Thermodynamic extremization principles and their relevance to ecology
Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad appl...
Saved in:
Published in | Austral ecology Vol. 39; no. 6; pp. 619 - 632 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Richmond
Blackwell Science Asia
01.09.2014
Blackwell Publishing Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 1442-9985 1442-9993 |
DOI | 10.1111/aec.12130 |
Cover
Loading…
Abstract | Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on ‘thermodynamic extremization’ (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation. |
---|---|
AbstractList | Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on 'thermodynamic extremization' (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation. [PUBLICATION ABSTRACT] Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g. neutral theory, metabolic theories) often neglect specific ecological details, they compensate for this with their generality and broad applicability. We review several simple principles based on ‘thermodynamic extremization’ (the minimization or maximization of a thermodynamic quantity) and explore their application and relevance to ecology. Thermodynamic extremization principles predict that certain energetic quantities (e.g. entropy production) will tend towards maxima or minima within ecological systems, subject to local constraints (e.g. resource availability). These principles have a long history in ecology, but existing applications have had a theoretical focus and have made few quantitative predictions. We show that the majority of existing theories can be unified conceptually and mathematically, a result that should facilitate ecological applications of thermodynamic extremization principles. Recent developments in broader ecological research (e.g. metabolic theories) have allowed quantitative predictions of ecological patterns from thermodynamic extremization principles, and initial predictions have been supported by empirical data. We discuss how the application of extremization principles could be extended and demonstrate one possible extension, using an extremization principle to predict individual size distributions. A key focus in the application of thermodynamic extremization principles to mainstream ecological questions should be the generation of quantitative predictions and subsequent empirical validation. |
Author | Thomson, James R. Yen, Jian D. L. Mac Nally, Ralph Paganin, David M. |
Author_xml | – sequence: 1 fullname: Yen, Jian D. L – sequence: 2 fullname: Paganin, David M – sequence: 3 fullname: Thomson, James R – sequence: 4 fullname: Mac Nally, Ralph |
BookMark | eNpdkE9PGzEQxa2KSgXaQz9BV-LCZYn_e31EIaRFqD0U1KoXy_HOgmHXDvYGkn56TII4MNJo3uH3RjPvAO2FGAChrwSfkFITC-6EUMLwB7RPOKe11prtvelGfEIHOd9hjBupyT6aXd1CGmK7CXbwroL1mGDw_-3oY6iWyQfnlz3kyoa2Gm_BpypBD482OKjGWIGLfbzZfEYfO9tn-PI6D9H1-exq-r2-_DX_MT29rDtOGa6BLVQrlCYUS2yhlYIs6MI5rpWSHW1a3EnZdKKxnVUts0QK3TJMpaTC8QazQ3S827tM8WEFeTSDzw763gaIq2yIlEwwpSgv6NE79C6uUijXGSIEJ7QRDSnUZEc9-R42pjw82LQxBJuXNE1J02zTNKez6VYUR71z-DzC-s1h072Riilh_vycm-mF-Pf3bE7NWeG_7fjORmNvks_m-jfFhOPSWnDNngHOLYI- |
ContentType | Journal Article |
Copyright | 2014 The Authors. Austral Ecology published by Wiley Publishing Asia Pty Ltd on behalf of Ecological Society of Australia. 2014 Ecological Society of Australia |
Copyright_xml | – notice: 2014 The Authors. Austral Ecology published by Wiley Publishing Asia Pty Ltd on behalf of Ecological Society of Australia. – notice: 2014 Ecological Society of Australia |
DBID | FBQ BSCLL 24P 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7S9 L.6 |
DOI | 10.1111/aec.12130 |
DatabaseName | AGRIS Istex Wiley Online Library Open Access Animal Behavior Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | Entomology Abstracts Technology Research Database Animal Behavior Abstracts Chemoreception Abstracts Engineering Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Entomology Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1442-9993 |
EndPage | 632 |
ExternalDocumentID | 3406243991 AEC12130 ark_67375_WNG_CJ5ZXDG2_D US201400149549 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: Victorian Life Sciences Computation Initiative – fundername: Monash University Sir James McNeill Foundation |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 23N 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACSCC ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS ECGQY EJD ESX F00 F01 F04 FBQ FEDTE G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SUPJJ UB1 V8K W8V W99 WBKPD WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~02 ~IA ~KM ~WT AAHBH AHBTC AITYG BSCLL HGLYW OIG 24P AAHQN AAMMB AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ 7QG 7QR 7SN 7SS 8FD C1K FR3 P64 7S9 L.6 |
ID | FETCH-LOGICAL-f4230-e3b7d57912060aed651b2bcc49776f28d0f668f58afa7d3a1659d3026625c4803 |
IEDL.DBID | DR2 |
ISSN | 1442-9985 |
IngestDate | Fri Jul 11 18:39:23 EDT 2025 Wed Aug 13 07:07:25 EDT 2025 Fri Jul 18 18:29:56 EDT 2025 Wed Oct 30 09:49:48 EDT 2024 Wed Dec 27 19:03:36 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution-NonCommercial |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-f4230-e3b7d57912060aed651b2bcc49776f28d0f668f58afa7d3a1659d3026625c4803 |
Notes | http://dx.doi.org/10.1111/aec.12130 Victorian Life Sciences Computation Initiative Appendix S1. Synthesis of energy-dissipation and energy-storage principles. Appendix S2. Mathematical details for predicting individual size distributions. ArticleID:AEC12130 ark:/67375/WNG-CJ5ZXDG2-D Monash University Sir James McNeill Foundation istex:B81D7927243BEA038298E409DED256075C093D1A ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.12130 |
PQID | 1554128581 |
PQPubID | 46239 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1663537724 proquest_journals_1554128581 wiley_primary_10_1111_aec_12130_AEC12130 istex_primary_ark_67375_WNG_CJ5ZXDG2_D fao_agris_US201400149549 |
PublicationCentury | 2000 |
PublicationDate | September 2014 |
PublicationDateYYYYMMDD | 2014-09-01 |
PublicationDate_xml | – month: 09 year: 2014 text: September 2014 |
PublicationDecade | 2010 |
PublicationPlace | Richmond |
PublicationPlace_xml | – name: Richmond |
PublicationTitle | Austral ecology |
PublicationTitleAlternate | Austral Ecology |
PublicationYear | 2014 |
Publisher | Blackwell Science Asia Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Science Asia – name: Blackwell Publishing Ltd |
References | Kleidon A., Malhi Y. & Cox P. M. (2010) Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B 365, 1297-1302. Meysman F. J. R. & Bruers S. (2010) Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405-1416. Kooijman S. A. L. M. (2010) Dynamic Energy Budget theory for Metabolic Organisation, 3rd edn. Cambridge University Press, Cambridge. Smith E. (2008a) Thermodynamics of natural selection I: energy flow and the limits on organization. J. Theor. Biol. 252, 185-197. Holdaway R. J., Sparrow A. D. & Coomes D. A. (2010) Trends in entropy production during ecosystem development in the Amazon Basin. Phil. Trans. R. Soc. B 365, 1437-1447. Coomes D. A., Duncan R. P., Allen R. B. & Truscott J. (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980-989. Mansson B. A. & McGlade J. M. (1993) Ecology, thermodynamics and H. T. Odum's conjectures. Oecologia 93, 582-596. Corning P. A. & Kline S. J. (1998) Thermodynamics, information and life revisited, Part I: 'To be or entropy'. Syst. Res. 15, 273-295. DeLong J. P. (2008) The maximum power principle predicts the outcomes of two-species competition experiments. Oikos 117, 1329-1336. Berut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R. & Lutz E. (2012) Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187-189. Jorgensen S. E., Patten B. C. & Straskraba M. (1999) Ecosystems emerging: 3. Openness. Ecol. Model. 117, 41-64. Kleidon A. (2010) Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Phil. Trans. R. Soc. A 368, 181-196. Kondepudi D. & Prigogine I. (1999) Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York. Jorgensen S. E. & Svirezhev T. M. (2004b) Towards a Thermodynamic Theory for Ecological Systems. Gulf Professional Publishing, Oxford. Wicken J. S. (1987) Evolution, Thermodynamics, and Information: Extending the Darwinian Program. Oxford University Press, New York. Bejan A. & Lorente S. (2010) The constructal law of design and evolution in nature. Phil. Trans. R. Soc. B 365, 1335-1347. Milewski A. V. & Mills A. J. (2010) Does life consistently maximise energy intensity? Biol. Rev. 85, 859-879. Brown J. H., Marquet P. A. & Taper M. L. (1993) Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573-584. Clark J. S. (2012) The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 27, 198-202. Landauer R. (1996) The physical nature of information. Phys. Lett. A 217, 188-193. Dewar R. C., Franklin O., Makela A., McMurtrie R. E. & Valentine H. T. (2009) Optimal function explains forest responses to global change. Bioscience 59, 127-139. Odum H. T. & Pinkerton R. C. (1955) Time's speed regulation: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331-343. Schrödinger E. (1945) What is life? The Physical Aspect of the living Cell and Mind and Matter. Cambridge University Press, Cambridge. Muller-Landau H. C., Condit R. S., Harms K. E. et al. (2006) Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol. Lett. 9, 589-602. Prigogine I. (1978) Time, structure, and fluctuations. Science 201, 777-785. Zupanovic P., Brumen M., Jagodic M. & Juretic D. (2010) Bacterial chemotaxis and entropy production. Phil. Trans. R. Soc. B 365, 1397-1403. Smith E. (2008b) Thermodynamics of natural selection II: chemical Carnot cycles. J. Theor. Biol. 252, 198-212. Marchi M., Jorgensen S. E., Becares E., Corsi I., Marchettini N. & Bastianoni S. (2011) Dynamic model of Lake Chozas (Leon, NW Spain) - decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish. Ecol. Model. 222, 3002-3010. Elith J., Phillips S. J., Hastie T., Dudik M., Chee Y. E. & Yates C. J. (2011) A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57. Grandy W. T. (2008) Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, New York. Gemmer J., Michel M. & Mahler G. (2009) Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems. Springer, Berlin. Sousa T., Domingos T., Poggiale J.-C. & Kooijman S. A. L. M. (2010) Dynamic energy budget theory restores coherence in biology. Phil. Trans. R. Soc. B 365, 3413-3428. Fath B. D., Patten B. C. & Choi J. S. (2001) Complementarity of ecological goal functions. J. Theor. Biol. 208, 493-506. del Jesus M., Foti R., Rinaldo A. & Rodriguez-Iturbe I. (2012) Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins. Proc. Natl Acad. Sci. USA 109, 20837-20841. West G. B., Brown J. H. & Enquist B. J. (1997) A general model for the origin of allometric scaling laws in biology. Science 276, 122-126. Ernest S. K. M., Enquist B. J., Brown J. H. et al. (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990-995. Odum H. T. (1996) Environmental Accounting: Emergy and Environmental Decision Making. John Wiley, New York. Sole R. V. & Bascompte J. (2006) Self-organization in Complex Ecosystems. Princeton University Press, Princeton. Kozlowski J. (1996) Energetic definition of fitness? Yes, but not that one. Am. Nat. 147, 1087-1091. Gaudreau K., Fraser R. A. & Murphy S. (2009) The tenuous use of exergy as a measure of resource value or waste impact. Sustainability 1, 1444-1463. Allen T. F. H., Tainter J. A. & Hoekstra T. W. (2003) Supply-side Sustainability. Columbia University Press, New York. Brooks D. R. & Wiley E. O. (1988) Evolution as Entropy: Toward a Unified Theory of Biology. The University of Chicago Press, Chicago. Alonso D., Etienne R. S. & McKane A. J. (2006) The merits of neutral theory. Trends Ecol. Evol. 21, 451-457. Brown J. H., Gillooly J. F., Allen A. P., Savage V. M. & West G. B. (2004) Toward a metabolic theory of ecology. Ecology 85, 1771-1789. Cai T. T., Montague C. L. & Davis J. S. (2006) The maximum power principle: an empirical investigation. Ecol. Model. 190, 317-335. Trebilco R., Baum J. K., Salomon A. K. & Dulvy N. K. (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423-431. van der Meer J. (2006) Metabolic theories in ecology. Trends Ecol. Evol. 21, 136-140. Hall C. A. S. (2004) The continuing importance of maximum power. Ecol. Model. 178, 107-113. Bruers S. (2007) A discussion on maximum entropy production and information theory. J. Phys. A: Math. Gen. 40, 7441-7450. Hubbell S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. Avery J. S. (2012) Information Theory and Evolution. World Scientific Publishing, Singapore. Haegeman B. & Loreau M. (2008) Limitations of entropy maximization in ecology. Oikos 117, 1700-1710. Levin S. A. (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431-436. Dewar R. C. (2009) Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger. Entropy 11, 931-944. Dewar R. C. (2005) Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371-381. Zhou J., Ma S. & Hinman G. W. (1996) Ecological exergy analysis: a new method for ecological energetics research. Ecol. Model. 84, 291-303. MacArthur R. H. & Wilson E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. Giaquinta M. & Hildebrandt S. (1996) Calculus of Variations I. Springer, Berlin. Kerr J. T. & Ostrovsky M. (2003) From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299-305. Levin S. A. (2005) Self-organization and the emergence of complexity in ecological systems. Bioscience 55, 1075-1079. Lovelock J. E. (1972) Gaia as seen through the atmosphere. Atmos. Environ. 6, 579-580. Baldocchi D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. Biol. 9, 479-492. Grinstein G. & Linsker R. (2007) Comments on a derivation and application of the 'maximum entropy production' principle. J. Phys. A: Math. Theor. 40, 9717-9720. Lotka A. J. (1922) Contribution to the energetics of evolution. Proc. Natl Acad. Sci. USA 8, 147-151. Odum E. P. (1969) The strategy of ecosystem development. Science 164, 262-270. Brostow W. (1972) Between laws of thermodynamics and coding of information. Science 178, 123-126. Petchey O. L. (2010) Maximum entropy in ecology. Oikos 119, 577. Prigogine I. (1955) Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas, Springfield. Ulanowicz R. E. (2003) Some steps toward a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530. Martyushev L. M. & Seleznev V. D. (2006) Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1-45. Enquist B. J. & Niklas K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature 410, 655-660. Frank S. A. (2009) Natural selection maximizes Fisher information. J. Evol. Biol. 22, 231-244. Loeuille N. & Loreau M. (2005) Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761-5766. Aoki I. (2006) Min-Max principle of entropy production with time in aquatic communities. Ecol. Complex. 3, 56-63. Hoelzer G. A., Smith E. & Pepper J. W. (2006) On the logical relationship between natural selection and self-organization. J. Evol. Biol. 19, 1785-1794. Kearney M. R. & White C. R. (2012) Testing metabolic theories. Am. Nat. 180, 546-565. Carpenter S. R. (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77, 677-680. DeLong J. P. (2012) Experimental demons 2012; 483 1922; 8 1957; 106 2004a 2002; 158 1997; 276 2004; 1 2012; 14 1972; 178 1996; 147 1996; 77 2004; 178 1998; 15 2009; 11 2001; 410 2006; 20 2010; 119 2006; 21 2005; 102 1987 2008; 117 1983 1975; 101 2012; 27 2004b 1988 1989; 4 2008b; 252 2013; 83 2012; 180 2003; 36 1996 2013; 181 2001; 208 2012; 109 1999 1969; 164 1994; 19 2006; 190 2003; 27 1996; 84 1978; 201 1998; 1 1999; 117 1998; 265 2003; 102 2003; 220 1973; 4 2004; 66 2013; 28 1980; 85 1995; 79 2003; 18 2011; 17 1955; 43 2001 2003; 6 2008c; 252 2003; 9 2011; 24 2005; 38 2007; 22 2009; 59 1996; 217 1945 2009; 22 2004; 85 2012 2011 2010 2010; 368 2010; 365 2006; 9 2009 2008 2006; 19 2006 2006; 3 2005 2003 2006; 314 1972; 6 2010; 85 1993; 142 1955 1963; 97 2012; 3 2004; 92 1993; 93 2007; 40 2008a; 252 2009; 1 2006; 426 2005; 55 2011; 222 1968 1967 |
References_xml | – reference: Margalef R. (1963) On certain unifying principles in ecology. Am. Nat. 97, 357-374. – reference: Clarke A. (2006) Temperature and the metabolic theory of ecology. Funct. Ecol. 20, 405-412. – reference: Paltridge G. W. (1975) Global dynamics and climate - a system of minimum entropy exchange. Q. J. R. Meteorol. Soc. 101, 475-484. – reference: Volkov I., Banavar J. R. & Maritan A. (2004) Organization of ecosystems in the vicinity of a novel phase transition. Phys. Rev. Lett. 92, 218703. – reference: Meysman F. J. R. & Bruers S. (2010) Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses. Phil. Trans. R. Soc. B 365, 1405-1416. – reference: Zhou J., Ma S. & Hinman G. W. (1996) Ecological exergy analysis: a new method for ecological energetics research. Ecol. Model. 84, 291-303. – reference: Clark J. S. (2012) The coherence problem with the Unified Neutral Theory of Biodiversity. Trends Ecol. Evol. 27, 198-202. – reference: Muller-Landau H. C., Condit R. S., Harms K. E. et al. (2006) Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models. Ecol. Lett. 9, 589-602. – reference: Frank S. A. (2009) Natural selection maximizes Fisher information. J. Evol. Biol. 22, 231-244. – reference: Gaudreau K., Fraser R. A. & Murphy S. (2009) The tenuous use of exergy as a measure of resource value or waste impact. Sustainability 1, 1444-1463. – reference: Levin S. A. (1998) Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431-436. – reference: Bruers S. (2007) A discussion on maximum entropy production and information theory. J. Phys. A: Math. Gen. 40, 7441-7450. – reference: Dewar R. C. (2010) Maximum entropy production and plant optimization theories. Phil. Trans. R. Soc. B 365, 1429-1435. – reference: Kearney M. R. & White C. R. (2012) Testing metabolic theories. Am. Nat. 180, 546-565. – reference: Patten B. C. (1995) Network integration of ecological extremal principles: exergy, emergy, power, ascendency, and indirect effects. Ecol. Model. 79, 75-84. – reference: Dewar R. C. (2005) Maximum entropy production and the fluctuation theorem. J. Phys. A: Math. Gen. 38, L371-381. – reference: Prigogine I. (1955) Introduction to Thermodynamics of Irreversible Processes. Charles C. Thomas, Springfield. – reference: DeLong J. P. (2008) The maximum power principle predicts the outcomes of two-species competition experiments. Oikos 117, 1329-1336. – reference: Elith J., Phillips S. J., Hastie T., Dudik M., Chee Y. E. & Yates C. J. (2011) A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43-57. – reference: Wicken J. S. (1987) Evolution, Thermodynamics, and Information: Extending the Darwinian Program. Oxford University Press, New York. – reference: Kozlowski J. (1996) Energetic definition of fitness? Yes, but not that one. Am. Nat. 147, 1087-1091. – reference: Pross A. (2003) The driving force for life's emergence: kinetic and thermodynamic considerations. J. Theor. Biol. 220, 393-406. – reference: Giaquinta M. & Hildebrandt S. (1996) Calculus of Variations I. Springer, Berlin. – reference: Petchey O. L. (2010) Maximum entropy in ecology. Oikos 119, 577. – reference: Shipley B., Vile D. & Garnier E. (2006) From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science 314, 812-814. – reference: Kooijman S. A. L. M. (2010) Dynamic Energy Budget theory for Metabolic Organisation, 3rd edn. Cambridge University Press, Cambridge. – reference: Levin S. A. (2005) Self-organization and the emergence of complexity in ecological systems. Bioscience 55, 1075-1079. – reference: Marchi M., Jorgensen S. E., Becares E., Corsi I., Marchettini N. & Bastianoni S. (2011) Dynamic model of Lake Chozas (Leon, NW Spain) - decrease in eco-exergy from clear to turbid phase due to introduction of exotic crayfish. Ecol. Model. 222, 3002-3010. – reference: Niven R. K. (2010) Minimization of a free-energy-like potential for non-equilibrium flow systems at steady state. Phil. Trans. R. Soc. B 365, 1323-1331. – reference: Coomes D. A., Duncan R. P., Allen R. B. & Truscott J. (2003) Disturbances prevent stem size-density distributions in natural forests from following scaling relationships. Ecol. Lett. 6, 980-989. – reference: McGill B. J. (2003) Strong and weak tests of macroecological theory. Oikos 102, 679-685. – reference: Martin B. T., Jager T., Nisbet R. M., Preuss T. G. & Grimm V. (2013) Predicting population dynamics from the properties of individuals: a cross-level test of dynamic energy budget theory. Am. Nat. 181, 506-519. – reference: Martyushev L. M. & Seleznev V. D. (2006) Maximum entropy production principle in physics, chemistry and biology. Phys. Rep. 426, 1-45. – reference: Brooks D. R., Collier J., Maurer B. A., Smith J. D. H. & Wiley E. O. (1989) Entropy and information in evolving biological systems. Biol. Philos. 4, 407-432. – reference: Avery J. S. (2012) Information Theory and Evolution. World Scientific Publishing, Singapore. – reference: Harte J. (2011) Maximum Entropy and Ecology. Oxford University Press, Oxford. – reference: Hubbell S. P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton. – reference: Landauer R. (1996) The physical nature of information. Phys. Lett. A 217, 188-193. – reference: Kondepudi D. & Prigogine I. (1999) Modern Thermodynamics: From Heat Engines to Dissipative Structures. Wiley, New York. – reference: Brown J. H., Gillooly J. F., Allen A. P., Savage V. M. & West G. B. (2004) Toward a metabolic theory of ecology. Ecology 85, 1771-1789. – reference: Alonso D., Etienne R. S. & McKane A. J. (2006) The merits of neutral theory. Trends Ecol. Evol. 21, 451-457. – reference: Kondepudi D. (2008) Introduction to Modern Thermodynamics. John Wiley & Sons, Chichester. – reference: Trebilco R., Baum J. K., Salomon A. K. & Dulvy N. K. (2013) Ecosystem ecology: size-based constraints on the pyramids of life. Trends Ecol. Evol. 28, 423-431. – reference: Smith E. (2008c) Thermodynamics of natural selection III: landauer's principle in computation and chemistry. J. Theor. Biol. 252, 213-220. – reference: Milewski A. V. & Mills A. J. (2010) Does life consistently maximise energy intensity? Biol. Rev. 85, 859-879. – reference: Brown J. H., Marquet P. A. & Taper M. L. (1993) Evolution of body size: consequences of an energetic definition of fitness. Am. Nat. 142, 573-584. – reference: Tilley D. R. (2004) Howard T. Odum's contribution to the laws of energy. Ecol. Model. 178, 121-125. – reference: Morowitz H. J. (1968) Energy Flow in Biology; Biological Organization as a Problem in Thermal Physics. Academic Press, New York. – reference: Kerr J. T. & Ostrovsky M. (2003) From space to species: ecological applications for remote sensing. Trends Ecol. Evol. 18, 299-305. – reference: Weber B. H., Depew D. J., Dyke C. et al. (1989) Evolution in thermodynamic perspective: an ecological approach. Biol. Philos. 4, 373-405. – reference: Lovelock J. E. (1972) Gaia as seen through the atmosphere. Atmos. Environ. 6, 579-580. – reference: Zupanovic P., Brumen M., Jagodic M. & Juretic D. (2010) Bacterial chemotaxis and entropy production. Phil. Trans. R. Soc. B 365, 1397-1403. – reference: Sousa T., Domingos T., Poggiale J.-C. & Kooijman S. A. L. M. (2010) Dynamic energy budget theory restores coherence in biology. Phil. Trans. R. Soc. B 365, 3413-3428. – reference: del Jesus M., Foti R., Rinaldo A. & Rodriguez-Iturbe I. (2012) Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins. Proc. Natl Acad. Sci. USA 109, 20837-20841. – reference: Enquist B. J. & Niklas K. J. (2001) Invariant scaling relations across tree-dominated communities. Nature 410, 655-660. – reference: Odum E. P. (1969) The strategy of ecosystem development. Science 164, 262-270. – reference: Allen T. F. H., Tainter J. A. & Hoekstra T. W. (2003) Supply-side Sustainability. Columbia University Press, New York. – reference: Odum H. T. (1996) Environmental Accounting: Emergy and Environmental Decision Making. John Wiley, New York. – reference: McGill B. J. & Nekola J. C. (2010) Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism. Oikos 119, 591-603. – reference: Loeuille N. & Loreau M. (2005) Evolutionary emergence of size-structured food webs. Proc. Natl Acad. Sci. USA 102, 5761-5766. – reference: van der Meer J. (2006) Metabolic theories in ecology. Trends Ecol. Evol. 21, 136-140. – reference: Frank S. A. (2011) Measurement scale in maximum entropy models of species abundance. J. Evol. Biol. 24. – reference: Jaynes E. T. (1957) Information theory and statistical mechanics. Phys. Rev. 106, 620-630. – reference: Ulanowicz R. E. (2003) Some steps toward a central theory of ecosystem dynamics. Comput. Biol. Chem. 27, 523-530. – reference: Mansson B. A. & McGlade J. M. (1993) Ecology, thermodynamics and H. T. Odum's conjectures. Oecologia 93, 582-596. – reference: Holdaway R. J., Sparrow A. D. & Coomes D. A. (2010) Trends in entropy production during ecosystem development in the Amazon Basin. Phil. Trans. R. Soc. B 365, 1437-1447. – reference: Baldocchi D. D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob. Chang. Biol. 9, 479-492. – reference: Kleidon A. (2010) Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Phil. Trans. R. Soc. A 368, 181-196. – reference: Ulanowicz R. E. (1980) An hypothesis on the development of natural communities. J. Theor. Biol. 85, 223-245. – reference: DeLong J. P., Hanley T. C. & Vasseur D. A. (2013) Competition and the density dependence of metabolic rates. J. Anim. Ecol. 83, 51-58. – reference: Gemmer J., Michel M. & Mahler G. (2009) Quantum Thermodynamics: Emergence of Thermodynamic Behavior within Composite Quantum Systems. Springer, Berlin. – reference: Jorgensen S. E. & Svirezhev T. M. (2004b) Towards a Thermodynamic Theory for Ecological Systems. Gulf Professional Publishing, Oxford. – reference: Bejan A. & Lorente S. (2010) The constructal law of design and evolution in nature. Phil. Trans. R. Soc. B 365, 1335-1347. – reference: Sethna J. P. (2006) Statistical Mechanics: Entropy, Order Parameters, and Complexity. Oxford University Press, New York. – reference: Brooks D. R. & Wiley E. O. (1988) Evolution as Entropy: Toward a Unified Theory of Biology. The University of Chicago Press, Chicago. – reference: Dewar R. C. (2003) Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J. Phys. A: Math. Gen. 36, 631-641. – reference: MacArthur R. H. & Wilson E. O. (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. – reference: Martin B. T., Zimmer E. I., Grimm V. & Jager T. (2012) Dynamic Energy Budget theory meets individual-based modelling: a generic and accessible implementation. Methods Ecol. Evol. 3, 445-449. – reference: Prigogine I. (1978) Time, structure, and fluctuations. Science 201, 777-785. – reference: Grimm V. & Railsback S. F. (2005) Individual-based Modeling and Ecology. Princeton University Press, Princeton. – reference: Kleidon A., Malhi Y. & Cox P. M. (2010) Maximum entropy production in environmental and ecological systems. Phil. Trans. R. Soc. B 365, 1297-1302. – reference: Sole R. V. & Bascompte J. (2006) Self-organization in Complex Ecosystems. Princeton University Press, Princeton. – reference: Kleidon A. (2004) Beyond Gaia: thermodynamics of life and earth system functioning. Clim. Change 66, 271-319. – reference: Jorgensen S. E. & Fath B. D. (2004) Application of thermodynamic principles in ecology. Ecol. Complex. 1, 267-280. – reference: Brostow W. (1972) Between laws of thermodynamics and coding of information. Science 178, 123-126. – reference: Odum H. T. (1983) Systems Ecology. Wiley, New York. – reference: Ernest S. K. M., Enquist B. J., Brown J. H. et al. (2003) Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecol. Lett. 6, 990-995. – reference: Hoelzer G. A., Smith E. & Pepper J. W. (2006) On the logical relationship between natural selection and self-organization. J. Evol. Biol. 19, 1785-1794. – reference: Lotka A. J. (1922) Contribution to the energetics of evolution. Proc. Natl Acad. Sci. USA 8, 147-151. – reference: Smith E. (2008a) Thermodynamics of natural selection I: energy flow and the limits on organization. J. Theor. Biol. 252, 185-197. – reference: Smith E. (2008b) Thermodynamics of natural selection II: chemical Carnot cycles. J. Theor. Biol. 252, 198-212. – reference: Corning P. A. & Kline S. J. (1998) Thermodynamics, information and life revisited, Part I: 'To be or entropy'. Syst. Res. 15, 273-295. – reference: Grandy W. T. (2008) Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, New York. – reference: Dewar R. C. (2009) Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger. Entropy 11, 931-944. – reference: West G. B., Brown J. H. & Enquist B. J. (1997) A general model for the origin of allometric scaling laws in biology. Science 276, 122-126. – reference: Odum H. T. & Pinkerton R. C. (1955) Time's speed regulation: the optimum efficiency for maximum power output in physical and biological systems. Am. Sci. 43, 331-343. – reference: Hall C. A. S. (2004) The continuing importance of maximum power. Ecol. Model. 178, 107-113. – reference: Schrödinger E. (1945) What is life? The Physical Aspect of the living Cell and Mind and Matter. Cambridge University Press, Cambridge. – reference: Grinstein G. & Linsker R. (2007) Comments on a derivation and application of the 'maximum entropy production' principle. J. Phys. A: Math. Theor. 40, 9717-9720. – reference: Jorgensen S. E., Patten B. C. & Straskraba M. (1999) Ecosystems emerging: 3. Openness. Ecol. Model. 117, 41-64. – reference: DeLong J. P. (2012) Experimental demonstration of a 'rate-size' trade-off governing body size optimization. Evol. Ecol. Res. 14, 343-352. – reference: Loreau M. (1998) Ecosystem development explained by competition within and between material cycles. Proc. R. Soc. B 265, 33-38. – reference: Odum H. T. (2002) Explanations of ecological relationships with energy systems concepts. Ecol. Model. 158, 201-211. – reference: Schneider E. D. & Kay J. J. (1994) Life as a manifestation of the Second Law of Thermodynamics. Math. Comput. Model. 19, 25-48. – reference: Dewar R. C., Franklin O., Makela A., McMurtrie R. E. & Valentine H. T. (2009) Optimal function explains forest responses to global change. Bioscience 59, 127-139. – reference: Carpenter S. R. (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77, 677-680. – reference: Fath B. D., Patten B. C. & Choi J. S. (2001) Complementarity of ecological goal functions. J. Theor. Biol. 208, 493-506. – reference: Cai T. T., Montague C. L. & Davis J. S. (2006) The maximum power principle: an empirical investigation. Ecol. Model. 190, 317-335. – reference: Gallucci V. F. (1973) On the principles of thermodynamics in ecology. Annu. Rev. Ecol. Syst. 4, 329-357. – reference: Berut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R. & Lutz E. (2012) Experimental verification of Landauer's principle linking information and thermodynamics. Nature 483, 187-189. – reference: Haegeman B. & Loreau M. (2008) Limitations of entropy maximization in ecology. Oikos 117, 1700-1710. – reference: White E. P., Ernest S. K. M., Kerkhoff A. J. & Enquist B. J. (2007) Relationships between body size and abundance in ecology. Trends Ecol. Evol. 22, 323-330. – reference: Aoki I. (2006) Min-Max principle of entropy production with time in aquatic communities. Ecol. Complex. 3, 56-63. – year: 2011 – volume: 3 start-page: 56 year: 2006 end-page: 63 article-title: Min‐Max principle of entropy production with time in aquatic communities publication-title: Ecol. Complex. – year: 2005 – volume: 365 start-page: 1323 year: 2010 end-page: 1331 article-title: Minimization of a free‐energy‐like potential for non‐equilibrium flow systems at steady state publication-title: Phil. Trans. R. Soc. B – volume: 106 start-page: 620 year: 1957 end-page: 630 article-title: Information theory and statistical mechanics publication-title: Phys. Rev. – volume: 208 start-page: 493 year: 2001 end-page: 506 article-title: Complementarity of ecological goal functions publication-title: J. Theor. Biol. – volume: 27 start-page: 523 year: 2003 end-page: 530 article-title: Some steps toward a central theory of ecosystem dynamics publication-title: Comput. Biol. Chem. – volume: 28 start-page: 423 year: 2013 end-page: 431 article-title: Ecosystem ecology: size‐based constraints on the pyramids of life publication-title: Trends Ecol. Evol. – volume: 142 start-page: 573 year: 1993 end-page: 584 article-title: Evolution of body size: consequences of an energetic definition of fitness publication-title: Am. Nat. – volume: 21 start-page: 451 year: 2006 end-page: 457 article-title: The merits of neutral theory publication-title: Trends Ecol. Evol. – volume: 83 start-page: 51 year: 2013 end-page: 58 article-title: Competition and the density dependence of metabolic rates publication-title: J. Anim. Ecol. – volume: 85 start-page: 1771 year: 2004 end-page: 1789 article-title: Toward a metabolic theory of ecology publication-title: Ecology – volume: 1 start-page: 267 year: 2004 end-page: 280 article-title: Application of thermodynamic principles in ecology publication-title: Ecol. Complex. – volume: 77 start-page: 677 year: 1996 end-page: 680 article-title: Microcosm experiments have limited relevance for community and ecosystem ecology publication-title: Ecology – volume: 40 start-page: 7441 year: 2007 end-page: 7450 article-title: A discussion on maximum entropy production and information theory publication-title: J. Phys. A: Math. Gen. – volume: 252 start-page: 198 year: 2008b end-page: 212 article-title: Thermodynamics of natural selection II: chemical Carnot cycles publication-title: J. Theor. Biol. – year: 2008 – volume: 1 start-page: 1444 year: 2009 end-page: 1463 article-title: The tenuous use of exergy as a measure of resource value or waste impact publication-title: Sustainability – volume: 102 start-page: 679 year: 2003 end-page: 685 article-title: Strong and weak tests of macroecological theory publication-title: Oikos – volume: 40 start-page: 9717 year: 2007 end-page: 9720 article-title: Comments on a derivation and application of the ‘maximum entropy production’ principle publication-title: J. Phys. A: Math. Theor. – volume: 1 start-page: 431 year: 1998 end-page: 436 article-title: Ecosystems and the biosphere as complex adaptive systems publication-title: Ecosystems – year: 1955 – volume: 36 start-page: 631 year: 2003 end-page: 641 article-title: Information theory explanation of the fluctuation theorem, maximum entropy production and self‐organized criticality in non‐equilibrium stationary states publication-title: J. Phys. A: Math. Gen. – volume: 18 start-page: 299 year: 2003 end-page: 305 article-title: From space to species: ecological applications for remote sensing publication-title: Trends Ecol. Evol. – volume: 4 start-page: 373 year: 1989 end-page: 405 article-title: Evolution in thermodynamic perspective: an ecological approach publication-title: Biol. Philos. – volume: 66 start-page: 271 year: 2004 end-page: 319 article-title: Beyond Gaia: thermodynamics of life and earth system functioning publication-title: Clim. Change – volume: 102 start-page: 5761 year: 2005 end-page: 5766 article-title: Evolutionary emergence of size‐structured food webs publication-title: Proc. Natl Acad. Sci. USA – volume: 276 start-page: 122 year: 1997 end-page: 126 article-title: A general model for the origin of allometric scaling laws in biology publication-title: Science – volume: 217 start-page: 188 year: 1996 end-page: 193 article-title: The physical nature of information publication-title: Phys. Lett. A – year: 1987 – volume: 483 start-page: 187 year: 2012 end-page: 189 article-title: Experimental verification of Landauer's principle linking information and thermodynamics publication-title: Nature – volume: 43 start-page: 331 year: 1955 end-page: 343 article-title: Time's speed regulation: the optimum efficiency for maximum power output in physical and biological systems publication-title: Am. Sci. – volume: 147 start-page: 1087 year: 1996 end-page: 1091 article-title: Energetic definition of fitness? Yes, but not that one publication-title: Am. Nat. – volume: 79 start-page: 75 year: 1995 end-page: 84 article-title: Network integration of ecological extremal principles: exergy, emergy, power, ascendency, and indirect effects publication-title: Ecol. Model. – volume: 27 start-page: 198 year: 2012 end-page: 202 article-title: The coherence problem with the Unified Neutral Theory of Biodiversity publication-title: Trends Ecol. Evol. – volume: 101 start-page: 475 year: 1975 end-page: 484 article-title: Global dynamics and climate – a system of minimum entropy exchange publication-title: Q. J. R. Meteorol. Soc. – year: 2010 – volume: 158 start-page: 201 year: 2002 end-page: 211 article-title: Explanations of ecological relationships with energy systems concepts publication-title: Ecol. Model. – volume: 365 start-page: 1397 year: 2010 end-page: 1403 article-title: Bacterial chemotaxis and entropy production publication-title: Phil. Trans. R. Soc. B – volume: 84 start-page: 291 year: 1996 end-page: 303 article-title: Ecological exergy analysis: a new method for ecological energetics research publication-title: Ecol. Model. – volume: 109 start-page: 20837 year: 2012 end-page: 20841 article-title: Maximum entropy production, carbon assimilation, and the spatial organization of vegetation in river basins publication-title: Proc. Natl Acad. Sci. USA – year: 1967 – volume: 59 start-page: 127 year: 2009 end-page: 139 article-title: Optimal function explains forest responses to global change publication-title: Bioscience – volume: 85 start-page: 859 year: 2010 end-page: 879 article-title: Does life consistently maximise energy intensity? publication-title: Biol. Rev. – volume: 368 start-page: 181 year: 2010 end-page: 196 article-title: Non‐equilibrium thermodynamics, maximum entropy production and Earth‐system evolution publication-title: Phil. Trans. R. Soc. A – volume: 222 start-page: 3002 year: 2011 end-page: 3010 article-title: Dynamic model of Lake Chozas (Leon, NW Spain) – decrease in eco‐exergy from clear to turbid phase due to introduction of exotic crayfish publication-title: Ecol. Model. – volume: 365 start-page: 3413 year: 2010 end-page: 3428 article-title: Dynamic energy budget theory restores coherence in biology publication-title: Phil. Trans. R. Soc. B – volume: 4 start-page: 407 year: 1989 end-page: 432 article-title: Entropy and information in evolving biological systems publication-title: Biol. Philos. – volume: 55 start-page: 1075 year: 2005 end-page: 1079 article-title: Self‐organization and the emergence of complexity in ecological systems publication-title: Bioscience – volume: 265 start-page: 33 year: 1998 end-page: 38 article-title: Ecosystem development explained by competition within and between material cycles publication-title: Proc. R. Soc. B – volume: 178 start-page: 123 year: 1972 end-page: 126 article-title: Between laws of thermodynamics and coding of information publication-title: Science – volume: 9 start-page: 479 year: 2003 end-page: 492 article-title: Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future publication-title: Glob. Chang. Biol. – volume: 11 start-page: 931 year: 2009 end-page: 944 article-title: Maximum entropy production as an inference algorithm that translates physical assumptions into macroscopic predictions: don't shoot the messenger publication-title: Entropy – year: 2009 – volume: 24 year: 2011 article-title: Measurement scale in maximum entropy models of species abundance publication-title: J. Evol. Biol. – volume: 21 start-page: 136 year: 2006 end-page: 140 article-title: Metabolic theories in ecology publication-title: Trends Ecol. Evol. – volume: 8 start-page: 147 year: 1922 end-page: 151 article-title: Contribution to the energetics of evolution publication-title: Proc. Natl Acad. Sci. USA – year: 2001 – volume: 9 start-page: 589 year: 2006 end-page: 602 article-title: Comparing tropical forest tree size distributions with the predictions of metabolic ecology and equilibrium models publication-title: Ecol. Lett. – volume: 14 start-page: 343 year: 2012 end-page: 352 article-title: Experimental demonstration of a ‘rate‐size’ trade‐off governing body size optimization publication-title: Evol. Ecol. Res. – volume: 6 start-page: 980 year: 2003 end-page: 989 article-title: Disturbances prevent stem size‐density distributions in natural forests from following scaling relationships publication-title: Ecol. Lett. – volume: 181 start-page: 506 year: 2013 end-page: 519 article-title: Predicting population dynamics from the properties of individuals: a cross‐level test of dynamic energy budget theory publication-title: Am. Nat. – volume: 314 start-page: 812 year: 2006 end-page: 814 article-title: From plant traits to plant communities: a statistical mechanistic approach to biodiversity publication-title: Science – volume: 117 start-page: 1329 year: 2008 end-page: 1336 article-title: The maximum power principle predicts the outcomes of two‐species competition experiments publication-title: Oikos – volume: 6 start-page: 990 year: 2003 end-page: 995 article-title: Thermodynamic and metabolic effects on the scaling of production and population energy use publication-title: Ecol. Lett. – volume: 22 start-page: 323 year: 2007 end-page: 330 article-title: Relationships between body size and abundance in ecology publication-title: Trends Ecol. Evol. – volume: 201 start-page: 777 year: 1978 end-page: 785 article-title: Time, structure, and fluctuations publication-title: Science – volume: 93 start-page: 582 year: 1993 end-page: 596 article-title: Ecology, thermodynamics and H. T. Odum's conjectures publication-title: Oecologia – volume: 15 start-page: 273 year: 1998 end-page: 295 article-title: Thermodynamics, information and life revisited, Part I: ‘To be or entropy’ publication-title: Syst. Res. – volume: 180 start-page: 546 year: 2012 end-page: 565 article-title: Testing metabolic theories publication-title: Am. Nat. – volume: 119 start-page: 577 year: 2010 article-title: Maximum entropy in ecology publication-title: Oikos – year: 1945 – volume: 410 start-page: 655 year: 2001 end-page: 660 article-title: Invariant scaling relations across tree‐dominated communities publication-title: Nature – volume: 164 start-page: 262 year: 1969 end-page: 270 article-title: The strategy of ecosystem development publication-title: Science – volume: 38 start-page: L371 year: 2005 end-page: 381 article-title: Maximum entropy production and the fluctuation theorem publication-title: J. Phys. A: Math. Gen. – volume: 178 start-page: 121 year: 2004 end-page: 125 article-title: Howard T. Odum's contribution to the laws of energy publication-title: Ecol. Model. – volume: 92 start-page: 218703 year: 2004 article-title: Organization of ecosystems in the vicinity of a novel phase transition publication-title: Phys. Rev. Lett. – year: 1983 – volume: 4 start-page: 329 year: 1973 end-page: 357 article-title: On the principles of thermodynamics in ecology publication-title: Annu. Rev. Ecol. Syst. – volume: 19 start-page: 1785 year: 2006 end-page: 1794 article-title: On the logical relationship between natural selection and self‐organization publication-title: J. Evol. Biol. – year: 1968 – year: 2003 – volume: 117 start-page: 41 year: 1999 end-page: 64 article-title: Ecosystems emerging: 3. Openness publication-title: Ecol. Model. – year: 1996 – year: 2004b – volume: 17 start-page: 43 year: 2011 end-page: 57 article-title: A statistical explanation of MaxEnt for ecologists publication-title: Divers. Distrib. – volume: 97 start-page: 357 year: 1963 end-page: 374 article-title: On certain unifying principles in ecology publication-title: Am. Nat. – volume: 178 start-page: 107 year: 2004 end-page: 113 article-title: The continuing importance of maximum power publication-title: Ecol. Model. – start-page: 301 year: 2004a end-page: 323 – volume: 365 start-page: 1335 year: 2010 end-page: 1347 article-title: The constructal law of design and evolution in nature publication-title: Phil. Trans. R. Soc. B – year: 2012 – volume: 365 start-page: 1437 year: 2010 end-page: 1447 article-title: Trends in entropy production during ecosystem development in the Amazon Basin publication-title: Phil. Trans. R. Soc. B – volume: 190 start-page: 317 year: 2006 end-page: 335 article-title: The maximum power principle: an empirical investigation publication-title: Ecol. Model. – volume: 252 start-page: 185 year: 2008a end-page: 197 article-title: Thermodynamics of natural selection I: energy flow and the limits on organization publication-title: J. Theor. Biol. – volume: 85 start-page: 223 year: 1980 end-page: 245 article-title: An hypothesis on the development of natural communities publication-title: J. Theor. Biol. – volume: 20 start-page: 405 year: 2006 end-page: 412 article-title: Temperature and the metabolic theory of ecology publication-title: Funct. Ecol. – volume: 220 start-page: 393 year: 2003 end-page: 406 article-title: The driving force for life's emergence: kinetic and thermodynamic considerations publication-title: J. Theor. Biol. – volume: 119 start-page: 591 year: 2010 end-page: 603 article-title: Mechanisms in macroecology: AWOL or purloined letter? Towards a pragmatic view of mechanism publication-title: Oikos – volume: 365 start-page: 1405 year: 2010 end-page: 1416 article-title: Ecosystem functioning and maximum entropy production: a quantitative test of hypotheses publication-title: Phil. Trans. R. Soc. B – year: 1988 – volume: 19 start-page: 25 year: 1994 end-page: 48 article-title: Life as a manifestation of the Second Law of Thermodynamics publication-title: Math. Comput. Model. – year: 2006 – volume: 252 start-page: 213 year: 2008c end-page: 220 article-title: Thermodynamics of natural selection III: landauer's principle in computation and chemistry publication-title: J. Theor. Biol. – volume: 365 start-page: 1429 year: 2010 end-page: 1435 article-title: Maximum entropy production and plant optimization theories publication-title: Phil. Trans. R. Soc. B – volume: 426 start-page: 1 year: 2006 end-page: 45 article-title: Maximum entropy production principle in physics, chemistry and biology publication-title: Phys. Rep. – volume: 117 start-page: 1700 year: 2008 end-page: 1710 article-title: Limitations of entropy maximization in ecology publication-title: Oikos – volume: 6 start-page: 579 year: 1972 end-page: 580 article-title: Gaia as seen through the atmosphere publication-title: Atmos. Environ. – volume: 365 start-page: 1297 year: 2010 end-page: 1302 article-title: Maximum entropy production in environmental and ecological systems publication-title: Phil. Trans. R. Soc. B – volume: 3 start-page: 445 year: 2012 end-page: 449 article-title: Dynamic Energy Budget theory meets individual‐based modelling: a generic and accessible implementation publication-title: Methods Ecol. Evol. – volume: 22 start-page: 231 year: 2009 end-page: 244 article-title: Natural selection maximizes Fisher information publication-title: J. Evol. Biol. – year: 1999 |
SSID | ssj0008691 |
Score | 2.1341162 |
SecondaryResourceType | review_article |
Snippet | Theories based on simple principles have provided much insight into the common processes that underpin complex ecological systems. Although such theories (e.g.... |
SourceID | proquest wiley istex fao |
SourceType | Aggregation Database Publisher |
StartPage | 619 |
SubjectTerms | biodiversity Ecological research ecological thermodynamics Ecology ecosystem ecology Ecosystems entropy maximum power prediction Principles Resource availability Thermodynamics |
Title | Thermodynamic extremization principles and their relevance to ecology |
URI | https://api.istex.fr/ark:/67375/WNG-CJ5ZXDG2-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Faec.12130 https://www.proquest.com/docview/1554128581 https://www.proquest.com/docview/1663537724 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB62gUIvbdMHcZouKoTSi4NX1sOmp7DZJCx0CW2XLqUgJEvKIcQO-4Akv74j2d6kPZXejC0_5NFI3yeNvgE4lBLH9bLIU8oESxk1NjWMVmnlLTW8LK2OOt1fZuJ8zqYLvhjA534vTKsPsZ1wC54R--vg4NqsHjm5dlWQRsgDXw-xWgEQfX2QjipEzJaHfIGmSCl4pyoUoni2d-J44nWDsDT80ds_MOZjpBqHmtMX8Kv_yDbC5OposzZH1f1f-o3_WYuX8LyDoOS4bTO7MHD1K3jaJqW8w6NJFLK-ew0TbEPL68a2SesJduNLd93t2yQ3_Sz9iujakrjgQEIGlhhTQNYNce1z3sD8dPJ9fJ52aRdSj9gqS11upOWyHNFMZNpZwUeGmqpiCBWFp4XNvBCF54X2WtpcjwQvbY5cDqlUxYosfws7dVO7PSC5xvNGSm25Z95WWrpCBA0-pHlWcprAHhpA6Uvs0NT8Gw10L3I2VibwMVpF3bSqG0ovr0IQmuTqx-xMjaf85-LkjKqTBA56s6nO_1YqoCQceXkxSuDD9jJ6TlgO0bVrNlgmgK0c2QVL4FO00fZdPTNC66hoHXU8GceD_X8v-g6ehQq1AWkHsLNebtx7RDBrM4QnlF0MY4P9Ddjl6B8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hKtRe2tKHSEuLK1VVL0FZx49E4oKWhYXCHlpWXVWqLDu2e0AkaNmVSn89YyfZ0p4QtyhxnuPxfJ89-Qbgo5QY18siTykTLGXU2NQwWqWVt9TwsrQ66nSfTcR4yk5mfLYGe_2_MK0-xGrCLXhGHK-Dg4cJ6Tterl0VtBFyJOyPQkXvSKi-_hWPKkSsl4eMgaZIKninKxTyeFanYkTxukFgGr7p739Q5l2sGoPN4TP42T9mm2NysbtcmN3qz38Kjg99j-fwtEOhZL_tNpuw5uoXsNHWpbzBrVHUsr55CSPsRvPLxrZ16wmO5HN32f26Sa76ifpromtL4poDCUVYYloBWTTEtdd5BdPD0flwnHaVF1KP8CpLXW6k5bIc0Exk2ln8uoaaqmKIFoWnhc28EIXnhfZa2lwPBC9tjnQO2VTFiix_Det1U7stILnG_UZKbbln3lZaukIEGT5kelZymsAWWkDpXzimqek3GhhfpG2sTOBTNIu6aoU3lJ5fhDw0ydX3yZEanvAfs4Mjqg4S2O7tpjoXvFYBKGHw5cUggQ-rw-g8YUVE165ZYpuAt3IkGCyBz9FIq3v15Aito6J11P5oGDfe3L_pDjwen5-dqtPjyZe38CS8XJuftg3ri_nSvUNAszDvY7-9Be_462M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrUBcaHmpgbYECSEuqbKOXxGnah8tBVYIWLFCSJYd2xyqJqvtrkT59YydZFs4IW5R4jyc8djfZ4-_AXgpBI7rpSwyQjnNKDE2M5RUWeUtMawsrY463R-m_GxGz-dsvgVv-r0wrT7EZsIteEbsr4ODL6y_5eTaVUEaoUC-vkN5LkOTHn260Y6SPKbLQ8JAMuQUrJMVCmE8m1txQPG6QVwafunPP0Dmbagax5rJLnzvv7INMbk4Xq_McfXrLwHH_6zGHtzvMGh60jaaB7Dl6odwp81KeY1H46hkff0IxtiIlpeNbbPWp9iPL91lt3EzXfTT9Feprm0aVxzSkIIlBhWkqyZ17XMew2wy_jI8y7q8C5lHcJVnrjDCMlEOSM5z7SxnA0NMVVHEitwTaXPPufRMaq-FLfSAs9IWSOaQS1VU5sUT2K6b2u1DWmg8b4TQlnnqbaWFkzyI8CHPs4KRBPbRAEr_wB5NzT6TwPciaaNlAq-iVdSild1QenkRotAEU1-np2p4zr7NR6dEjRI46M2mOge8UgEm4dDL5CCBF5vL6DphPUTXrlljmYC2CqQXNIHX0Uabd_XUCK2jonXUyXgYD57-e9HncPfjaKLev52-ewb3Qt3a4LQD2F4t1-4Q0czKHMVW-xtQwuob |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermodynamic+extremization+principles+and+their+relevance+to+ecology&rft.jtitle=Austral+ecology&rft.au=Yen%2C+Jian+D.+L&rft.au=Paganin%2C+David+M&rft.au=Thomson%2C+James+R&rft.au=Mac+Nally%2C+Ralph&rft.date=2014-09-01&rft.pub=Blackwell+Science+Asia&rft.issn=1442-9985&rft.eissn=1442-9993&rft.volume=39&rft.issue=6&rft.spage=619&rft.epage=632&rft_id=info:doi/10.1111%2Faec.12130&rft.externalDocID=US201400149549 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1442-9985&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1442-9985&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1442-9985&client=summon |