Thermodynamic extremization principles and their relevance to ecology

Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad appl...

Full description

Saved in:
Bibliographic Details
Published inAustral ecology Vol. 39; no. 6; pp. 619 - 632
Main Authors Yen, Jian D. L, Paganin, David M, Thomson, James R, Mac Nally, Ralph
Format Journal Article
LanguageEnglish
Published Richmond Blackwell Science Asia 01.09.2014
Blackwell Publishing Ltd
Subjects
Online AccessGet full text
ISSN1442-9985
1442-9993
DOI10.1111/aec.12130

Cover

Loading…
Abstract Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on ‘thermodynamic extremization’ (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation.
AbstractList Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on 'thermodynamic extremization' (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation. [PUBLICATION ABSTRACT]
Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on ‘thermodynamic extremization’ (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation.
Author Thomson, James R.
Yen, Jian D. L.
Mac Nally, Ralph
Paganin, David M.
Author_xml – sequence: 1
  fullname: Yen, Jian D. L
– sequence: 2
  fullname: Paganin, David M
– sequence: 3
  fullname: Thomson, James R
– sequence: 4
  fullname: Mac Nally, Ralph
BookMark eNpdkE9PGzEQxa2KSgXaQz9BV-LCZYn_e31EIaRFqD0U1KoXy_HOgmHXDvYGkn56TII4MNJo3uH3RjPvAO2FGAChrwSfkFITC-6EUMLwB7RPOKe11prtvelGfEIHOd9hjBupyT6aXd1CGmK7CXbwroL1mGDw_-3oY6iWyQfnlz3kyoa2Gm_BpypBD482OKjGWIGLfbzZfEYfO9tn-PI6D9H1-exq-r2-_DX_MT29rDtOGa6BLVQrlCYUS2yhlYIs6MI5rpWSHW1a3EnZdKKxnVUts0QK3TJMpaTC8QazQ3S827tM8WEFeTSDzw763gaIq2yIlEwwpSgv6NE79C6uUijXGSIEJ7QRDSnUZEc9-R42pjw82LQxBJuXNE1J02zTNKez6VYUR71z-DzC-s1h072Riilh_vycm-mF-Pf3bE7NWeG_7fjORmNvks_m-jfFhOPSWnDNngHOLYI-
ContentType Journal Article
Copyright 2014 The Authors. Austral Ecology published by Wiley Publishing Asia Pty Ltd on behalf of Ecological Society of Australia.
2014 Ecological Society of Australia
Copyright_xml – notice: 2014 The Authors. Austral Ecology published by Wiley Publishing Asia Pty Ltd on behalf of Ecological Society of Australia.
– notice: 2014 Ecological Society of Australia
DBID FBQ
BSCLL
24P
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7S9
L.6
DOI 10.1111/aec.12130
DatabaseName AGRIS
Istex
Wiley Online Library Open Access
Animal Behavior Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle Entomology Abstracts
Technology Research Database
Animal Behavior Abstracts
Chemoreception Abstracts
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Entomology Abstracts


AGRICOLA
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1442-9993
EndPage 632
ExternalDocumentID 3406243991
AEC12130
ark_67375_WNG_CJ5ZXDG2_D
US201400149549
Genre reviewArticle
GrantInformation_xml – fundername: Victorian Life Sciences Computation Initiative
– fundername: Monash University Sir James McNeill Foundation
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
23N
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACSCC
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FBQ
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AHBTC
AITYG
BSCLL
HGLYW
OIG
24P
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
7QG
7QR
7SN
7SS
8FD
C1K
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-f4230-e3b7d57912060aed651b2bcc49776f28d0f668f58afa7d3a1659d3026625c4803
IEDL.DBID DR2
ISSN 1442-9985
IngestDate Fri Jul 11 18:39:23 EDT 2025
Wed Aug 13 07:07:25 EDT 2025
Fri Jul 18 18:29:56 EDT 2025
Wed Oct 30 09:49:48 EDT 2024
Wed Dec 27 19:03:36 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f4230-e3b7d57912060aed651b2bcc49776f28d0f668f58afa7d3a1659d3026625c4803
Notes http://dx.doi.org/10.1111/aec.12130
Victorian Life Sciences Computation Initiative
Appendix S1. Synthesis of energy-dissipation and energy-storage principles. Appendix S2. Mathematical details for predicting individual size distributions.
ArticleID:AEC12130
ark:/67375/WNG-CJ5ZXDG2-D
Monash University Sir James McNeill Foundation
istex:B81D7927243BEA038298E409DED256075C093D1A
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.12130
PQID 1554128581
PQPubID 46239
PageCount 14
ParticipantIDs proquest_miscellaneous_1663537724
proquest_journals_1554128581
wiley_primary_10_1111_aec_12130_AEC12130
istex_primary_ark_67375_WNG_CJ5ZXDG2_D
fao_agris_US201400149549
PublicationCentury 2000
PublicationDate September 2014
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: September 2014
PublicationDecade 2010
PublicationPlace Richmond
PublicationPlace_xml – name: Richmond
PublicationTitle Austral ecology
PublicationTitleAlternate Austral Ecology
PublicationYear 2014
Publisher Blackwell Science Asia
Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Science Asia
– name: Blackwell Publishing Ltd
References Kleidon A., Malhi Y. & Cox P. M. (2010) Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B 365, 1297-1302.
Meysman F. J. R. & Bruers S. (2010) Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405-1416.
Kooijman S. A. L. M. (2010) Dynamic Energy Budget theory for Metabolic Organisation, 3rd edn. Cambridge University Press, Cambridge.
Smith E. (2008a) Thermodynamics of natural selection I: energy flow and the limits on organization. J. Theor. Biol. 252, 185-197.
Holdaway R. J., Sparrow A. D. & Coomes D. A. (2010) Trends in entropy production during ecosystem development in the Amazon Basin. Phil. Trans. R. Soc. B 365, 1437-1447.
Coomes D. A., Duncan R. P., Allen R. B. & Truscott J. (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980-989.
Mansson B. A. & McGlade J. M. (1993) Ecology, thermodynamics and H. T. Odum's conjectures. Oecologia 93, 582-596.
Corning P. A. & Kline S. J. (1998) Thermodynamics, information and life revisited, Part I: 'To be or entropy'. Syst. Res. 15, 273-295.
DeLong J. P. (2008) The maximum power principle predicts the outcomes of two-species competition experiments. Oikos 117, 1329-1336.
Berut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R. & Lutz E. (2012) Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187-189.
Jorgensen S. E., Patten B. C. & Straskraba M. (1999) Ecosystems emerging: 3. Openness. Ecol. Model. 117, 41-64.
Kleidon A. (2010) Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Phil. Trans. R. Soc. A 368, 181-196.
Kondepudi D. & Prigogine I. (1999) Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York.
Jorgensen S. E. & Svirezhev T. M. (2004b) Towards a Thermodynamic Theory for Ecological Systems. Gulf Professional Publishing, Oxford.
Wicken J. S. (1987) Evolution, Thermodynamics, and Information: Extending the Darwinian Program. Oxford University Press, New York.
Bejan A. & Lorente S. (2010) The constructal law of design and evolution in nature. Phil. Trans. R. Soc. B 365, 1335-1347.
Milewski A. V. & Mills A. J. (2010) Does life consistently maximise energy intensity? Biol. Rev. 85, 859-879.
Brown J. H., Marquet P. A. & Taper M. L. (1993) Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573-584.
Clark J. S. (2012) The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 27, 198-202.
Landauer R. (1996) The physical nature of information. Phys. Lett. A 217, 188-193.
Dewar R. C., Franklin O., Makela A., McMurtrie R. E. & Valentine H. T. (2009) Optimal function explains forest responses to global change. Bioscience 59, 127-139.
Odum H. T. & Pinkerton R. C. (1955) Time's speed regulation: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331-343.
Schrödinger E. (1945) What is life? The Physical Aspect of the living Cell and Mind and Matter. Cambridge University Press, Cambridge.
Muller-Landau H. C., Condit R. S., Harms K. E. et al. (2006) Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol. Lett. 9, 589-602.
Prigogine I. (1978) Time, structure, and fluctuations. Science 201, 777-785.
Zupanovic P., Brumen M., Jagodic M. & Juretic D. (2010) Bacterial chemotaxis and entropy production. Phil. Trans. R. Soc. B 365, 1397-1403.
Smith E. (2008b) Thermodynamics of natural selection II: chemical Carnot cycles. J. Theor. Biol. 252, 198-212.
Marchi M., Jorgensen S. E., Becares E., Corsi I., Marchettini N. & Bastianoni S. (2011) Dynamic model of Lake Chozas (Leon, NW Spain) - decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish. Ecol. Model. 222, 3002-3010.
Elith J., Phillips S. J., Hastie T., Dudik M., Chee Y. E. & Yates C. J. (2011) A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57.
Grandy W. T. (2008) Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, New York.
Gemmer J., Michel M. & Mahler G. (2009) Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems. Springer, Berlin.
Sousa T., Domingos T., Poggiale J.-C. & Kooijman S. A. L. M. (2010) Dynamic energy budget theory restores coherence in biology. Phil. Trans. R. Soc. B 365, 3413-3428.
Fath B. D., Patten B. C. & Choi J. S. (2001) Complementarity of ecological goal functions. J. Theor. Biol. 208, 493-506.
del Jesus M., Foti R., Rinaldo A. & Rodriguez-Iturbe I. (2012) Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins. Proc. Natl Acad. Sci. USA 109, 20837-20841.
West G. B., Brown J. H. & Enquist B. J. (1997) A general model for the origin of allometric scaling laws in biology. Science 276, 122-126.
Ernest S. K. M., Enquist B. J., Brown J. H. et al. (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990-995.
Odum H. T. (1996) Environmental Accounting: Emergy and Environmental Decision Making. John Wiley, New York.
Sole R. V. & Bascompte J. (2006) Self-organization in Complex Ecosystems. Princeton University Press, Princeton.
Kozlowski J. (1996) Energetic definition of fitness? Yes, but not that one. Am. Nat. 147, 1087-1091.
Gaudreau K., Fraser R. A. & Murphy S. (2009) The tenuous use of exergy as a measure of resource value or waste impact. Sustainability 1, 1444-1463.
Allen T. F. H., Tainter J. A. & Hoekstra T. W. (2003) Supply-side Sustainability. Columbia University Press, New York.
Brooks D. R. & Wiley E. O. (1988) Evolution as Entropy: Toward a Unified Theory of Biology. The University of Chicago Press, Chicago.
Alonso D., Etienne R. S. & McKane A. J. (2006) The merits of neutral theory. Trends Ecol. Evol. 21, 451-457.
Brown J. H., Gillooly J. F., Allen A. P., Savage V. M. & West G. B. (2004) Toward a metabolic theory of ecology. Ecology 85, 1771-1789.
Cai T. T., Montague C. L. & Davis J. S. (2006) The maximum power principle: an empirical investigation. Ecol. Model. 190, 317-335.
Trebilco R., Baum J. K., Salomon A. K. & Dulvy N. K. (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423-431.
van der Meer J. (2006) Metabolic theories in ecology. Trends Ecol. Evol. 21, 136-140.
Hall C. A. S. (2004) The continuing importance of maximum power. Ecol. Model. 178, 107-113.
Bruers S. (2007) A discussion on maximum entropy production and information theory. J. Phys. A: Math. Gen. 40, 7441-7450.
Hubbell S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
Avery J. S. (2012) Information Theory and Evolution. World Scientific Publishing, Singapore.
Haegeman B. & Loreau M. (2008) Limitations of entropy maximization in ecology. Oikos 117, 1700-1710.
Levin S. A. (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431-436.
Dewar R. C. (2009) Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger. Entropy 11, 931-944.
Dewar R. C. (2005) Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371-381.
Zhou J., Ma S. & Hinman G. W. (1996) Ecological exergy analysis: a new method for ecological energetics research. Ecol. Model. 84, 291-303.
MacArthur R. H. & Wilson E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton.
Giaquinta M. & Hildebrandt S. (1996) Calculus of Variations I. Springer, Berlin.
Kerr J. T. & Ostrovsky M. (2003) From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299-305.
Levin S. A. (2005) Self-organization and the emergence of complexity in ecological systems. Bioscience 55, 1075-1079.
Lovelock J. E. (1972) Gaia as seen through the atmosphere. Atmos. Environ. 6, 579-580.
Baldocchi D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. Biol. 9, 479-492.
Grinstein G. & Linsker R. (2007) Comments on a derivation and application of the 'maximum entropy production' principle. J. Phys. A: Math. Theor. 40, 9717-9720.
Lotka A. J. (1922) Contribution to the energetics of evolution. Proc. Natl Acad. Sci. USA 8, 147-151.
Odum E. P. (1969) The strategy of ecosystem development. Science 164, 262-270.
Brostow W. (1972) Between laws of thermodynamics and coding of information. Science 178, 123-126.
Petchey O. L. (2010) Maximum entropy in ecology. Oikos 119, 577.
Prigogine I. (1955) Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas, Springfield.
Ulanowicz R. E. (2003) Some steps toward a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530.
Martyushev L. M. & Seleznev V. D. (2006) Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1-45.
Enquist B. J. & Niklas K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature 410, 655-660.
Frank S. A. (2009) Natural selection maximizes Fisher information. J. Evol. Biol. 22, 231-244.
Loeuille N. & Loreau M. (2005) Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761-5766.
Aoki I. (2006) Min-Max principle of entropy production with time in aquatic communities. Ecol. Complex. 3, 56-63.
Hoelzer G. A., Smith E. & Pepper J. W. (2006) On the logical relationship between natural selection and self-organization. J. Evol. Biol. 19, 1785-1794.
Kearney M. R. & White C. R. (2012) Testing metabolic theories. Am. Nat. 180, 546-565.
Carpenter S. R. (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77, 677-680.
DeLong J. P. (2012) Experimental demons
2012; 483
1922; 8
1957; 106
2004a
2002; 158
1997; 276
2004; 1
2012; 14
1972; 178
1996; 147
1996; 77
2004; 178
1998; 15
2009; 11
2001; 410
2006; 20
2010; 119
2006; 21
2005; 102
1987
2008; 117
1983
1975; 101
2012; 27
2004b
1988
1989; 4
2008b; 252
2013; 83
2012; 180
2003; 36
1996
2013; 181
2001; 208
2012; 109
1999
1969; 164
1994; 19
2006; 190
2003; 27
1996; 84
1978; 201
1998; 1
1999; 117
1998; 265
2003; 102
2003; 220
1973; 4
2004; 66
2013; 28
1980; 85
1995; 79
2003; 18
2011; 17
1955; 43
2001
2003; 6
2008c; 252
2003; 9
2011; 24
2005; 38
2007; 22
2009; 59
1996; 217
1945
2009; 22
2004; 85
2012
2011
2010
2010; 368
2010; 365
2006; 9
2009
2008
2006; 19
2006
2006; 3
2005
2003
2006; 314
1972; 6
2010; 85
1993; 142
1955
1963; 97
2012; 3
2004; 92
1993; 93
2007; 40
2008a; 252
2009; 1
2006; 426
2005; 55
2011; 222
1968
1967
References_xml – reference: Margalef R. (1963) On certain unifying principles in ecology. Am. Nat. 97, 357-374.
– reference: Clarke A. (2006) Temperature and the metabolic theory of ecology. Funct. Ecol. 20, 405-412.
– reference: Paltridge G. W. (1975) Global dynamics and climate - a system of minimum entropy exchange. Q. J. R. Meteorol. Soc. 101, 475-484.
– reference: Volkov I., Banavar J. R. & Maritan A. (2004) Organization of ecosystems in the vicinity of a novel phase transition. Phys. Rev. Lett. 92, 218703.
– reference: Meysman F. J. R. & Bruers S. (2010) Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405-1416.
– reference: Zhou J., Ma S. & Hinman G. W. (1996) Ecological exergy analysis: a new method for ecological energetics research. Ecol. Model. 84, 291-303.
– reference: Clark J. S. (2012) The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 27, 198-202.
– reference: Muller-Landau H. C., Condit R. S., Harms K. E. et al. (2006) Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol. Lett. 9, 589-602.
– reference: Frank S. A. (2009) Natural selection maximizes Fisher information. J. Evol. Biol. 22, 231-244.
– reference: Gaudreau K., Fraser R. A. & Murphy S. (2009) The tenuous use of exergy as a measure of resource value or waste impact. Sustainability 1, 1444-1463.
– reference: Levin S. A. (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431-436.
– reference: Bruers S. (2007) A discussion on maximum entropy production and information theory. J. Phys. A: Math. Gen. 40, 7441-7450.
– reference: Dewar R. C. (2010) Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429-1435.
– reference: Kearney M. R. & White C. R. (2012) Testing metabolic theories. Am. Nat. 180, 546-565.
– reference: Patten B. C. (1995) Network integration of ecological extremal principles: exergy, emergy, power, ascendency, and indirect effects. Ecol. Model. 79, 75-84.
– reference: Dewar R. C. (2005) Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371-381.
– reference: Prigogine I. (1955) Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas, Springfield.
– reference: DeLong J. P. (2008) The maximum power principle predicts the outcomes of two-species competition experiments. Oikos 117, 1329-1336.
– reference: Elith J., Phillips S. J., Hastie T., Dudik M., Chee Y. E. & Yates C. J. (2011) A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57.
– reference: Wicken J. S. (1987) Evolution, Thermodynamics, and Information: Extending the Darwinian Program. Oxford University Press, New York.
– reference: Kozlowski J. (1996) Energetic definition of fitness? Yes, but not that one. Am. Nat. 147, 1087-1091.
– reference: Pross A. (2003) The driving force for life's emergence: kinetic and thermodynamic considerations. J. Theor. Biol. 220, 393-406.
– reference: Giaquinta M. & Hildebrandt S. (1996) Calculus of Variations I. Springer, Berlin.
– reference: Petchey O. L. (2010) Maximum entropy in ecology. Oikos 119, 577.
– reference: Shipley B., Vile D. & Garnier E. (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314, 812-814.
– reference: Kooijman S. A. L. M. (2010) Dynamic Energy Budget theory for Metabolic Organisation, 3rd edn. Cambridge University Press, Cambridge.
– reference: Levin S. A. (2005) Self-organization and the emergence of complexity in ecological systems. Bioscience 55, 1075-1079.
– reference: Marchi M., Jorgensen S. E., Becares E., Corsi I., Marchettini N. & Bastianoni S. (2011) Dynamic model of Lake Chozas (Leon, NW Spain) - decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish. Ecol. Model. 222, 3002-3010.
– reference: Niven R. K. (2010) Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state. Phil. Trans. R. Soc. B 365, 1323-1331.
– reference: Coomes D. A., Duncan R. P., Allen R. B. & Truscott J. (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980-989.
– reference: McGill B. J. (2003) Strong and weak tests of macroecological theory. Oikos 102, 679-685.
– reference: Martin B. T., Jager T., Nisbet R. M., Preuss T. G. & Grimm V. (2013) Predicting population dynamics from the properties of individuals: a cross-level test of dynamic energy budget theory. Am. Nat. 181, 506-519.
– reference: Martyushev L. M. & Seleznev V. D. (2006) Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1-45.
– reference: Brooks D. R., Collier J., Maurer B. A., Smith J. D. H. & Wiley E. O. (1989) Entropy and information in evolving biological systems. Biol. Philos. 4, 407-432.
– reference: Avery J. S. (2012) Information Theory and Evolution. World Scientific Publishing, Singapore.
– reference: Harte J. (2011) Maximum Entropy and Ecology. Oxford University Press, Oxford.
– reference: Hubbell S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.
– reference: Landauer R. (1996) The physical nature of information. Phys. Lett. A 217, 188-193.
– reference: Kondepudi D. & Prigogine I. (1999) Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York.
– reference: Brown J. H., Gillooly J. F., Allen A. P., Savage V. M. & West G. B. (2004) Toward a metabolic theory of ecology. Ecology 85, 1771-1789.
– reference: Alonso D., Etienne R. S. & McKane A. J. (2006) The merits of neutral theory. Trends Ecol. Evol. 21, 451-457.
– reference: Kondepudi D. (2008) Introduction to Modern Thermodynamics. John Wiley & Sons, Chichester.
– reference: Trebilco R., Baum J. K., Salomon A. K. & Dulvy N. K. (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423-431.
– reference: Smith E. (2008c) Thermodynamics of natural selection III: landauer's principle in computation and chemistry. J. Theor. Biol. 252, 213-220.
– reference: Milewski A. V. & Mills A. J. (2010) Does life consistently maximise energy intensity? Biol. Rev. 85, 859-879.
– reference: Brown J. H., Marquet P. A. & Taper M. L. (1993) Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573-584.
– reference: Tilley D. R. (2004) Howard T. Odum's contribution to the laws of energy. Ecol. Model. 178, 121-125.
– reference: Morowitz H. J. (1968) Energy Flow in Biology; Biological Organization as a Problem in Thermal Physics. Academic Press, New York.
– reference: Kerr J. T. & Ostrovsky M. (2003) From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299-305.
– reference: Weber B. H., Depew D. J., Dyke C. et al. (1989) Evolution in thermodynamic perspective: an ecological approach. Biol. Philos. 4, 373-405.
– reference: Lovelock J. E. (1972) Gaia as seen through the atmosphere. Atmos. Environ. 6, 579-580.
– reference: Zupanovic P., Brumen M., Jagodic M. & Juretic D. (2010) Bacterial chemotaxis and entropy production. Phil. Trans. R. Soc. B 365, 1397-1403.
– reference: Sousa T., Domingos T., Poggiale J.-C. & Kooijman S. A. L. M. (2010) Dynamic energy budget theory restores coherence in biology. Phil. Trans. R. Soc. B 365, 3413-3428.
– reference: del Jesus M., Foti R., Rinaldo A. & Rodriguez-Iturbe I. (2012) Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins. Proc. Natl Acad. Sci. USA 109, 20837-20841.
– reference: Enquist B. J. & Niklas K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature 410, 655-660.
– reference: Odum E. P. (1969) The strategy of ecosystem development. Science 164, 262-270.
– reference: Allen T. F. H., Tainter J. A. & Hoekstra T. W. (2003) Supply-side Sustainability. Columbia University Press, New York.
– reference: Odum H. T. (1996) Environmental Accounting: Emergy and Environmental Decision Making. John Wiley, New York.
– reference: McGill B. J. & Nekola J. C. (2010) Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos 119, 591-603.
– reference: Loeuille N. & Loreau M. (2005) Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761-5766.
– reference: van der Meer J. (2006) Metabolic theories in ecology. Trends Ecol. Evol. 21, 136-140.
– reference: Frank S. A. (2011) Measurement scale in maximum entropy models of species abundance. J. Evol. Biol. 24.
– reference: Jaynes E. T. (1957) Information theory and statistical mechanics. Phys. Rev. 106, 620-630.
– reference: Ulanowicz R. E. (2003) Some steps toward a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530.
– reference: Mansson B. A. & McGlade J. M. (1993) Ecology, thermodynamics and H. T. Odum's conjectures. Oecologia 93, 582-596.
– reference: Holdaway R. J., Sparrow A. D. & Coomes D. A. (2010) Trends in entropy production during ecosystem development in the Amazon Basin. Phil. Trans. R. Soc. B 365, 1437-1447.
– reference: Baldocchi D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. Biol. 9, 479-492.
– reference: Kleidon A. (2010) Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Phil. Trans. R. Soc. A 368, 181-196.
– reference: Ulanowicz R. E. (1980) An hypothesis on the development of natural communities. J. Theor. Biol. 85, 223-245.
– reference: DeLong J. P., Hanley T. C. & Vasseur D. A. (2013) Competition and the density dependence of metabolic rates. J. Anim. Ecol. 83, 51-58.
– reference: Gemmer J., Michel M. & Mahler G. (2009) Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems. Springer, Berlin.
– reference: Jorgensen S. E. & Svirezhev T. M. (2004b) Towards a Thermodynamic Theory for Ecological Systems. Gulf Professional Publishing, Oxford.
– reference: Bejan A. & Lorente S. (2010) The constructal law of design and evolution in nature. Phil. Trans. R. Soc. B 365, 1335-1347.
– reference: Sethna J. P. (2006) Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, New York.
– reference: Brooks D. R. & Wiley E. O. (1988) Evolution as Entropy: Toward a Unified Theory of Biology. The University of Chicago Press, Chicago.
– reference: Dewar R. C. (2003) Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631-641.
– reference: MacArthur R. H. & Wilson E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton.
– reference: Martin B. T., Zimmer E. I., Grimm V. & Jager T. (2012) Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods Ecol. Evol. 3, 445-449.
– reference: Prigogine I. (1978) Time, structure, and fluctuations. Science 201, 777-785.
– reference: Grimm V. & Railsback S. F. (2005) Individual-based Modeling and Ecology. Princeton University Press, Princeton.
– reference: Kleidon A., Malhi Y. & Cox P. M. (2010) Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B 365, 1297-1302.
– reference: Sole R. V. & Bascompte J. (2006) Self-organization in Complex Ecosystems. Princeton University Press, Princeton.
– reference: Kleidon A. (2004) Beyond Gaia: thermodynamics of life and earth system functioning. Clim. Change 66, 271-319.
– reference: Jorgensen S. E. & Fath B. D. (2004) Application of thermodynamic principles in ecology. Ecol. Complex. 1, 267-280.
– reference: Brostow W. (1972) Between laws of thermodynamics and coding of information. Science 178, 123-126.
– reference: Odum H. T. (1983) Systems Ecology. Wiley, New York.
– reference: Ernest S. K. M., Enquist B. J., Brown J. H. et al. (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990-995.
– reference: Hoelzer G. A., Smith E. & Pepper J. W. (2006) On the logical relationship between natural selection and self-organization. J. Evol. Biol. 19, 1785-1794.
– reference: Lotka A. J. (1922) Contribution to the energetics of evolution. Proc. Natl Acad. Sci. USA 8, 147-151.
– reference: Smith E. (2008a) Thermodynamics of natural selection I: energy flow and the limits on organization. J. Theor. Biol. 252, 185-197.
– reference: Smith E. (2008b) Thermodynamics of natural selection II: chemical Carnot cycles. J. Theor. Biol. 252, 198-212.
– reference: Corning P. A. & Kline S. J. (1998) Thermodynamics, information and life revisited, Part I: 'To be or entropy'. Syst. Res. 15, 273-295.
– reference: Grandy W. T. (2008) Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, New York.
– reference: Dewar R. C. (2009) Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger. Entropy 11, 931-944.
– reference: West G. B., Brown J. H. & Enquist B. J. (1997) A general model for the origin of allometric scaling laws in biology. Science 276, 122-126.
– reference: Odum H. T. & Pinkerton R. C. (1955) Time's speed regulation: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331-343.
– reference: Hall C. A. S. (2004) The continuing importance of maximum power. Ecol. Model. 178, 107-113.
– reference: Schrödinger E. (1945) What is life? The Physical Aspect of the living Cell and Mind and Matter. Cambridge University Press, Cambridge.
– reference: Grinstein G. & Linsker R. (2007) Comments on a derivation and application of the 'maximum entropy production' principle. J. Phys. A: Math. Theor. 40, 9717-9720.
– reference: Jorgensen S. E., Patten B. C. & Straskraba M. (1999) Ecosystems emerging: 3. Openness. Ecol. Model. 117, 41-64.
– reference: DeLong J. P. (2012) Experimental demonstration of a 'rate-size' trade-off governing body size optimization. Evol. Ecol. Res. 14, 343-352.
– reference: Loreau M. (1998) Ecosystem development explained by competition within and between material cycles. Proc. R. Soc. B 265, 33-38.
– reference: Odum H. T. (2002) Explanations of ecological relationships with energy systems concepts. Ecol. Model. 158, 201-211.
– reference: Schneider E. D. & Kay J. J. (1994) Life as a manifestation of the Second Law of Thermodynamics. Math. Comput. Model. 19, 25-48.
– reference: Dewar R. C., Franklin O., Makela A., McMurtrie R. E. & Valentine H. T. (2009) Optimal function explains forest responses to global change. Bioscience 59, 127-139.
– reference: Carpenter S. R. (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77, 677-680.
– reference: Fath B. D., Patten B. C. & Choi J. S. (2001) Complementarity of ecological goal functions. J. Theor. Biol. 208, 493-506.
– reference: Cai T. T., Montague C. L. & Davis J. S. (2006) The maximum power principle: an empirical investigation. Ecol. Model. 190, 317-335.
– reference: Gallucci V. F. (1973) On the principles of thermodynamics in ecology. Annu. Rev. Ecol. Syst. 4, 329-357.
– reference: Berut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R. & Lutz E. (2012) Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187-189.
– reference: Haegeman B. & Loreau M. (2008) Limitations of entropy maximization in ecology. Oikos 117, 1700-1710.
– reference: White E. P., Ernest S. K. M., Kerkhoff A. J. & Enquist B. J. (2007) Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323-330.
– reference: Aoki I. (2006) Min-Max principle of entropy production with time in aquatic communities. Ecol. Complex. 3, 56-63.
– year: 2011
– volume: 3
  start-page: 56
  year: 2006
  end-page: 63
  article-title: Min‐Max principle of entropy production with time in aquatic communities
  publication-title: Ecol. Complex.
– year: 2005
– volume: 365
  start-page: 1323
  year: 2010
  end-page: 1331
  article-title: Minimization of a free‐energy‐like potential for non‐equilibrium flow systems at steady state
  publication-title: Phil. Trans. R. Soc. B
– volume: 106
  start-page: 620
  year: 1957
  end-page: 630
  article-title: Information theory and statistical mechanics
  publication-title: Phys. Rev.
– volume: 208
  start-page: 493
  year: 2001
  end-page: 506
  article-title: Complementarity of ecological goal functions
  publication-title: J. Theor. Biol.
– volume: 27
  start-page: 523
  year: 2003
  end-page: 530
  article-title: Some steps toward a central theory of ecosystem dynamics
  publication-title: Comput. Biol. Chem.
– volume: 28
  start-page: 423
  year: 2013
  end-page: 431
  article-title: Ecosystem ecology: size‐based constraints on the pyramids of life
  publication-title: Trends Ecol. Evol.
– volume: 142
  start-page: 573
  year: 1993
  end-page: 584
  article-title: Evolution of body size: consequences of an energetic definition of fitness
  publication-title: Am. Nat.
– volume: 21
  start-page: 451
  year: 2006
  end-page: 457
  article-title: The merits of neutral theory
  publication-title: Trends Ecol. Evol.
– volume: 83
  start-page: 51
  year: 2013
  end-page: 58
  article-title: Competition and the density dependence of metabolic rates
  publication-title: J. Anim. Ecol.
– volume: 85
  start-page: 1771
  year: 2004
  end-page: 1789
  article-title: Toward a metabolic theory of ecology
  publication-title: Ecology
– volume: 1
  start-page: 267
  year: 2004
  end-page: 280
  article-title: Application of thermodynamic principles in ecology
  publication-title: Ecol. Complex.
– volume: 77
  start-page: 677
  year: 1996
  end-page: 680
  article-title: Microcosm experiments have limited relevance for community and ecosystem ecology
  publication-title: Ecology
– volume: 40
  start-page: 7441
  year: 2007
  end-page: 7450
  article-title: A discussion on maximum entropy production and information theory
  publication-title: J. Phys. A: Math. Gen.
– volume: 252
  start-page: 198
  year: 2008b
  end-page: 212
  article-title: Thermodynamics of natural selection II: chemical Carnot cycles
  publication-title: J. Theor. Biol.
– year: 2008
– volume: 1
  start-page: 1444
  year: 2009
  end-page: 1463
  article-title: The tenuous use of exergy as a measure of resource value or waste impact
  publication-title: Sustainability
– volume: 102
  start-page: 679
  year: 2003
  end-page: 685
  article-title: Strong and weak tests of macroecological theory
  publication-title: Oikos
– volume: 40
  start-page: 9717
  year: 2007
  end-page: 9720
  article-title: Comments on a derivation and application of the ‘maximum entropy production’ principle
  publication-title: J. Phys. A: Math. Theor.
– volume: 1
  start-page: 431
  year: 1998
  end-page: 436
  article-title: Ecosystems and the biosphere as complex adaptive systems
  publication-title: Ecosystems
– year: 1955
– volume: 36
  start-page: 631
  year: 2003
  end-page: 641
  article-title: Information theory explanation of the fluctuation theorem, maximum entropy production and self‐organized criticality in non‐equilibrium stationary states
  publication-title: J. Phys. A: Math. Gen.
– volume: 18
  start-page: 299
  year: 2003
  end-page: 305
  article-title: From space to species: ecological applications for remote sensing
  publication-title: Trends Ecol. Evol.
– volume: 4
  start-page: 373
  year: 1989
  end-page: 405
  article-title: Evolution in thermodynamic perspective: an ecological approach
  publication-title: Biol. Philos.
– volume: 66
  start-page: 271
  year: 2004
  end-page: 319
  article-title: Beyond Gaia: thermodynamics of life and earth system functioning
  publication-title: Clim. Change
– volume: 102
  start-page: 5761
  year: 2005
  end-page: 5766
  article-title: Evolutionary emergence of size‐structured food webs
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 276
  start-page: 122
  year: 1997
  end-page: 126
  article-title: A general model for the origin of allometric scaling laws in biology
  publication-title: Science
– volume: 217
  start-page: 188
  year: 1996
  end-page: 193
  article-title: The physical nature of information
  publication-title: Phys. Lett. A
– year: 1987
– volume: 483
  start-page: 187
  year: 2012
  end-page: 189
  article-title: Experimental verification of Landauer's principle linking information and thermodynamics
  publication-title: Nature
– volume: 43
  start-page: 331
  year: 1955
  end-page: 343
  article-title: Time's speed regulation: the optimum efficiency for maximum power output in physical and biological systems
  publication-title: Am. Sci.
– volume: 147
  start-page: 1087
  year: 1996
  end-page: 1091
  article-title: Energetic definition of fitness? Yes, but not that one
  publication-title: Am. Nat.
– volume: 79
  start-page: 75
  year: 1995
  end-page: 84
  article-title: Network integration of ecological extremal principles: exergy, emergy, power, ascendency, and indirect effects
  publication-title: Ecol. Model.
– volume: 27
  start-page: 198
  year: 2012
  end-page: 202
  article-title: The coherence problem with the Unified Neutral Theory of Biodiversity
  publication-title: Trends Ecol. Evol.
– volume: 101
  start-page: 475
  year: 1975
  end-page: 484
  article-title: Global dynamics and climate – a system of minimum entropy exchange
  publication-title: Q. J. R. Meteorol. Soc.
– year: 2010
– volume: 158
  start-page: 201
  year: 2002
  end-page: 211
  article-title: Explanations of ecological relationships with energy systems concepts
  publication-title: Ecol. Model.
– volume: 365
  start-page: 1397
  year: 2010
  end-page: 1403
  article-title: Bacterial chemotaxis and entropy production
  publication-title: Phil. Trans. R. Soc. B
– volume: 84
  start-page: 291
  year: 1996
  end-page: 303
  article-title: Ecological exergy analysis: a new method for ecological energetics research
  publication-title: Ecol. Model.
– volume: 109
  start-page: 20837
  year: 2012
  end-page: 20841
  article-title: Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins
  publication-title: Proc. Natl Acad. Sci. USA
– year: 1967
– volume: 59
  start-page: 127
  year: 2009
  end-page: 139
  article-title: Optimal function explains forest responses to global change
  publication-title: Bioscience
– volume: 85
  start-page: 859
  year: 2010
  end-page: 879
  article-title: Does life consistently maximise energy intensity?
  publication-title: Biol. Rev.
– volume: 368
  start-page: 181
  year: 2010
  end-page: 196
  article-title: Non‐equilibrium thermodynamics, maximum entropy production and Earth‐system evolution
  publication-title: Phil. Trans. R. Soc. A
– volume: 222
  start-page: 3002
  year: 2011
  end-page: 3010
  article-title: Dynamic model of Lake Chozas (Leon, NW Spain) – decrease in eco‐exergy from clear to turbid phase due to introduction of exotic crayfish
  publication-title: Ecol. Model.
– volume: 365
  start-page: 3413
  year: 2010
  end-page: 3428
  article-title: Dynamic energy budget theory restores coherence in biology
  publication-title: Phil. Trans. R. Soc. B
– volume: 4
  start-page: 407
  year: 1989
  end-page: 432
  article-title: Entropy and information in evolving biological systems
  publication-title: Biol. Philos.
– volume: 55
  start-page: 1075
  year: 2005
  end-page: 1079
  article-title: Self‐organization and the emergence of complexity in ecological systems
  publication-title: Bioscience
– volume: 265
  start-page: 33
  year: 1998
  end-page: 38
  article-title: Ecosystem development explained by competition within and between material cycles
  publication-title: Proc. R. Soc. B
– volume: 178
  start-page: 123
  year: 1972
  end-page: 126
  article-title: Between laws of thermodynamics and coding of information
  publication-title: Science
– volume: 9
  start-page: 479
  year: 2003
  end-page: 492
  article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future
  publication-title: Glob. Chang. Biol.
– volume: 11
  start-page: 931
  year: 2009
  end-page: 944
  article-title: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger
  publication-title: Entropy
– year: 2009
– volume: 24
  year: 2011
  article-title: Measurement scale in maximum entropy models of species abundance
  publication-title: J. Evol. Biol.
– volume: 21
  start-page: 136
  year: 2006
  end-page: 140
  article-title: Metabolic theories in ecology
  publication-title: Trends Ecol. Evol.
– volume: 8
  start-page: 147
  year: 1922
  end-page: 151
  article-title: Contribution to the energetics of evolution
  publication-title: Proc. Natl Acad. Sci. USA
– year: 2001
– volume: 9
  start-page: 589
  year: 2006
  end-page: 602
  article-title: Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models
  publication-title: Ecol. Lett.
– volume: 14
  start-page: 343
  year: 2012
  end-page: 352
  article-title: Experimental demonstration of a ‘rate‐size’ trade‐off governing body size optimization
  publication-title: Evol. Ecol. Res.
– volume: 6
  start-page: 980
  year: 2003
  end-page: 989
  article-title: Disturbances prevent stem size‐density distributions in natural forests from following scaling relationships
  publication-title: Ecol. Lett.
– volume: 181
  start-page: 506
  year: 2013
  end-page: 519
  article-title: Predicting population dynamics from the properties of individuals: a cross‐level test of dynamic energy budget theory
  publication-title: Am. Nat.
– volume: 314
  start-page: 812
  year: 2006
  end-page: 814
  article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity
  publication-title: Science
– volume: 117
  start-page: 1329
  year: 2008
  end-page: 1336
  article-title: The maximum power principle predicts the outcomes of two‐species competition experiments
  publication-title: Oikos
– volume: 6
  start-page: 990
  year: 2003
  end-page: 995
  article-title: Thermodynamic and metabolic effects on the scaling of production and population energy use
  publication-title: Ecol. Lett.
– volume: 22
  start-page: 323
  year: 2007
  end-page: 330
  article-title: Relationships between body size and abundance in ecology
  publication-title: Trends Ecol. Evol.
– volume: 201
  start-page: 777
  year: 1978
  end-page: 785
  article-title: Time, structure, and fluctuations
  publication-title: Science
– volume: 93
  start-page: 582
  year: 1993
  end-page: 596
  article-title: Ecology, thermodynamics and H. T. Odum's conjectures
  publication-title: Oecologia
– volume: 15
  start-page: 273
  year: 1998
  end-page: 295
  article-title: Thermodynamics, information and life revisited, Part I: ‘To be or entropy’
  publication-title: Syst. Res.
– volume: 180
  start-page: 546
  year: 2012
  end-page: 565
  article-title: Testing metabolic theories
  publication-title: Am. Nat.
– volume: 119
  start-page: 577
  year: 2010
  article-title: Maximum entropy in ecology
  publication-title: Oikos
– year: 1945
– volume: 410
  start-page: 655
  year: 2001
  end-page: 660
  article-title: Invariant scaling relations across tree‐dominated communities
  publication-title: Nature
– volume: 164
  start-page: 262
  year: 1969
  end-page: 270
  article-title: The strategy of ecosystem development
  publication-title: Science
– volume: 38
  start-page: L371
  year: 2005
  end-page: 381
  article-title: Maximum entropy production and the fluctuation theorem
  publication-title: J. Phys. A: Math. Gen.
– volume: 178
  start-page: 121
  year: 2004
  end-page: 125
  article-title: Howard T. Odum's contribution to the laws of energy
  publication-title: Ecol. Model.
– volume: 92
  start-page: 218703
  year: 2004
  article-title: Organization of ecosystems in the vicinity of a novel phase transition
  publication-title: Phys. Rev. Lett.
– year: 1983
– volume: 4
  start-page: 329
  year: 1973
  end-page: 357
  article-title: On the principles of thermodynamics in ecology
  publication-title: Annu. Rev. Ecol. Syst.
– volume: 19
  start-page: 1785
  year: 2006
  end-page: 1794
  article-title: On the logical relationship between natural selection and self‐organization
  publication-title: J. Evol. Biol.
– year: 1968
– year: 2003
– volume: 117
  start-page: 41
  year: 1999
  end-page: 64
  article-title: Ecosystems emerging: 3. Openness
  publication-title: Ecol. Model.
– year: 1996
– year: 2004b
– volume: 17
  start-page: 43
  year: 2011
  end-page: 57
  article-title: A statistical explanation of MaxEnt for ecologists
  publication-title: Divers. Distrib.
– volume: 97
  start-page: 357
  year: 1963
  end-page: 374
  article-title: On certain unifying principles in ecology
  publication-title: Am. Nat.
– volume: 178
  start-page: 107
  year: 2004
  end-page: 113
  article-title: The continuing importance of maximum power
  publication-title: Ecol. Model.
– start-page: 301
  year: 2004a
  end-page: 323
– volume: 365
  start-page: 1335
  year: 2010
  end-page: 1347
  article-title: The constructal law of design and evolution in nature
  publication-title: Phil. Trans. R. Soc. B
– year: 2012
– volume: 365
  start-page: 1437
  year: 2010
  end-page: 1447
  article-title: Trends in entropy production during ecosystem development in the Amazon Basin
  publication-title: Phil. Trans. R. Soc. B
– volume: 190
  start-page: 317
  year: 2006
  end-page: 335
  article-title: The maximum power principle: an empirical investigation
  publication-title: Ecol. Model.
– volume: 252
  start-page: 185
  year: 2008a
  end-page: 197
  article-title: Thermodynamics of natural selection I: energy flow and the limits on organization
  publication-title: J. Theor. Biol.
– volume: 85
  start-page: 223
  year: 1980
  end-page: 245
  article-title: An hypothesis on the development of natural communities
  publication-title: J. Theor. Biol.
– volume: 20
  start-page: 405
  year: 2006
  end-page: 412
  article-title: Temperature and the metabolic theory of ecology
  publication-title: Funct. Ecol.
– volume: 220
  start-page: 393
  year: 2003
  end-page: 406
  article-title: The driving force for life's emergence: kinetic and thermodynamic considerations
  publication-title: J. Theor. Biol.
– volume: 119
  start-page: 591
  year: 2010
  end-page: 603
  article-title: Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism
  publication-title: Oikos
– volume: 365
  start-page: 1405
  year: 2010
  end-page: 1416
  article-title: Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses
  publication-title: Phil. Trans. R. Soc. B
– year: 1988
– volume: 19
  start-page: 25
  year: 1994
  end-page: 48
  article-title: Life as a manifestation of the Second Law of Thermodynamics
  publication-title: Math. Comput. Model.
– year: 2006
– volume: 252
  start-page: 213
  year: 2008c
  end-page: 220
  article-title: Thermodynamics of natural selection III: landauer's principle in computation and chemistry
  publication-title: J. Theor. Biol.
– volume: 365
  start-page: 1429
  year: 2010
  end-page: 1435
  article-title: Maximum entropy production and plant optimization theories
  publication-title: Phil. Trans. R. Soc. B
– volume: 426
  start-page: 1
  year: 2006
  end-page: 45
  article-title: Maximum entropy production principle in physics, chemistry and biology
  publication-title: Phys. Rep.
– volume: 117
  start-page: 1700
  year: 2008
  end-page: 1710
  article-title: Limitations of entropy maximization in ecology
  publication-title: Oikos
– volume: 6
  start-page: 579
  year: 1972
  end-page: 580
  article-title: Gaia as seen through the atmosphere
  publication-title: Atmos. Environ.
– volume: 365
  start-page: 1297
  year: 2010
  end-page: 1302
  article-title: Maximum entropy production in environmental and ecological systems
  publication-title: Phil. Trans. R. Soc. B
– volume: 3
  start-page: 445
  year: 2012
  end-page: 449
  article-title: Dynamic Energy Budget theory meets individual‐based modelling: a generic and accessible implementation
  publication-title: Methods Ecol. Evol.
– volume: 22
  start-page: 231
  year: 2009
  end-page: 244
  article-title: Natural selection maximizes Fisher information
  publication-title: J. Evol. Biol.
– year: 1999
SSID ssj0008691
Score 2.1341162
SecondaryResourceType review_article
Snippet Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g....
SourceID proquest
wiley
istex
fao
SourceType Aggregation Database
Publisher
StartPage 619
SubjectTerms biodiversity
Ecological research
ecological thermodynamics
Ecology
ecosystem ecology
Ecosystems
entropy
maximum power
prediction
Principles
Resource availability
Thermodynamics
Title Thermodynamic extremization principles and their relevance to ecology
URI https://api.istex.fr/ark:/67375/WNG-CJ5ZXDG2-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.12130
https://www.proquest.com/docview/1554128581
https://www.proquest.com/docview/1663537724
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB62gUIvbdMHcZouKoTSi4NX1sOmp7DZJCx0CW2XLqUgJEvKIcQO-4Akv74j2d6kPZXejC0_5NFI3yeNvgE4lBLH9bLIU8oESxk1NjWMVmnlLTW8LK2OOt1fZuJ8zqYLvhjA534vTKsPsZ1wC54R--vg4NqsHjm5dlWQRsgDXw-xWgEQfX2QjipEzJaHfIGmSCl4pyoUoni2d-J44nWDsDT80ds_MOZjpBqHmtMX8Kv_yDbC5OposzZH1f1f-o3_WYuX8LyDoOS4bTO7MHD1K3jaJqW8w6NJFLK-ew0TbEPL68a2SesJduNLd93t2yQ3_Sz9iujakrjgQEIGlhhTQNYNce1z3sD8dPJ9fJ52aRdSj9gqS11upOWyHNFMZNpZwUeGmqpiCBWFp4XNvBCF54X2WtpcjwQvbY5cDqlUxYosfws7dVO7PSC5xvNGSm25Z95WWrpCBA0-pHlWcprAHhpA6Uvs0NT8Gw10L3I2VibwMVpF3bSqG0ovr0IQmuTqx-xMjaf85-LkjKqTBA56s6nO_1YqoCQceXkxSuDD9jJ6TlgO0bVrNlgmgK0c2QVL4FO00fZdPTNC66hoHXU8GceD_X8v-g6ehQq1AWkHsLNebtx7RDBrM4QnlF0MY4P9Ddjl6B8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKtRe2tKHSEuLK1VVL0FZx49E4oKWhYXCHlpWXVWqLDu2e0AkaNmVSn89YyfZ0p4QtyhxnuPxfJ89-Qbgo5QY18siTykTLGXU2NQwWqWVt9TwsrQ66nSfTcR4yk5mfLYGe_2_MK0-xGrCLXhGHK-Dg4cJ6Tterl0VtBFyJOyPQkXvSKi-_hWPKkSsl4eMgaZIKninKxTyeFanYkTxukFgGr7p739Q5l2sGoPN4TP42T9mm2NysbtcmN3qz38Kjg99j-fwtEOhZL_tNpuw5uoXsNHWpbzBrVHUsr55CSPsRvPLxrZ16wmO5HN32f26Sa76ifpromtL4poDCUVYYloBWTTEtdd5BdPD0flwnHaVF1KP8CpLXW6k5bIc0Exk2ln8uoaaqmKIFoWnhc28EIXnhfZa2lwPBC9tjnQO2VTFiix_Det1U7stILnG_UZKbbln3lZaukIEGT5kelZymsAWWkDpXzimqek3GhhfpG2sTOBTNIu6aoU3lJ5fhDw0ydX3yZEanvAfs4Mjqg4S2O7tpjoXvFYBKGHw5cUggQ-rw-g8YUVE165ZYpuAt3IkGCyBz9FIq3v15Aito6J11P5oGDfe3L_pDjwen5-dqtPjyZe38CS8XJuftg3ri_nSvUNAszDvY7-9Be_462M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrUBcaHmpgbYECSEuqbKOXxGnah8tBVYIWLFCSJYd2xyqJqvtrkT59YydZFs4IW5R4jyc8djfZ4-_AXgpBI7rpSwyQjnNKDE2M5RUWeUtMawsrY463R-m_GxGz-dsvgVv-r0wrT7EZsIteEbsr4ODL6y_5eTaVUEaoUC-vkN5LkOTHn260Y6SPKbLQ8JAMuQUrJMVCmE8m1txQPG6QVwafunPP0Dmbagax5rJLnzvv7INMbk4Xq_McfXrLwHH_6zGHtzvMGh60jaaB7Dl6odwp81KeY1H46hkff0IxtiIlpeNbbPWp9iPL91lt3EzXfTT9Feprm0aVxzSkIIlBhWkqyZ17XMew2wy_jI8y7q8C5lHcJVnrjDCMlEOSM5z7SxnA0NMVVHEitwTaXPPufRMaq-FLfSAs9IWSOaQS1VU5sUT2K6b2u1DWmg8b4TQlnnqbaWFkzyI8CHPs4KRBPbRAEr_wB5NzT6TwPciaaNlAq-iVdSild1QenkRotAEU1-np2p4zr7NR6dEjRI46M2mOge8UgEm4dDL5CCBF5vL6DphPUTXrlljmYC2CqQXNIHX0Uabd_XUCK2jonXUyXgYD57-e9HncPfjaKLev52-ewb3Qt3a4LQD2F4t1-4Q0czKHMVW-xtQwuob
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+extremization+principles+and+their+relevance+to+ecology&rft.jtitle=Austral+ecology&rft.au=Yen%2C+Jian+D.+L&rft.au=Paganin%2C+David+M&rft.au=Thomson%2C+James+R&rft.au=Mac+Nally%2C+Ralph&rft.date=2014-09-01&rft.pub=Blackwell+Science+Asia&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=39&rft.issue=6&rft.spage=619&rft.epage=632&rft_id=info:doi/10.1111%2Faec.12130&rft.externalDocID=US201400149549
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon