q. (2008). Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia. J. Trop. Ecol., 24, 517-524.
van der Heijden, G.M.F. & Phillips, O.L. (2009). Environmental effects on Neotropical liana species richness. J. Biogeogr., 36, 1561-1572.
Schnitzer, S.A., Kuzee, M. & Bongers, F. (2005). Disentangling above-and below-ground competition between lianas and trees in a tropical forest. J. Ecol., 93, 1115-1125.
Chave, J., Riéra, B. & Dubois, M. (2001). Estimation of biomass in a Neotropical forest in French Guiana: spatial and temporal variability. J. Trop. Ecol., 17, 79-96.
Schnitzer, S.A. (2005). A mechanistic explanation for global patterns of liana abundance and distribution. Amer. Natur., 166, 262-276.
Chazdon, R.L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst., 6, 51-71.
Schnitzer, S.A. & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends Ecol. Evol., 17, 223-230.
van der Heijden, G.M.F., Healey, J.R. & Phillips, O.L. (2008). Infestation of trees by lianas in a tropical forest in Amazonian Peru. J. Veg. Sci., 19, 747-756.
Pérez-Salicrup, D.R. & Barker, M.G. (2000). Effect of liana cutting on water potential and growth of adult Senna multijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia, 124, 469-475.
Ladwig, L. & Meiners, S. (2010b). Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest. Ecology, 91, 671-680.
Fike, J. & Niering, W.A. (1999). Four decades of old field vegetation development and the role of Celastrus orbiculatus in the northeastern United States. J. Veg. Sci., 10, 483-492.
Schnitzer, S.A. & Carson, W.P. (2001). Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913-919.
Swaine, M.D. & Grace, J. (2007). Lianas may be favoured by low rainfall: evidence from Ghana. Plant Ecol., 192, 271-276.
Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C. & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
Schnitzer, S.A., Rutishauser, S. & Aguilar, S. (2008b). Supplemental protocol for censusing lianas. For. Ecol. Manag., 255, 1044-1049.
Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237-240.
Gilbert, B., Wright, S.J., Kitajima, K., Muller-Landau, H.C. & Hernandéz, A. (2006). Life history trade-offs in tropical trees and lianas. Ecology, 87, 1281-1288.
Paul, G.S. & Yavitt, J.B. (2010). Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. Bot. Rev., DOI: 10.1007/s12229-010-9059-3.
Andrade, J.L., Meinzer, F.C., Goldstein, G. & Schnitzer, S.A. (2005). Water uptake and transport in lianas and co-occuring trees of a seasonally dry tropical forest. Trees Struct. Func., 19, 282-289.
Londré, R.A. & Schnitzer, S.A. (2006). The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 87, 2973-2978.
Benítez-Malvido, J. & Martínez-Ramos, M. (2003). Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv. Biol., 17, 389-400.
Toledo-Aceves, T. & Swaine, M.D. (2007). Effect of three species of climber on the performance of Ceiba pentandra seedlings in gaps in a tropical forest in Ghana. J. Trop. Ecol., 23, 45-52.
Putz, F.E. (1984). The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 1713-1724.
Körner, C. (2006). Forests, biodivsity and CO2: surprises are certain. Biologist, 53, 82-90.
Arroyo-Rodriguez, V. & Toledo-Aceves, T. (2009). Impact of landscape spatial patterns on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl. Veg. Sci., 12, 340-348.
Li, W., Fu, R., Negra Juarez, R.I. & Fernandes, K. (2008). Observed Change of the Standardized Precipitation Index, Its Potential Cause and Implications to Future Climate in the Amazon Region. Philosophical Transaction of the Royal Society: Climate Change and the Fate of the Amazon, 363, 1767-1772.
Mohan, J.E., Ziska, L.H., Schlesinger, W.H., Thomas, R.B., Sicher, R.C., George, K. et al. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proc. Natl Acad. Sci. USA, 103, 9086-9089.
Wright, S.J., Hernandez, A. & Condit, R. (2007). The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica, 39, 363-371.
Addo-Fordjour, P., Obeng, S., Addo, M.G. & Akyeampong, S. (2009). Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana. For. Ecol. Manag., 258, 728-734.
Peñalosa, J. (1984). Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica, 16, 1-9.
Wright, S.J. & Osvaldo, C. (2006). Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecol. Lett., 9, 35-44.
Phillips, O.L., Vásquez, M.R., Arroyo, L., Baker, T., Killeen, T., Lewis, S.L. et al. (2002a). Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770-774.
Dierschke, H. (2005). Laurophyllisation - auch eine Erscheinung im nordlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrunen Laubwaldern. Ber. Reinh Tuxen Ges, 17, 151-168.
Hättenschwiler, S. & Körner, C. (2003). Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests? Funct. Ecol., 17, 778-785.
Caballé, G. & Martin, A. (2001). Thirteen years of change in trees and lianas in a Gabonese rainforest. Plant Ecol., 152, 167-173.
Schnitzer, S.A., Londré, R.A., Klironomos, J. & Reich, P.B. (2008a). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2: comment. Ecology, 89, 581-585.
Phillips, O.L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S.L., Higuchi, N. et al. (2002b). Changes in growth of tropical forests: evaluating potential biases. Ecol. Appl., 12, 576-587.
Restom, T.G. & Nepstad, D.C. (2001). Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant Soil, 236, 155-163.
Peña-Claros, M., Fredericksen, T.S., Alarco, A., Blate, G.M., Choque, U., Leano, C. et al. (2008). Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees. For. Ecol. Manag., 256, 1458-1467.
Phillips, O.L. & Gentry, A.H. (1994). Increasing turnover through time in tropical forests. Science, 263, 954-957.
Schnitzer, S.A. & Carson, W.P. (2010). Lianas suppress tree regeneration and diversity in treefall gaps. Ecol. Lett., 2010, 849-857.
Schnitzer, S.A., Dalling, J.W. & Carson, W.P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J. Ecol., 88, 655-666.
Putz, F.E. & Windsor, D.M. (1987). Liana phenology on Barro Colorado Island, Panama. Biotropica, 19, 334-341.
Condit, R., Watts, K., Bohlman, S.A., Pérez, R., Foster, R.B. & Hubbell, S.P. (2000). Quantifying the deciduousness of tropical canopies under varying climates. J. Veg. Sci., 11, 649-658.
Zotz, G., Cueni, N. & Korner, C. (2006). In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol., 20, 763-769.
Gallagher, R.V., Hughes, L., Leishman, M.R. & Wilson, P.D. (2010). Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol. Invasions, 12, 4049-4063.
Wright, S.J. (2005). Tropical forests in a changing environment. Trends Ecol. Evol., 20, 553-560.
Laurance, W.F., Goosem, M. & Laurance, S.G.W. (2009). Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol., 24, 659-669.
Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M. & Wang, H. (2008). A regional climate model study of how biomass burning aerosol i
2010; 12
1997; 278
2007; 39
2002; 17
1998; 281
2010; 98
2004; 20
2010a; 137
2006; 38
1984; 65
2000; 88
2010; 187
2005; 20
2005; 21
2003; 17
2004; 2
1983; 15
2005; 25
2009; 12
2008a; 89
2006; 20
2000; 16
2001
2000; 124
1987; 83
1984; 16
2003; 6
2004; 36
2000; 11
1994; 263
2003; 161
2008; 24
1999; 10
2009; 201
2009; 161
2001; 17
2008; 113
2008; 112
2008a; 196
2007; 23
2009; 323
2009; 204
2004; 85
2009; 24
2002a; 418
2006; 53
2010; 37
2010; 2010
1991; 78
2011
2010
2007; 242
2004; 141
2008; 19
2006; 9
2002; 8
2010b; 91
2005; 86
2010; 163
2008; 13
2005
1991
2008b; 19
2008; 363
1987; 19
2008b; 255
2002b; 12
2009; 257
2009; 258
2009; 36
2001; 82
2010; 42
2005; 19
2001; 152
2010; 1195
2005; 166
2006; 87
2004; 190
2007; 192
2007; 193
2008; 89
2005; 93
2008; 179
2008; 256
2001; 33
2005; 17
2007; 88
2003; 100
2001; 236
2006; 103
References_xml – reference: Toledo-Aceves, T. & Swaine, M.D. (2008a). Above- and below-ground competition between the liana Acacia kameruensis and tree seedlings in contrasting light environments. Plant Ecol., 196, 233-244.
– reference: Schnitzer, S.A. & Bongers, F. (2002). The ecology of lianas and their role in forests. Trends Ecol. Evol., 17, 223-230.
– reference: Putz, F.E. & Windsor, D.M. (1987). Liana phenology on Barro Colorado Island, Panama. Biotropica, 19, 334-341.
– reference: Domingues, T., Martinelli, L. & Ehleringer, J. (2007). Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol., 193, 101-112.
– reference: Asner, G.P. & Alencar, A. (2010). Drought impacts on the Amazon forest: the remote sensing perspective. New Phytol., 187, 569-578.
– reference: Phillips, O.L. & Gentry, A.H. (1994). Increasing turnover through time in tropical forests. Science, 263, 954-957.
– reference: Schnitzer, S.A., DeWalt, S.J. & Chave, J. (2006). Censusing and measuring lianas: a quantitative comparison of the common methods. Biotropica, 38, 581-591.
– reference: Kusumoto, B. & Enoki, T. (2008). Contribution of a liana species, Mucuna macrocarpa Wall., to litterfall production and nitrogen input in a subtropical evergreen broad-leaved forest. J. For. Res., 13, 35-42.
– reference: Lee, T. & McPhaden, M.J. (2010). Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett., 37, L14603. DOI: 10.1029/2010GL044007.
– reference: Schnitzer, S.A., Dalling, J.W. & Carson, W.P. (2000). The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase regeneration. J. Ecol., 88, 655-666.
– reference: Hättenschwiler, S. & Körner, C. (2003). Does elevated CO2 facilitate naturalization of the non-indigenous Prunus laurocerasus in Swiss temperate forests? Funct. Ecol., 17, 778-785.
– reference: Hättenschwiler, S., Aeschlimann, B., Coûteaux, M.-M., Roy, J. & Bonal, D. (2008). High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community. New Phytol., 179, 165-175.
– reference: Schnitzer, S.A. & Carson, W.P. (2001). Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913-919.
– reference: Restom, T.G. & Nepstad, D.C. (2001). Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia. Plant Soil, 236, 155-163.
– reference: Letcher, S.G. & Chazdon, R.L. (2009). Lianas and self-supporting plants during tropical forest succession. For. Ecol. Manag., 257, 2150-2156.
– reference: van der Heijden, G.M.F. & Phillips, O.L. (2009). Environmental effects on Neotropical liana species richness. J. Biogeogr., 36, 1561-1572.
– reference: Arroyo-Rodriguez, V. & Toledo-Aceves, T. (2009). Impact of landscape spatial patterns on liana communities in tropical rainforests at Los Tuxtlas, Mexico. Appl. Veg. Sci., 12, 340-348.
– reference: Caballé, G. & Martin, A. (2001). Thirteen years of change in trees and lianas in a Gabonese rainforest. Plant Ecol., 152, 167-173.
– reference: Toledo-Aceves, T. & Swaine, M.D. (2007). Effect of three species of climber on the performance of Ceiba pentandra seedlings in gaps in a tropical forest in Ghana. J. Trop. Ecol., 23, 45-52.
– reference: Asner, G.P., Broadbent, E.N., Oliveira, P.J.C., Keller, M., Knapp, D.E. & Silva, J.N.M. (2006). Condition and fate of logged forests in the Brazilian Amazon. Proc. Natl Acad. Sci. USA, 103, 12947-12950.
– reference: Wright, S.J., Calderón, O., Hernandéz, A. & Paton, S. (2004). Are lianas increasing in importance in tropical forests? A 17-year record from Panamá. Ecology, 85, 484-489.
– reference: Gilbert, B., Wright, S.J., Kitajima, K., Muller-Landau, H.C. & Hernandéz, A. (2006). Life history trade-offs in tropical trees and lianas. Ecology, 87, 1281-1288.
– reference: Wright, S.J. (2010). The future of tropical forests. Ann. NY Acad. Sci., 1195, 1-27.
– reference: Laurance, W.F., Pérez-Salicrup, D., Delamônica, P., Fearnside, P.M., D'Angelo, S., Jerozolinski, A. et al. (2001). Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82, 105-116.
– reference: Ladwig, L. & Meiners, S. (2010b). Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest. Ecology, 91, 671-680.
– reference: Dixon, R.K., Solomon, A.M., Brown, S., Houghton, R.A., Trexier, M.C. & Wisniewski, J. (1994). Carbon pools and flux of global forest ecosystems. Science, 263, 185-190.
– reference: Cai, Z.-Q., Schnitzer, S.A. & Bongers, F. (2009). Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia, 161, 25-33.
– reference: Wright, S.J. & Osvaldo, C. (2006). Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest. Ecol. Lett., 9, 35-44.
– reference: Swaine, M.D. & Grace, J. (2007). Lianas may be favoured by low rainfall: evidence from Ghana. Plant Ecol., 192, 271-276.
– reference: Peñalosa, J. (1984). Basal branching and vegetative spread in two tropical rain forest lianas. Biotropica, 16, 1-9.
– reference: Gerwing, J.J. & Farias, D.L. (2000). Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest. J. Trop. Ecol., 16, 327-335.
– reference: Gerwing, J.J., Schnitzer, S.A., Burnham, R.J., Bongers, F., Chave, J., DeWalt, S.J., et al. (2006). A standard protocol for liana censuses. Biotropica, 38, 256-261.
– reference: Dierschke, H. (2005). Laurophyllisation - auch eine Erscheinung im nordlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrunen Laubwaldern. Ber. Reinh Tuxen Ges, 17, 151-168.
– reference: Kalácska, M., Calvo-Alvarado, J.C. & Sánchez-Azofeifa, G.A. (2005). Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession. Tree Physiol., 25, 733-744.
– reference: Putz, F.E. (1983). Liana biomass and leaf area of a tierra firme forest in the Rio Negro basin, Venezuela. Biotropica, 15, 185-189.
– reference: Putz, F.E. (1984). The natural history of lianas on Barro Colorado Island, Panama. Ecology, 65, 1713-1724.
– reference: Schnitzer, S.A. & Carson, W.P. (2010). Lianas suppress tree regeneration and diversity in treefall gaps. Ecol. Lett., 2010, 849-857.
– reference: Condit, R., Watts, K., Bohlman, S.A., Pérez, R., Foster, R.B. & Hubbell, S.P. (2000). Quantifying the deciduousness of tropical canopies under varying climates. J. Veg. Sci., 11, 649-658.
– reference: Powers, J.S., Kalicin, M. & Newman, M. (2004). Tree species do not influence local soil chemistry in a species-rich Costa Rican rain forest. J. Trop. Ecol., 20, 587-590.
– reference: Chen, Y.-J., Bongers, F., Cao, K.-F. & Cai, Z.-Q. (2008). Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia. J. Trop. Ecol., 24, 517-524.
– reference: Addo-Fordjour, P., Obeng, S., Addo, M.G. & Akyeampong, S. (2009). Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana. For. Ecol. Manag., 258, 728-734.
– reference: DeWalt, S.J. & Chave, J. (2004). Structure and biomass of four lowland Neotropical forests. Biotropica, 36, 7-19.
– reference: Li, W., Fu, R., Negra Juarez, R.I. & Fernandes, K. (2008). Observed Change of the Standardized Precipitation Index, Its Potential Cause and Implications to Future Climate in the Amazon Region. Philosophical Transaction of the Royal Society: Climate Change and the Fate of the Amazon, 363, 1767-1772.
– reference: Chave, J., Riéra, B. & Dubois, M. (2001). Estimation of biomass in a Neotropical forest in French Guiana: spatial and temporal variability. J. Trop. Ecol., 17, 79-96.
– reference: Londré, R.A. & Schnitzer, S.A. (2006). The distribution of lianas and their change in abundance in temperate forests over the past 45 years. Ecology, 87, 2973-2978.
– reference: Sperry, J.S., Holbrook, N.M., Zimmerman, M.H. & Tyree, M.T. (1987). Spring filling of xylem vessels in wild grapevine. Plant Physiol., 83, 414-417.
– reference: Zhu, S.-D. & Cao, K.-F. (2010). Contrasting cost-benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China. Oecologia, 163, 591-599.
– reference: Chave, J., Olivier, J., Bongers, F., Châtelet, P., Forget, P.M., van der Meer, P. et al. (2008). Aboveground biomass and productivity in a rain forest of eastern South America. J. Trop. Ecol., 24, 355-366.
– reference: Nepstad, D.C., Tohver, I.M. & Ray, D. (2007). Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology, 88, 2259-69.
– reference: Schnitzer, S.A., Kuzee, M. & Bongers, F. (2005). Disentangling above-and below-ground competition between lianas and trees in a tropical forest. J. Ecol., 93, 1115-1125.
– reference: Restom, T.G. & Nepstad, D.C. (2004). Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia. For. Ecol. Manag., 190, 109-118.
– reference: van der Heijden, G.M.F., Healey, J.R. & Phillips, O.L. (2008). Infestation of trees by lianas in a tropical forest in Amazonian Peru. J. Veg. Sci., 19, 747-756.
– reference: Schnitzer, S.A. (2005). A mechanistic explanation for global patterns of liana abundance and distribution. Amer. Natur., 166, 262-276.
– reference: Cai, Z.Q. & Bongers, F. (2007). Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south-west China. J. Trop. Ecol., 23, 115-118.
– reference: Andrade, J.L., Meinzer, F.C., Goldstein, G. & Schnitzer, S.A. (2005). Water uptake and transport in lianas and co-occuring trees of a seasonally dry tropical forest. Trees Struct. Func., 19, 282-289.
– reference: Kurzel, B.P., Schnitzer, S.A. & Carson, W.P. (2006). Predicting liana crown location from stem diameter in three Panamanian lowland forests. Biotropica, 38, 262-266.
– reference: Benítez-Malvido, J. & Martínez-Ramos, M. (2003). Impact of forest fragmentation on understory plant species richness in Amazonia. Conserv. Biol., 17, 389-400.
– reference: Ingwell, L.L., Wright, S.J., Becklund, K.K., Hubbell, S.P. & Schnitzer, S.A. (2010). The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama. J. Ecol., 98, 879-887.
– reference: Paul, G.S. & Yavitt, J.B. (2010). Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants. Bot. Rev., DOI: 10.1007/s12229-010-9059-3.
– reference: Peña-Claros, M., Fredericksen, T.S., Alarco, A., Blate, G.M., Choque, U., Leano, C. et al. (2008). Beyond reduced-impact logging: silvicultural treatments to increase growth rates of tropical trees. For. Ecol. Manag., 256, 1458-1467.
– reference: Grauel, W.T. & Putz, F.E. (2004). Effects of lianas on growth and regeneration of Prioria copaifera in Darien, Panama. For. Ecol. Manag., 190, 99-108.
– reference: Zhu, S.-D. & Cao, K.-F. (2009). Hydraulic properties and photosynthetic rates in co-occuring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol., 204, 295-304.
– reference: Zotz, G., Cueni, N. & Korner, C. (2006). In situ growth stimulation of a temperate zone liana (Hedera helix) in elevated CO2. Funct. Ecol., 20, 763-769.
– reference: DeWalt, S.J., Schnitzer, S.A. & Denslow, J.S. (2000). Density and diversity of lianas along a seasonal tropical forest chronosequence in central Panama. Journal of Tropical Ecology, 16, 1-19.
– reference: Ladwig, L. & Meiners, S. (2010a). Liana host preference and implications for deciduous forest regeneration. J Torrey Bot. Soc., 137, 103-112.
– reference: Wright, S.J., Jaramillo, M.A., Pavon, J., Condit, R., Hubbell, S.P. & Foster, R.B. (2005). Reproductive size thresholds in tropical trees: variation among individuals, species and forests. J. Trop. Ecol., 21, 307-315.
– reference: Gallagher, R.V., Hughes, L., Leishman, M.R. & Wilson, P.D. (2010). Predicted impact of exotic vines on an endangered ecological community under future climate change. Biol. Invasions, 12, 4049-4063.
– reference: Phillips, O.L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S.L., Higuchi, N. et al. (2002b). Changes in growth of tropical forests: evaluating potential biases. Ecol. Appl., 12, 576-587.
– reference: Graham, E.A., Mulkey, S.S., Kitajima, K., Phillips, N.G. & Wright, S.J. (2003). Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc. Natl Acad. Sci. USA, 100, 572-576.
– reference: Horvitz, C.C. & Koop, A. (2001). Removal of nonnative vines and post-hurricane recruitment in tropical hardwood forests of Florida. Biotropica, 33, 268-281.
– reference: Sasek, T.W. & Strain, B.R. (1991). Effects of CO2 enrichment on the growth and morphology of a native and an introduced honeysuckle vine. Am. J. Bot., 78, 69-75.
– reference: Schnitzer, S.A., Parren, M.P.E. & Bongers, F. (2004). Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in a lowland forest in Cameroon. For. Ecol. Manag., 190, 87-98.
– reference: Clark, D.A. (2004). Tropical forests and global warming: slowing it down or speeding it up? Front. Ecol. Evol., 2, 72-80.
– reference: Rogers, D., Rooney, T., Olson, D. & Waller, D. (2008). Shifts in southern Wisconsin forest canopy and understory richness, composition, and heterogeneity. Ecology, 89, 2482-2492.
– reference: Madeira, B.G., Espírito-Santo, M.M., Neto, S.D., Nunes, Y., Sánchez Azofeifa, G.A., Fernandes, G.W. et al. (2009). Changes in tree and liana communities along successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecol., 201, 291-304.
– reference: Schnitzer, S.A., Rutishauser, S. & Aguilar, S. (2008b). Supplemental protocol for censusing lianas. For. Ecol. Manag., 255, 1044-1049.
– reference: Chazdon, R.L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst., 6, 51-71.
– reference: Toledo-Aceves, T. & Swaine, M.D. (2008b). Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana. J. Veg. Sci., 19, 717-728.
– reference: Belote, R.T., Weltzen, J.F. & Norby, R.J. (2003). Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol., 161, 827-835.
– reference: Phillips, O.L., Vásquez Martínez, R., Monteagudo Mendoza, A., Baker, T.R. & Núñez Vargas, P. (2005). Large lianas as hyperdynamic elements of the tropical forest canopy. Ecology, 86, 1250-1258.
– reference: Slik, J.W.F. (2004). El Niño droughts and their effects on tree species composition and diversity in tropical rain forests. Oecologia, 141, 114-120.
– reference: Field, C.B., Behrenfeld, M.J., Randerson, J.T. & Falkowski, P. (1998). Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281, 237-240.
– reference: Laurance, W.F., Goosem, M. & Laurance, S.G.W. (2009). Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol., 24, 659-669.
– reference: Schnitzer, S.A., Londré, R.A., Klironomos, J. & Reich, P.B. (2008a). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2: comment. Ecology, 89, 581-585.
– reference: Zhang, Y., Fu, R., Yu, H., Dickinson, R. E., Juarez, R. N., Chin, M. & Wang, H. (2008). A regional climate model study of how biomass burning aerosol impacts land-atmosphere interactions over the Amazon. J. Geophys. Res., 113, D14S15, doi: 10.1029/2007JD009449.
– reference: Foster, J.R., Townsend, P.A. & Zganjar, C.E. (2008). Spatial and temporal patterns of gap dominance by low-canopy lianas detected using EO-1 Hyperion and Landsat Thematic Mapper. Remote Sensing Environ., 112, 2104-2117.
– reference: DeWalt, S.J., Schnitzer, S.A., Chave, J., Bongers, F., Burnham, R.J., Cai, Z.Q. et al. (2010). Annual rainfall and seasonality predict pan-tropical patterns of liana density and basal area. Biotropica, 42, 309-317.
– reference: Phillips, O.L., Aragao, L.E.O.C., Lewis, S.L., Fisher, J.B., Lloyd, J., López-González, G. et al. (2009). Drought sensitivity of the Amazon rainforest. Science, 323, 1344-1347.
– reference: Granados, J. & Korner, C. (2002). In deep shade, elevated CO2 increases the vigor of tropical climbing plants. Glob. Change Biol., 8, 1-9.
– reference: Pérez-Salicrup, D.R. & Barker, M.G. (2000). Effect of liana cutting on water potential and growth of adult Senna multijuga (Caesalpinioideae) trees in a Bolivian tropical forest. Oecologia, 124, 469-475.
– reference: Allen, B.P., Sharitz, R.R. & Goebel, P.C. (2007). Are lianas increasing in importance in temperate floodplain forests in the southeastern United States? For. Ecol. Manag., 242, 17-23.
– reference: Mohan, J.E., Ziska, L.H., Schlesinger, W.H., Thomas, R.B., Sicher, R.C., George, K. et al. (2006). Biomass and toxicity responses of poison ivy (Toxicodendron radicans) to elevated atmospheric CO2. Proc. Natl Acad. Sci. USA, 103, 9086-9089.
– reference: Laurance, W.F., Laurance, S.G., Ferreira, L.V., Rankin-de Merona, J.M., Gascon, C. & Lovejoy, T.E. (1997). Biomass collapse in Amazonian forest fragments. Science, 278, 1117-1118.
– reference: Körner, C. (2006). Forests, biodivsity and CO2: surprises are certain. Biologist, 53, 82-90.
– reference: Wright, S.J., Hernandez, A. & Condit, R. (2007). The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica, 39, 363-371.
– reference: Phillips, O.L., Vásquez, M.R., Arroyo, L., Baker, T., Killeen, T., Lewis, S.L. et al. (2002a). Increasing dominance of large lianas in Amazonian forests. Nature, 418, 770-774.
– reference: Fike, J. & Niering, W.A. (1999). Four decades of old field vegetation development and the role of Celastrus orbiculatus in the northeastern United States. J. Veg. Sci., 10, 483-492.
– reference: Wright, S.J. (2005). Tropical forests in a changing environment. Trends Ecol. Evol., 20, 553-560.
– volume: 33
  start-page: 268
  year: 2001
  end-page: 281
  article-title: Removal of nonnative vines and post‐hurricane recruitment in tropical hardwood forests of Florida
  publication-title: Biotropica
– year: 2011
– volume: 87
  start-page: 1281
  year: 2006
  end-page: 1288
  article-title: Life history trade‐offs in tropical trees and lianas
  publication-title: Ecology
– volume: 9
  start-page: 35
  year: 2006
  end-page: 44
  article-title: Seasonal, El Niño and longer term changes in flower and seed production in a moist tropical forest
  publication-title: Ecol. Lett.
– volume: 39
  start-page: 363
  year: 2007
  end-page: 371
  article-title: The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind
  publication-title: Biotropica
– volume: 15
  start-page: 185
  year: 1983
  end-page: 189
  article-title: Liana biomass and leaf area of a tierra firme forest in the Rio Negro basin, Venezuela
  publication-title: Biotropica
– volume: 87
  start-page: 2973
  year: 2006
  end-page: 2978
  article-title: The distribution of lianas and their change in abundance in temperate forests over the past 45 years
  publication-title: Ecology
– volume: 256
  start-page: 1458
  year: 2008
  end-page: 1467
  article-title: Beyond reduced‐impact logging: silvicultural treatments to increase growth rates of tropical trees
  publication-title: For. Ecol. Manag.
– volume: 2
  start-page: 72
  year: 2004
  end-page: 80
  article-title: Tropical forests and global warming: slowing it down or speeding it up?
  publication-title: Front. Ecol. Evol.
– volume: 10
  start-page: 483
  year: 1999
  end-page: 492
  article-title: Four decades of old field vegetation development and the role of Celastrus orbiculatus in the northeastern United States
  publication-title: J. Veg. Sci.
– start-page: 3
  year: 1991
  end-page: 49
– volume: 37
  start-page: L14603
  year: 2010
  article-title: Increasing intensity of El Niño in the central‐equatorial Pacific
  publication-title: Geophys. Res. Lett.
– volume: 20
  start-page: 587
  year: 2004
  end-page: 590
  article-title: Tree species do not influence local soil chemistry in a species‐rich Costa Rican rain forest
  publication-title: J. Trop. Ecol.
– volume: 19
  start-page: 282
  year: 2005
  end-page: 289
  article-title: Water uptake and transport in lianas and co‐occuring trees of a seasonally dry tropical forest
  publication-title: Trees Struct. Func.
– volume: 65
  start-page: 1713
  year: 1984
  end-page: 1724
  article-title: The natural history of lianas on Barro Colorado Island, Panama
  publication-title: Ecology
– volume: 190
  start-page: 87
  year: 2004
  end-page: 98
  article-title: Recruitment of lianas into logging gaps and the effects of pre‐harvest climber cutting in a lowland forest in Cameroon
  publication-title: For. Ecol. Manag.
– volume: 192
  start-page: 271
  year: 2007
  end-page: 276
  article-title: Lianas may be favoured by low rainfall: evidence from Ghana
  publication-title: Plant Ecol.
– volume: 38
  start-page: 581
  year: 2006
  end-page: 591
  article-title: Censusing and measuring lianas: a quantitative comparison of the common methods
  publication-title: Biotropica
– volume: 6
  start-page: 51
  year: 2003
  end-page: 71
  article-title: Tropical forest recovery: legacies of human impact and natural disturbances
  publication-title: Perspect. Plant Ecol. Evol. Syst.
– start-page: 243
  year: 2001
  end-page: 250
– volume: 113
  year: 2008
  article-title: A regional climate model study of how biomass burning aerosol impacts land‐atmosphere interactions over the Amazon
  publication-title: J. Geophys. Res.
– volume: 93
  start-page: 1115
  year: 2005
  end-page: 1125
  article-title: Disentangling above‐and below‐ground competition between lianas and trees in a tropical forest
  publication-title: J. Ecol.
– volume: 19
  start-page: 717
  year: 2008b
  end-page: 728
  article-title: Effect of lianas on tree regeneration in gaps and forest understorey in a tropical forest in Ghana
  publication-title: J. Veg. Sci.
– volume: 98
  start-page: 879
  year: 2010
  end-page: 887
  article-title: The impact of lianas on 10 years of tree growth and mortality on Barro Colorado Island, Panama
  publication-title: J. Ecol.
– volume: 418
  start-page: 770
  year: 2002a
  end-page: 774
  article-title: Increasing dominance of large lianas in Amazonian forests
  publication-title: Nature
– volume: 24
  start-page: 355
  year: 2008
  end-page: 366
  article-title: Aboveground biomass and productivity in a rain forest of eastern South America
  publication-title: J. Trop. Ecol.
– volume: 323
  start-page: 1344
  year: 2009
  end-page: 1347
  article-title: Drought sensitivity of the Amazon rainforest
  publication-title: Science
– volume: 163
  start-page: 591
  year: 2010
  end-page: 599
  article-title: Contrasting cost–benefit strategy between lianas and trees in a tropical seasonal rain forest in southwestern China
  publication-title: Oecologia
– volume: 17
  start-page: 389
  year: 2003
  end-page: 400
  article-title: Impact of forest fragmentation on understory plant species richness in Amazonia
  publication-title: Conserv. Biol.
– volume: 204
  start-page: 295
  year: 2009
  end-page: 304
  article-title: Hydraulic properties and photosynthetic rates in co‐occuring lianas and trees in a seasonal tropical rainforest in southwestern China
  publication-title: Plant Ecol.
– volume: 91
  start-page: 671
  year: 2010b
  end-page: 680
  article-title: Spatiotemporal dynamics of lianas during 50 years of succession to temperate forest
  publication-title: Ecology
– volume: 19
  start-page: 747
  year: 2008
  end-page: 756
  article-title: Infestation of trees by lianas in a tropical forest in Amazonian Peru
  publication-title: J. Veg. Sci.
– volume: 112
  start-page: 2104
  year: 2008
  end-page: 2117
  article-title: Spatial and temporal patterns of gap dominance by low‐canopy lianas detected using EO‐1 Hyperion and Landsat Thematic Mapper
  publication-title: Remote Sensing Environ.
– start-page: 183
  year: 2005
  end-page: 201
– volume: 89
  start-page: 581
  year: 2008a
  end-page: 585
  article-title: Biomass and toxicity responses of poison ivy ( ) to elevated atmospheric CO : comment
  publication-title: Ecology
– volume: 36
  start-page: 1561
  year: 2009
  end-page: 1572
  article-title: Environmental effects on Neotropical liana species richness
  publication-title: J. Biogeogr.
– year: 2010
– volume: 38
  start-page: 262
  year: 2006
  end-page: 266
  article-title: Predicting liana crown location from stem diameter in three Panamanian lowland forests
  publication-title: Biotropica
– volume: 42
  start-page: 309
  year: 2010
  end-page: 317
  article-title: Annual rainfall and seasonality predict pan‐tropical patterns of liana density and basal area
  publication-title: Biotropica
– volume: 23
  start-page: 45
  year: 2007
  end-page: 52
  article-title: Effect of three species of climber on the performance of seedlings in gaps in a tropical forest in Ghana
  publication-title: J. Trop. Ecol.
– volume: 19
  start-page: 334
  year: 1987
  end-page: 341
  article-title: Liana phenology on Barro Colorado Island, Panama
  publication-title: Biotropica
– volume: 201
  start-page: 291
  year: 2009
  end-page: 304
  article-title: Changes in tree and liana communities along successional gradient in a tropical dry forest in south‐eastern Brazil
  publication-title: Plant Ecol.
– volume: 263
  start-page: 954
  year: 1994
  end-page: 957
  article-title: Increasing turnover through time in tropical forests
  publication-title: Science
– volume: 85
  start-page: 484
  year: 2004
  end-page: 489
  article-title: Are lianas increasing in importance in tropical forests? A 17‐year record from Panamá
  publication-title: Ecology
– volume: 193
  start-page: 101
  year: 2007
  end-page: 112
  article-title: Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil
  publication-title: Plant Ecol.
– volume: 24
  start-page: 517
  year: 2008
  end-page: 524
  article-title: Above‐ and below‐ground competition in high and low irradiance: tree seedling responses to a competing liana
  publication-title: J. Trop. Ecol.
– start-page: 3
  year: 2005
  end-page: 16
– volume: 137
  start-page: 103
  year: 2010a
  end-page: 112
  article-title: Liana host preference and implications for deciduous forest regeneration
  publication-title: J Torrey Bot. Soc.
– volume: 2010
  start-page: 849
  year: 2010
  end-page: 857
  article-title: Lianas suppress tree regeneration and diversity in treefall gaps
  publication-title: Ecol. Lett.
– volume: 263
  start-page: 185
  year: 1994
  end-page: 190
  article-title: Carbon pools and flux of global forest ecosystems
  publication-title: Science
– volume: 82
  start-page: 105
  year: 2001
  end-page: 116
  article-title: Rain forest fragmentation and the structure of Amazonian liana communities
  publication-title: Ecology
– year: 2010
  article-title: Tropical vine growth and the effects on forest succession: a review of the ecology and management of tropical climbing plants
  publication-title: Bot. Rev.
– volume: 12
  start-page: 576
  year: 2002b
  end-page: 587
  article-title: Changes in growth of tropical forests: evaluating potential biases
  publication-title: Ecol. Appl.
– volume: 190
  start-page: 99
  year: 2004
  end-page: 108
  article-title: Effects of lianas on growth and regeneration of in Darien, Panama
  publication-title: For. Ecol. Manag.
– volume: 11
  start-page: 649
  year: 2000
  end-page: 658
  article-title: Quantifying the deciduousness of tropical canopies under varying climates
  publication-title: J. Veg. Sci.
– volume: 88
  start-page: 655
  year: 2000
  end-page: 666
  article-title: The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap‐phase regeneration
  publication-title: J. Ecol.
– volume: 255
  start-page: 1044
  year: 2008b
  end-page: 1049
  article-title: Supplemental protocol for censusing lianas
  publication-title: For. Ecol. Manag.
– volume: 17
  start-page: 778
  year: 2003
  end-page: 785
  article-title: Does elevated CO facilitate naturalization of the non‐indigenous in Swiss temperate forests?
  publication-title: Funct. Ecol.
– volume: 187
  start-page: 569
  year: 2010
  end-page: 578
  article-title: Drought impacts on the Amazon forest: the remote sensing perspective
  publication-title: New Phytol.
– volume: 83
  start-page: 414
  year: 1987
  end-page: 417
  article-title: Spring filling of xylem vessels in wild grapevine
  publication-title: Plant Physiol.
– volume: 17
  start-page: 79
  year: 2001
  end-page: 96
  article-title: Estimation of biomass in a Neotropical forest in French Guiana: spatial and temporal variability
  publication-title: J. Trop. Ecol.
– volume: 257
  start-page: 2150
  year: 2009
  end-page: 2156
  article-title: Lianas and self‐supporting plants during tropical forest succession
  publication-title: For. Ecol. Manag.
– volume: 17
  start-page: 223
  year: 2002
  end-page: 230
  article-title: The ecology of lianas and their role in forests
  publication-title: Trends Ecol. Evol.
– volume: 36
  start-page: 7
  year: 2004
  end-page: 19
  article-title: Structure and biomass of four lowland Neotropical forests
  publication-title: Biotropica
– volume: 21
  start-page: 307
  year: 2005
  end-page: 315
  article-title: Reproductive size thresholds in tropical trees: variation among individuals, species and forests
  publication-title: J. Trop. Ecol.
– volume: 196
  start-page: 233
  year: 2008a
  end-page: 244
  article-title: Above‐ and below‐ground competition between the liana and tree seedlings in contrasting light environments
  publication-title: Plant Ecol.
– volume: 86
  start-page: 1250
  year: 2005
  end-page: 1258
  article-title: Large lianas as hyperdynamic elements of the tropical forest canopy
  publication-title: Ecology
– volume: 166
  start-page: 262
  year: 2005
  end-page: 276
  article-title: A mechanistic explanation for global patterns of liana abundance and distribution
  publication-title: Amer. Natur.
– volume: 161
  start-page: 25
  year: 2009
  end-page: 33
  article-title: Seasonal differences in leaf‐level physiology give lianas a competitive advantage over trees in a tropical seasonal forest
  publication-title: Oecologia
– volume: 82
  start-page: 913
  year: 2001
  end-page: 919
  article-title: Treefall gaps and the maintenance of species diversity in a tropical forest
  publication-title: Ecology
– volume: 88
  start-page: 2259
  year: 2007
  end-page: 69
  article-title: Mortality of large trees and lianas following experimental drought in an Amazon forest
  publication-title: Ecology
– volume: 124
  start-page: 469
  year: 2000
  end-page: 475
  article-title: Effect of liana cutting on water potential and growth of adult (Caesalpinioideae) trees in a Bolivian tropical forest
  publication-title: Oecologia
– volume: 161
  start-page: 827
  year: 2003
  end-page: 835
  article-title: Response of an understory plant community to elevated [CO2] depends on differential responses of dominant invasive species and is mediated by soil water availability
  publication-title: New Phytol.
– volume: 152
  start-page: 167
  year: 2001
  end-page: 173
  article-title: Thirteen years of change in trees and lianas in a Gabonese rainforest
  publication-title: Plant Ecol.
– volume: 17
  start-page: 151
  year: 2005
  end-page: 168
  article-title: Laurophyllisation ‐ auch eine Erscheinung im nordlichen Mitteleuropa? Zur aktuellen Ausbreitung von Hedera helix in sommergrunen Laubwaldern
  publication-title: Ber. Reinh Tuxen Ges
– volume: 179
  start-page: 165
  year: 2008
  end-page: 175
  article-title: High variation in foliage and leaf litter chemistry among 45 tree species of a neotropical rainforest community
  publication-title: New Phytol.
– volume: 16
  start-page: 327
  year: 2000
  end-page: 335
  article-title: Integrating liana abundance and forest stature into an estimate of total aboveground biomass for an eastern Amazonian forest
  publication-title: J. Trop. Ecol.
– volume: 20
  start-page: 553
  year: 2005
  end-page: 560
  article-title: Tropical forests in a changing environment
  publication-title: Trends Ecol. Evol.
– volume: 23
  start-page: 115
  year: 2007
  end-page: 118
  article-title: Contrasting nitrogen and phosphorus resorption efficiencies in trees and lianas from a tropical montane rain forest in Xishuangbanna, south‐west China
  publication-title: J. Trop. Ecol.
– start-page: 377
  year: 1991
  end-page: 391
– volume: 89
  start-page: 2482
  year: 2008
  end-page: 2492
  article-title: Shifts in southern Wisconsin forest canopy and understory richness, composition, and heterogeneity
  publication-title: Ecology
– volume: 20
  start-page: 763
  year: 2006
  end-page: 769
  article-title: growth stimulation of a temperate zone liana ( ) in elevated CO
  publication-title: Funct. Ecol.
– volume: 278
  start-page: 1117
  year: 1997
  end-page: 1118
  article-title: Biomass collapse in Amazonian forest fragments
  publication-title: Science
– volume: 1195
  start-page: 1
  year: 2010
  end-page: 27
  article-title: The future of tropical forests
  publication-title: Ann. NY Acad. Sci.
– volume: 141
  start-page: 114
  year: 2004
  end-page: 120
  article-title: El Niño droughts and their effects on tree species composition and diversity in tropical rain forests
  publication-title: Oecologia
– volume: 103
  start-page: 9086
  year: 2006
  end-page: 9089
  article-title: Biomass and toxicity responses of poison ivy ( ) to elevated atmospheric CO
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 190
  start-page: 109
  year: 2004
  end-page: 118
  article-title: Seedling growth dynamics of a deeply rooting liana in a secondary forest in eastern Amazonia
  publication-title: For. Ecol. Manag.
– volume: 24
  start-page: 659
  year: 2009
  end-page: 669
  article-title: Impacts of roads and linear clearings on tropical forests
  publication-title: Trends Ecol. Evol.
– volume: 363
  start-page: 1767
  year: 2008
  end-page: 1772
  article-title: Observed Change of the Standardized Precipitation Index, Its Potential Cause and Implications to Future Climate in the Amazon Region
  publication-title: Philosophical Transaction of the Royal Society: Climate Change and the Fate of the Amazon
– volume: 242
  start-page: 17
  year: 2007
  end-page: 23
  article-title: Are lianas increasing in importance in temperate floodplain forests in the southeastern United States?
  publication-title: For. Ecol. Manag.
– volume: 53
  start-page: 82
  year: 2006
  end-page: 90
  article-title: Forests, biodivsity and CO : surprises are certain
  publication-title: Biologist
– volume: 8
  start-page: 1
  year: 2002
  end-page: 9
  article-title: In deep shade, elevated CO increases the vigor of tropical climbing plants
  publication-title: Glob. Change Biol.
– volume: 12
  start-page: 340
  year: 2009
  end-page: 348
  article-title: Impact of landscape spatial patterns on liana communities in tropical rainforests at Los Tuxtlas, Mexico
  publication-title: Appl. Veg. Sci.
– volume: 78
  start-page: 69
  year: 1991
  end-page: 75
  article-title: Effects of CO enrichment on the growth and morphology of a native and an introduced honeysuckle vine
  publication-title: Am. J. Bot.
– volume: 100
  start-page: 572
  year: 2003
  end-page: 576
  article-title: Cloud cover limits net CO uptake and growth of a rainforest tree during tropical rainy seasons
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 16
  start-page: 1
  year: 2000
  end-page: 19
  article-title: Density and diversity of lianas along a seasonal tropical forest chronosequence in central Panama
  publication-title: Journal of Tropical Ecology
– volume: 16
  start-page: 1
  year: 1984
  end-page: 9
  article-title: Basal branching and vegetative spread in two tropical rain forest lianas
  publication-title: Biotropica
– volume: 281
  start-page: 237
  year: 1998
  end-page: 240
  article-title: Primary production of the biosphere: integrating terrestrial and oceanic components
  publication-title: Science
– volume: 236
  start-page: 155
  year: 2001
  end-page: 163
  article-title: Contribution of vines to the evapotranspiration of a secondary forest in eastern Amazonia
  publication-title: Plant Soil
– volume: 12
  start-page: 4049
  year: 2010
  end-page: 4063
  article-title: Predicted impact of exotic vines on an endangered ecological community under future climate change
  publication-title: Biol. Invasions
– volume: 38
  start-page: 256
  year: 2006
  end-page: 261
  article-title: A standard protocol for liana censuses
  publication-title: Biotropica
– volume: 103
  start-page: 12947
  year: 2006
  end-page: 12950
  article-title: Condition and fate of logged forests in the Brazilian Amazon
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 13
  start-page: 35
  year: 2008
  end-page: 42
  article-title: Contribution of a liana species, Wall., to litterfall production and nitrogen input in a subtropical evergreen broad‐leaved forest
  publication-title: J. For. Res.
– volume: 25
  start-page: 733
  year: 2005
  end-page: 744
  article-title: Calibration and assessment of seasonal changes in leaf area index of a tropical dry forest in different stages of succession
  publication-title: Tree Physiol.
– volume: 258
  start-page: 728
  year: 2009
  end-page: 734
  article-title: Effects of human disturbances and plant invasion on liana community structure and relationship with trees in the Tinte Bepo forest reserve, Ghana
  publication-title: For. Ecol. Manag.
SSID ssj0012971
Score 2.5327187
SecondaryResourceType review_article
Snippet Ecology Letters (2011) 14: 397-406 ABSTRACT: Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase...
Ecology Letters (2011) 14: 397–406 Tropical forests are experiencing large‐scale structural changes, the most apparent of which may be the increase in liana...
Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in liana (woody vine) abundance and biomass....
Ecology Letters (2011) 14: 397-406 Abstract Tropical forests are experiencing large-scale structural changes, the most apparent of which may be the increase in...
SourceID wageningen
proquest
pubmed
pascalfrancis
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 397
SubjectTerms aboveground biomass
Abundance
Africa
Animal and plant ecology
Animal, plant and microbial ecology
barro-colorado island
below-ground competition
Biodiversity
Biological and medical sciences
Biomass
Carbon Cycle
Carbon dioxide
Carbon sequestration
classification
CO2
Community composition
community structure
disturbance
drought
eastern amazonia
Ecosystem
elevated atmospheric co2
Forestry
Fundamental and applied biological sciences. Psychology
future climate-change
General aspects
General forest ecology
Generalities. Production, biomass. Quality of wood and forest products. General forest ecology
global change
growth & development
ivy toxicodendron radicans
Land use
land use change
liana increases
lianas
Magnoliopsida
Magnoliopsida - classification
Magnoliopsida - growth & development
monitoring
Plant diversity
Population Density
rain-forest
Rainforests
structural changes
temperate forests
toxicity responses
Trees
Tropical Climate
Tropical environments
Tropical forests
tropics
Title Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms
URI https://api.istex.fr/ark:/67375/WNG-PNM6FBQQ-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1461-0248.2011.01590.x
https://www.ncbi.nlm.nih.gov/pubmed/21314879
https://www.proquest.com/docview/856204056
https://www.proquest.com/docview/1501366291
https://www.proquest.com/docview/856788961
https://www.proquest.com/docview/867732745
http://www.narcis.nl/publication/RecordID/oai:library.wur.nl:wurpubs%2F406090
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQJKRx4BsWBpORELdUcezEMTdALRNiFYNN682yExtNZWnVtNrGX897dtap0-CAOCVSYstxfu_59-z3QcibWionmGCpdNamIrc8NbwpU-EFy2rubR72IQ_G5f6x-DwpJr3_E8bCxPwQ6w03lIygr1HAje1uCjmYwnn00GIDWNhUNkA-ia5byI--rTNJwaoWba_YhE82nXpu7QhWG29mQFpxvi_QadJ0MG8-Fry4jZHeI9vnoAXaEBa1yXbDcjV6QKZXHxq9VKaD1dIO6l83ckD-n5l4SO73rJa-jzB8RO649jG5G-tcXsLdMOTGvnxCHOgjdIOHsVPcYDHUWIxFAehR0zYUswEAnaenLV0uZnNEEAVaDZ_fvaMYy4w1leg8JAVtu9BkvlqG5OX0zGEU82l31j0lR6Ph0cf9tK_0kHoglFmqau8sEBtfVQ1zdSMA30KamjFvcrCXS2cbYFIWKyVXxrncFr6uwfIqC2ULxZ-RrXbWuh1CgX4Z1vjSqYwLLpyqpJfWFWhbsrKRCdmBn6rND1Ch-vh7jge3TBW5Ejwhb8Of1vOY50ObxRTd3mShT8af9NfxQTn6cHioTxKytwGFdQM8qQKCpRKye4UN3auETlcFpv4HvpmQ1-unIMt4QGNaN1t1Gsg5QLfMFUsI_cM70I2sKlX-7ZVSSp5LUSTkeQTm9QgZB_tXwgj5NVJ1i2WrOo2Zxnu86fPVQrc_8QI9dBpoX6ayhJQBh-vuNixIphGBGhGoAwL1hR5-GeLdi39tuEu24yY-ukq9JFvLxcq9Aha4tHtBvn8DEpBO1Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQEGI88A0Lg2EkxFuqOHbsmDc-Wgq0FYNN65tlJw6atqVV02obv557na5Tp8ED4imREluOc2yfe319LiGvC6W9YILFyjsXi9Tx2PJSxqISLCl45dLghxyOZH9ffBln42U6IDwL0-pDrBxuODLCfI0DHB3SV0c52MJpG6LFOrCy6aQDhPImJvhGIf2P31daUrCutdZXW4aP18N6rq0J1pvKToC2Yo-fYdikbaDnqjblxXWc9A7ZPIV5oA4Ho9b5bliwevfI8cWntnEqR53F3HWKX1dUIP9TX9wnd5fElr5rkfiA3PD1Q3KrTXV5DnfdII99_oh4mJIwEh4aT9HHYql1eBwF0EdtXVIUBABGTw9rOp9NpggiCswavr95S_E4M6ZVotOgC1o3och0MQ_65fTE40Hmw-akeUz2et29D_14mewhroBTJrEuKu-A21R5XjJflAIgLpQtGKtsCiaz9K4EMuUwWXJuvU9dVhUFGF8y0y7T_AnZqCe13yIUGJhlZSW9TrjgwutcVcr5DM1LJksVkS34q8b-hFnU7P9Ice-W6SzVgkfkTfjVZtpKfRg7O8LIN5WZg9En8200lL33u7vmICI7a1hYFcDNKuBYOiLbF-Awy1mhMXmG6v9AOSPyavUUhjPu0djaTxaNAX7OuJSpZhGhf3gHqlF5ruXfXpFK8VSJLCJPW2RetpBxMIEVtJBfQtXUmLmqMSg2vgScOV3MTH2MF6ihMcD8Ep1ERAYgrqpbMyKZQQQaRKAJCDRnpjvo4t2zfy34ktzu7w0HZvB59HWbbLY-fYycek425rOFfwGkcO52wmD_DekjUvE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQEGgc-B4Lg2EkxC1VHTt2zA1Yy4Ct2mDTerPsxEbTWFo1rbbx1_Oe03XqNDggTomU2HKc33v-Pft9EPKmVNoLJliqvHOpyBxPLa9kKoJg3ZIHl8V9yN2B3D4UX4b5cO7_hLEwbX6IxYYbSkbU1yjg4ypcF3IwhbPWQ4t1YGHT3Q7wydtCdjWWcdj6tkglBctaa3y1bfhw2avnxp5guQl2BKwVJ_wcvSZtAxMX2ooXN1HSe2T1DNRAHeOiluluXK_6D8jJ5Ze2bionndnUdcpf15JA_p-peEjuz2ktfd_i8BG55evH5E5b6PIC7noxOfbFE-JBIaEfPIyd4g6LpdZhMApgj9q6opgOAPg8Pa7pdDIaI4Qo8Gr4_OYdxWBmLKpExzEraN3EJuPZNGYvp6cew5iPm9PmKTno9w4-bqfzUg9pAEbZTXUZvANmE4qiYr6sBABcKFsyFmwGBrP0rgIq5bBUcmG9z1weyhJML5lrl2u-RlbqUe3XCQX-ZVkVpNddLrjwulBBOZ-jcclkpRKyDj_V2B-gQ83h9wxPbpnOMy14Qt7GP23GbaIPYycn6PemcnM0-GT2Bruy_2F_3xwlZHMJCosGeFQFDEsnZOMSG2auExpT5Jj7HwhnQl4vnoIw4wmNrf1o1hhg54xLmWmWEPqHd6AbVRRa_u0VqRTPlMgT8qwF5tUIGQcDWMEI-RVSTY11qxqDqcbneDNns4mpf-IFemgM8D6QqYTIiMNFd0smJDOIQIMINBGB5tz0dnp49_xfG74id_e2-mbn8-DrBlltN_TRbeoFWZlOZv4lMMKp24yi_huhU1Gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increasing+liana+abundance+and+biomass+in+tropical+forests%3A+emerging+patterns+and+putative+mechanisms&rft.jtitle=Ecology+letters&rft.au=Schnitzer%2C+S.A&rft.au=Bongers%2C+F&rft.date=2011-04-01&rft.issn=1461-023X&rft.eissn=1461-0248&rft.volume=14&rft.issue=4&rft_id=info:doi/10.1111%2Fj.1461-0248.2011.01590.x&rft.externalDBID=n%2Fa&rft.externalDocID=oai_library_wur_nl_wurpubs_406090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1461-023X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1461-023X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1461-023X&client=summon