Ecological and life‐history correlates of enamel growth in ruminants (Artiodactyla)
Enamel incremental markings are widely used to reconstruct growth patterns of extinct mammals. However, the likely existence of an allometric relationship between dental morphology and enamel growth suggests that caution is required when making life‐history inferences based on these microstructures....
Saved in:
Published in | Biological journal of the Linnean Society Vol. 112; no. 4; pp. 657 - 667 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Published for the Linnean Society of London by Blackwell [etc.]
01.08.2014
Blackwell Publishing Ltd Oxford University Press |
Subjects | |
Online Access | Get full text |
ISSN | 0024-4066 1095-8312 |
DOI | 10.1111/bij.12264 |
Cover
Loading…
Abstract | Enamel incremental markings are widely used to reconstruct growth patterns of extinct mammals. However, the likely existence of an allometric relationship between dental morphology and enamel growth suggests that caution is required when making life‐history inferences based on these microstructures. In the present study, we aimed to explore the potential of using enamel growth rate as a reliable proxy of the pace of life in fossil species. We sectioned 24 permanent first lower molars from 19 extant and two fossil ruminant species. By using polarized light microscopy, we measured the two parameters that determine enamel growth rates: daily secretion rate (DSR) and extension rate, as quantified by enamel formation front (EFF) angle. These parameters were regressed against body mass, hypsodonty index, and relative age at first reproduction (relative to body mass) as a proxy for the species' pace of life, using phylogenetic generalized least squares analyses. Our results indicate that DSR conforms to the allometric relationship because it is positively correlated with hypsodonty. By contrast, enamel extension rate is strongly related to the pace of life. These findings suggest that the two mechanisms of enamel growth might be subject to different selective forces. The application in two fossil species provides evidence that EFF angle is a reliable proxy of the life history of extinct mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 657–667. |
---|---|
AbstractList | Enamel incremental markings are widely used to reconstruct growth patterns of extinct mammals. However, the likely existence of an allometric relationship between dental morphology and enamel growth suggests that caution is required when making life-history inferences based on these microstructures. In the present study, we aimed to explore the potential of using enamel growth rate as a reliable proxy of the pace of life in fossil species. We sectioned 24 permanent first lower molars from 19 extant and two fossil ruminant species. By using polarized light microscopy, we measured the two parameters that determine enamel growth rates: daily secretion rate (DSR) and extension rate, as quantified by enamel formation front (EFF) angle. These parameters were regressed against body mass, hypsodonty index, and relative age at first reproduction (relative to body mass) as a proxy for the species' pace of life, using phylogenetic generalized least squares analyses. Our results indicate that DSR conforms to the allometric relationship because it is positively correlated with hypsodonty. By contrast, enamel extension rate is strongly related to the pace of life. These findings suggest that the two mechanisms of enamel growth might be subject to different selective forces. The application in two fossil species provides evidence that EFF angle is a reliable proxy of the life history of extinct mammals. copyright 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 657-667. Enamel incremental markings are widely used to reconstruct growth patterns of extinct mammals. However, the likely existence of an allometric relationship between dental morphology and enamel growth suggests that caution is required when making life‐history inferences based on these microstructures. In the present study, we aimed to explore the potential of using enamel growth rate as a reliable proxy of the pace of life in fossil species. We sectioned 24 permanent first lower molars from 19 extant and two fossil ruminant species. By using polarized light microscopy, we measured the two parameters that determine enamel growth rates: daily secretion rate (DSR) and extension rate, as quantified by enamel formation front (EFF) angle. These parameters were regressed against body mass, hypsodonty index, and relative age at first reproduction (relative to body mass) as a proxy for the species' pace of life, using phylogenetic generalized least squares analyses. Our results indicate that DSR conforms to the allometric relationship because it is positively correlated with hypsodonty. By contrast, enamel extension rate is strongly related to the pace of life. These findings suggest that the two mechanisms of enamel growth might be subject to different selective forces. The application in two fossil species provides evidence that EFF angle is a reliable proxy of the life history of extinct mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 657–667. Enamel incremental markings are widely used to reconstruct growth patterns of extinct mammals. However, the likely existence of an allometric relationship between dental morphology and enamel growth suggests that caution is required when making life-history inferences based on these microstructures. In the present study, we aimed to explore the potential of using enamel growth rate as a reliable proxy of the pace of life in fossil species. We sectioned 24 permanent first lower molars from 19 extant and two fossil ruminant species. By using polarized light microscopy, we measured the two parameters that determine enamel growth rates: daily secretion rate (DSR) and extension rate, as quantified by enamel formation front (EFF) angle. These parameters were regressed against body mass, hypsodonty index, and relative age at first reproduction (relative to body mass) as a proxy for the species' pace of life, using phylogenetic generalized least squares analyses. Our results indicate that DSR conforms to the allometric relationship because it is positively correlated with hypsodonty. By contrast, enamel extension rate is strongly related to the pace of life. These findings suggest that the two mechanisms of enamel growth might be subject to different selective forces. The application in two fossil species provides evidence that EFF angle is a reliable proxy of the life history of extinct mammals. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 112, 657-667. [PUBLICATION ABSTRACT] |
Author | Köhler, Meike Moncunill‐Solé, Blanca Marín‐Moratalla, Nekane Jordana, Xavier |
Author_xml | – sequence: 1 fullname: Jordana, Xavier – sequence: 2 fullname: Marín‐Moratalla, Nekane – sequence: 3 fullname: Moncunill‐Solé, Blanca – sequence: 4 fullname: Köhler, Meike |
BookMark | eNqFkc9OGzEQh62KSg20hz5BV-qFHhb8b23vEVIKlKitRKMerVmvNzh1bLA3ornxCDwjT1JDEIdeao3kOXy_kWa-XbQTYrAIvSf4gJR32LnlAaFU8FdoQnDb1IoRuoMmGFNecyzEG7Sb8xJjQrikEzQ_MdHHhTPgKwh95d1gH-7ur1weY9pUJqZkPYw2V3GobICV9dUixdvxqnKhSuuVCxDGXO0fpdHFHsy48fDpLXo9gM_23fO_h-ZfTn5Oz-rZ99Pz6dGsHpgSvO4kY61REloQtJOGS8W7rqeiFDedYL3iYG3PjQRoDBjZ94MC2hNoBiwatof2t3OvU7xZ2zzqlcvGeg_BxnXWRAgmMFVM_B9thFCsYY0q6Md_0GVcp1AWKRSXDBPKH6nDLXXrvN3o6-RWkDaaYP0oQhcR-kmEPj7_-tSURL1NlOPaPy8JSL-1kEw2-te3U33x42J63H6-1LPCf9jyA0QNi-Synl9STBpc9KkWU_YXoE-X5w |
ContentType | Journal Article |
Copyright | 2014 The Linnean Society of London Copyright © 2014 The Linnean Society of London |
Copyright_xml | – notice: 2014 The Linnean Society of London – notice: Copyright © 2014 The Linnean Society of London |
DBID | FBQ BSCLL 7QG 7QP 7QR 7SN 7SS 7ST 7TK 7TM 7U9 8FD C1K FR3 H94 P64 RC3 SOI 7S9 L.6 |
DOI | 10.1111/bij.12264 |
DatabaseName | AGRIS Istex Animal Behavior Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts AIDS and Cancer Research Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts Virology and AIDS Abstracts AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-8312 |
EndPage | 667 |
ExternalDocumentID | 3380002981 BIJ12264 ark_67375_WNG_KPKCB9DS_L US201500018902 |
Genre | article |
GrantInformation_xml | – fundername: Spanish Ministry of Economy and Competitiveness funderid: CGL2012‐34459; JCI‐2010‐08157; BES‐2009‐02641 – fundername: Spanish Ministry of Education funderid: AP2010‐2393 |
GroupedDBID | --K -~X .3N .GA .Y3 05W 10A 1B1 1OC 1TH 1~5 23N 31~ 33P 3SF 4.4 48X 4G. 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 5WD 66C 6J9 7-5 702 71M 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AACTN AAEDT AAESR AAEVG AAHHS AAIMJ AAJQQ AALCJ AALRI AAONW AAPQZ AAPXW AAQFI AAQXK AAUQX AAVAP AAWDT AAXUO AAZKR ABCQN ABDBF ABEML ABJNI ABLJU ABPTD ABPTK ABPVW ABSAR ABTAH ABWST ABXZS ACBWZ ACCFJ ACFRR ACGFO ACGFS ACIWK ACPRK ACSCC ACUFI ACUTJ ACXME ACXQS ADBBV ADEIU ADEZT ADFGL ADGKP ADGZP ADHKW ADIPN ADIZJ ADMUD ADRTK ADVEK ADZOD AEEZP AEGXH AEIMD AELWJ AEMDU AENEX AENZO AEQDE AETBJ AEUQT AEWNT AFBPY AFEBI AFFZL AFGWE AFRAH AFYAG AFZJQ AGQXC AHEFC AIAGR AIKOY AIWBW AJAOE AJBDE AJEEA AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALXQX AMBMR ANFBD APIBT APJGH AQDSO ARIXL ASAOO ASPBG ATDFG ATUGU AVWKF AZBYB AZFZN AZQFJ AZVAB BAFTC BAYMD BCRHZ BDRZF BEYMZ BFHJK BHBCM BNHUX BROTX BRXPI BSWAC BY8 CAG CDBKE CO8 COF CS3 D-E D-F DAKXR DCZOG DM4 DPXWK DR2 DU5 EAD EAP EBD EBS EJD ELUNK EMK EST ESX F00 F01 F04 FBQ FDB FEDTE FGOYB FHSFR FIRID FLUFQ FOEOM FQBLK G-S G.N GAUVT GJXCC GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 KBUDW KOP KSI KSN LC2 LC3 LG5 LH4 LP6 LP7 LW6 MBTAY MK4 N04 N05 NF~ NLBLG NOMLY NQ- NVLIB O-L O66 OBOKY ODMLO OJZSN OWPYF OZT P2P P2W P2X P4D PAFKI PEELM Q.N Q11 QB0 R.K R2- RIWAO RJQFR ROL ROX ROZ RPZ RUSNO RX1 SSZ SUPJJ TCN TLC TN5 TUS UB1 UHS V8K W8V W99 WBKPD WIH WNSPC WQJ WRC WYUIH XG1 XPP YAYTL YKOAZ YXANX ZMT ZY4 ~02 ~IA ~KM ~WT 0R~ AAHBH AARHZ AAUAY ABEJV ABMNT ABXVV ACZBC ADQBN AGKRT AGMDO AKRWK ATGXG BSCLL H13 OIG AANHP ABDFA ABWVN ACRPL ACUHS ACYXJ ADNMO NU- 7QG 7QP 7QR 7SN 7SS 7ST 7TK 7TM 7U9 8FD AAMMB ABGNP ABPQP ABVGC ADNBA AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY AJNCP C1K FR3 H94 JXSIZ P64 RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-f3864-b7339c87a9a62b7c4784bbd26d264cb63d84aeed4c7aa5cac7ddf8a2d1a5f0653 |
IEDL.DBID | DR2 |
ISSN | 0024-4066 |
IngestDate | Fri Jul 11 18:37:35 EDT 2025 Fri Jul 11 04:32:24 EDT 2025 Sat Aug 16 22:22:35 EDT 2025 Wed Jan 22 16:30:06 EST 2025 Wed Oct 30 09:56:11 EDT 2024 Wed Dec 27 18:55:09 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-f3864-b7339c87a9a62b7c4784bbd26d264cb63d84aeed4c7aa5cac7ddf8a2d1a5f0653 |
Notes | http://dx.doi.org/10.1111/bij.12264 Spanish Ministry of Education - No. AP2010-2393 ArticleID:BIJ12264 istex:218BF0DB9C99E72876135B9ADEF3FCDEFB895CB1 Spanish Ministry of Economy and Competitiveness - No. CGL2012-34459; No. JCI-2010-08157; No. BES-2009-02641 ark:/67375/WNG-KPKCB9DS-L ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://academic.oup.com/biolinnean/article-pdf/112/4/657/25193447/bij12264.pdf |
PQID | 1547301248 |
PQPubID | 1026372 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1663602836 proquest_miscellaneous_1566835358 proquest_journals_1547301248 wiley_primary_10_1111_bij_12264_BIJ12264 istex_primary_ark_67375_WNG_KPKCB9DS_L fao_agris_US201500018902 |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Biological journal of the Linnean Society |
PublicationTitleAlternate | Biol J Linn Soc Lond |
PublicationYear | 2014 |
Publisher | Published for the Linnean Society of London by Blackwell [etc.] Blackwell Publishing Ltd Oxford University Press |
Publisher_xml | – name: Published for the Linnean Society of London by Blackwell [etc.] – name: Blackwell Publishing Ltd – name: Oxford University Press |
References | Dean MC. 1987. Growth layers and incremental markings in hard tissues, a review of the literature and some preliminary observations about enamel structure of Paranthropus boisei. Journal of Human Evolution 16: 157-172. Hillson S. 2005. Teeth, 2nd edn. Cambridge: Cambridge University Press. Jordana X, Köhler M. 2011. Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): implications for life-history evolution of dwarf mammals in insular ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 300: 59-66. Alcover JA, Moyà-Solà S, Pons-Moyà J. 1981. Les quimeres del passat. Palma de Mallorca: Editorial Moll. Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C. 2000. Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematic 31: 367-393. Köhler M, Moyà-Solà S, Esteban-Trivigno S. 2008. Morphological variables and associated individual body weight for bovids. New equations for body mass predictions. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 105: 103-136. Famoso NA, Feranec RS, Davis EB. 2013. Occlusal enamel complexity and its implications for lophodonty, hypsodony, body mass, and diet in extinct and extant ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 387: 211-216. Hernández-Fernández M, Vrba ES. 2005. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biological Review 80: 269-302. Hogg RT, Walker RS. 2011. Life-history correlates of enamel microstructure in Cebidae (Platyrrhini, Primates). Anatomical Record 294: 2193-2206. Smith BH. 1989. Dental development as a measure of life history in primates. Evolution 43: 683-688. Bate DMA. 1909. A new artiodactyle from Majorca. Geological Magazine 543: 385-388. Gaspar-López E, Landete-Castillejos T, Estevez JA, Ceacero F, Gallego L, García AJ. 2010. Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus). Reproduction in Domestic Animals 45: 246-249. Calder WAI. 1996. Size, function, and life history. Mineola: Dover Publications, Inc. Marín-Moratalla N, Jordana X, García-Martínez R, Köhler M. 2011. Tracing the evolution of fitness components in fossil bovids under different selective regimes. Comptes Rendus Pale 10: 469-478. Bromage TG, Dean MC. 1985. Re-evaluation of the age at death of immature fossil hominids. Nature 317: 525-527. Smith BH. 1991. Dental development and the evolution of life history in hominidae. American Journal of Physical Anthropology 86: 157-174. Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press. Iinuma YM, Tanaka S, Kawasaki K, Kuwajima T, Nomura H, Suzuki M, Ohtaishi N. 2004. Dental incremental lines in sika deer (Cervus nippon); polarized light and fluorescence microscopy of ground sections. Journal of Veterinary Medical Science 66: 665-669. Clutton-Brock TH, Guinness FE, Albon SD. 1982. Red deer behaviour and ecology of two sexes. Chicago, IL: The University of Chicago Press. Marín-Moratalla N, Cubo J, Jordana X, Moncunill-Solé B, Köhler M. In press. Correlation of quantitative bone histology data with life history and climate: a phylogenetic approach. Biological Journal of the Linnean Society 112: 678-687. Kierdorf H, Witzel C, Upex B, Dobney K, Kierdorf U. 2012. Enamel hypoplasia in molars of sheep and goats, and its relationship to the pattern of tooth crown growth. Journal of Anatomy 220: 484-495. Dean MC. 2006. Tooth microstructure tracks the pace of human life-history evolution. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 273: 2799-2808. Jordana X, Marín-Moratalla N, DeMiguel D, Kaiser TM, Köhler M. 2012. Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals. Proceedings of the Royal Society of London Series B, Biological Sciences 279: 3339-3346. Schwartz GT, Samonds KE, Godfrey LR, Jungers WL, Simons EL. 2002. Dental microstructure and life history in subfossil Malagasy lemurs. Proceedings of the National Academy of Sciences of the United States of America 99: 6124-6129. Schwartz GT, Mahoney P, Godfrey LR, Cuozzo FP, Jungers WL, Randria GFN. 2005. Dental development in Megaladapis edwardsi (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs. Journal of Human Evolution 49: 702-721. Köhler M, Moyà-Solà S. 2009. Physiological and life history strategies of a fossil large mammal in a resourcelimited environment. Proceedings of the National Academy of Sciences of the United States of America 106: 20354-20358. Marín-Moratalla N, Jordana X, García-Martínez R, Moncunill-Solé B, Köhler M. 2012. What does the life history of a fossil bovid tell us about paleoenvironment? Special Issue Society of Vertebrate Paleontology 12 (Supp1): 135. Yom-Tov Y, Mendelssohn H, Groves PC. 1995. Gazella dorcas. Mammalian species 491: 1-6. Smith TM. 2006. Experimental determination of the periodicity of incremental features in enamel. Journal of Anatomy 208: 99-113. Kate EJ, Bielby J, Cardillo M, Fritz SA, O'Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90: 2648. Smith TM, Tafforeau P. 2008. New visions of dental tissue research: tooth development, chemistry, and structure. Evolutionary Anthropology 17: 213-226. Stearns SC. 1992. The evolution of life histories. New York, NY: Oxford University Press. Dirks W, Bromage TG, Agenbroad LD. 2011. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quaternary International 225: 79-85. Nowak RM. 1999. Walker's mammals of the world, 6th edn. Baltimore, MD: The Johns Hopkins University Press. Tafforeau P, Bentaleb I, Jaeger JJ, Martin C. 2007. Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeography. Palaeoclimatology. Palaeoecology 246: 206-227. Kelley J, Schwartz GT. 2012. Life-history inference in the early hominins Australopithecus and Paranthropus. International Journal of Primatology 33: 1332-1363. Bromage TG. 1991. Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissue. American Journal of Physical Anthropology 86: 205-214. Mendoza M, Palmqvist P. 2008. Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? Journal of Zoology 274: 134-142. Smith TM. 2008. Incremental dental development: methods and applications in hominoid evolutionary studies. Journal of Human Evolution 54: 205-224. Cain JW III, Krausman PR, Germaine HL. 2004. Antidorcas marsupialis. Mammalian Species 753: 1-7. Kierdorf H, Kierdorf U, Frölich K, Witzel C. 2013. Lines of evidence incremental markings in molar enamel of soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS ONE 8: e74597. Reid DJ, Schwartz GT, Dean MC, Chandresakera MS. 1998. A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Jorunal of Human Evolution 35: 427-448. Jordana X, Marín-Moratalla N, Moncunill-Solé B, Bover P, Alcover JA, Köhler M. 2013. First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage. PLoS ONE 8: e70743. Dean MC, Leakey MG, Reid D, Schrenk F, Schwartz GT, Stringer C, Walker A. 2001. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414: 628-631. Shellis RP. 1984. Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archives of Oral Biology 29: 697-705. Estes RD. 1991. The behaviour guide toa frican mammals. Berkeley and Los Angeles, CA: University of California Press. Kingdon J. 1997. The Kingdon field guide to African mammals. London: Academic Press. Smith TM, Martin LB, Leakey MG. 2003. Enamel thickness, microstructure and development in Afropithecus turkanensis. Journal of Human Evolution 44: 283-306. 2004; 66 1909; 543 1989; 43 2002; 99 2011; 10 2008; 105 1984; 29 2013; 8 2012; 12 1995; 491 2006; 208 2000 1991; 86 2009; 90 1983 1982 1981 In press; 112 2008; 274 1989 2001; 414 2003; 44 1988 2007; 246 2012; 220 2010 2008; 17 2006; 273 2009 2013; 387 1997 1996 2005; 80 2005 2008; 54 1992 2002 1991 2011; 294 2005; 49 2012; 33 1987; 16 1999 2010; 45 2011; 225 2004; 753 2011; 300 2000; 31 1964 1985; 317 2012; 279 2009; 106 1998; 35 |
References_xml | – reference: Dean MC. 1987. Growth layers and incremental markings in hard tissues, a review of the literature and some preliminary observations about enamel structure of Paranthropus boisei. Journal of Human Evolution 16: 157-172. – reference: Kierdorf H, Witzel C, Upex B, Dobney K, Kierdorf U. 2012. Enamel hypoplasia in molars of sheep and goats, and its relationship to the pattern of tooth crown growth. Journal of Anatomy 220: 484-495. – reference: Reid DJ, Schwartz GT, Dean MC, Chandresakera MS. 1998. A histological reconstruction of dental development in the common chimpanzee, Pan troglodytes. Jorunal of Human Evolution 35: 427-448. – reference: Calder WAI. 1996. Size, function, and life history. Mineola: Dover Publications, Inc. – reference: Schwartz GT, Mahoney P, Godfrey LR, Cuozzo FP, Jungers WL, Randria GFN. 2005. Dental development in Megaladapis edwardsi (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs. Journal of Human Evolution 49: 702-721. – reference: Hillson S. 2005. Teeth, 2nd edn. Cambridge: Cambridge University Press. – reference: Kingdon J. 1997. The Kingdon field guide to African mammals. London: Academic Press. – reference: Mendoza M, Palmqvist P. 2008. Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? Journal of Zoology 274: 134-142. – reference: Tafforeau P, Bentaleb I, Jaeger JJ, Martin C. 2007. Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeography. Palaeoclimatology. Palaeoecology 246: 206-227. – reference: Bromage TG. 1991. Enamel incremental periodicity in the pig-tailed macaque: a polychrome fluorescent labeling study of dental hard tissue. American Journal of Physical Anthropology 86: 205-214. – reference: Hernández-Fernández M, Vrba ES. 2005. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biological Review 80: 269-302. – reference: Nowak RM. 1999. Walker's mammals of the world, 6th edn. Baltimore, MD: The Johns Hopkins University Press. – reference: Shellis RP. 1984. Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure. Archives of Oral Biology 29: 697-705. – reference: Köhler M, Moyà-Solà S. 2009. Physiological and life history strategies of a fossil large mammal in a resourcelimited environment. Proceedings of the National Academy of Sciences of the United States of America 106: 20354-20358. – reference: Gaillard JM, Festa-Bianchet M, Yoccoz NG, Loison A, Toïgo C. 2000. Temporal variation in fitness components and population dynamics of large herbivores. Annual Review of Ecology and Systematic 31: 367-393. – reference: Hogg RT, Walker RS. 2011. Life-history correlates of enamel microstructure in Cebidae (Platyrrhini, Primates). Anatomical Record 294: 2193-2206. – reference: Clutton-Brock TH, Guinness FE, Albon SD. 1982. Red deer behaviour and ecology of two sexes. Chicago, IL: The University of Chicago Press. – reference: Gaspar-López E, Landete-Castillejos T, Estevez JA, Ceacero F, Gallego L, García AJ. 2010. Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags (Cervus elaphus hispanicus). Reproduction in Domestic Animals 45: 246-249. – reference: Schwartz GT, Samonds KE, Godfrey LR, Jungers WL, Simons EL. 2002. Dental microstructure and life history in subfossil Malagasy lemurs. Proceedings of the National Academy of Sciences of the United States of America 99: 6124-6129. – reference: Smith TM. 2008. Incremental dental development: methods and applications in hominoid evolutionary studies. Journal of Human Evolution 54: 205-224. – reference: Marín-Moratalla N, Jordana X, García-Martínez R, Köhler M. 2011. Tracing the evolution of fitness components in fossil bovids under different selective regimes. Comptes Rendus Pale 10: 469-478. – reference: Marín-Moratalla N, Jordana X, García-Martínez R, Moncunill-Solé B, Köhler M. 2012. What does the life history of a fossil bovid tell us about paleoenvironment? Special Issue Society of Vertebrate Paleontology 12 (Supp1): 135. – reference: Kelley J, Schwartz GT. 2012. Life-history inference in the early hominins Australopithecus and Paranthropus. International Journal of Primatology 33: 1332-1363. – reference: Smith TM. 2006. Experimental determination of the periodicity of incremental features in enamel. Journal of Anatomy 208: 99-113. – reference: Dean MC. 2006. Tooth microstructure tracks the pace of human life-history evolution. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 273: 2799-2808. – reference: Cain JW III, Krausman PR, Germaine HL. 2004. Antidorcas marsupialis. Mammalian Species 753: 1-7. – reference: Smith BH. 1991. Dental development and the evolution of life history in hominidae. American Journal of Physical Anthropology 86: 157-174. – reference: Bromage TG, Dean MC. 1985. Re-evaluation of the age at death of immature fossil hominids. Nature 317: 525-527. – reference: Famoso NA, Feranec RS, Davis EB. 2013. Occlusal enamel complexity and its implications for lophodonty, hypsodony, body mass, and diet in extinct and extant ungulates. Palaeogeography, Palaeoclimatology, Palaeoecology 387: 211-216. – reference: Iinuma YM, Tanaka S, Kawasaki K, Kuwajima T, Nomura H, Suzuki M, Ohtaishi N. 2004. Dental incremental lines in sika deer (Cervus nippon); polarized light and fluorescence microscopy of ground sections. Journal of Veterinary Medical Science 66: 665-669. – reference: Smith TM, Martin LB, Leakey MG. 2003. Enamel thickness, microstructure and development in Afropithecus turkanensis. Journal of Human Evolution 44: 283-306. – reference: Dirks W, Bromage TG, Agenbroad LD. 2011. The duration and rate of molar plate formation in Palaeoloxodon cypriotes and Mammuthus columbi from dental histology. Quaternary International 225: 79-85. – reference: Marín-Moratalla N, Cubo J, Jordana X, Moncunill-Solé B, Köhler M. In press. Correlation of quantitative bone histology data with life history and climate: a phylogenetic approach. Biological Journal of the Linnean Society 112: 678-687. – reference: Yom-Tov Y, Mendelssohn H, Groves PC. 1995. Gazella dorcas. Mammalian species 491: 1-6. – reference: Stearns SC. 1992. The evolution of life histories. New York, NY: Oxford University Press. – reference: Kate EJ, Bielby J, Cardillo M, Fritz SA, O'Dell J, Orme CDL, Safi K, Sechrest W, Boakes EH, Carbone C, Connolly C, Cutts MJ, Foster JK, Grenyer R, Habib M, Plaster CA, Price SA, Rigby EA, Rist J, Teacher A, Bininda-Emonds ORP, Gittleman JL, Mace GM, Purvis A. 2009. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90: 2648. – reference: Jordana X, Marín-Moratalla N, Moncunill-Solé B, Bover P, Alcover JA, Köhler M. 2013. First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage. PLoS ONE 8: e70743. – reference: Jordana X, Marín-Moratalla N, DeMiguel D, Kaiser TM, Köhler M. 2012. Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals. Proceedings of the Royal Society of London Series B, Biological Sciences 279: 3339-3346. – reference: Bate DMA. 1909. A new artiodactyle from Majorca. Geological Magazine 543: 385-388. – reference: Estes RD. 1991. The behaviour guide toa frican mammals. Berkeley and Los Angeles, CA: University of California Press. – reference: Smith TM, Tafforeau P. 2008. New visions of dental tissue research: tooth development, chemistry, and structure. Evolutionary Anthropology 17: 213-226. – reference: Harvey PH, Pagel MD. 1991. The comparative method in evolutionary biology. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press. – reference: Kierdorf H, Kierdorf U, Frölich K, Witzel C. 2013. Lines of evidence incremental markings in molar enamel of soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study. PLoS ONE 8: e74597. – reference: Smith BH. 1989. Dental development as a measure of life history in primates. Evolution 43: 683-688. – reference: Köhler M, Moyà-Solà S, Esteban-Trivigno S. 2008. Morphological variables and associated individual body weight for bovids. New equations for body mass predictions. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut 105: 103-136. – reference: Dean MC, Leakey MG, Reid D, Schrenk F, Schwartz GT, Stringer C, Walker A. 2001. Growth processes in teeth distinguish modern humans from Homo erectus and earlier hominins. Nature 414: 628-631. – reference: Alcover JA, Moyà-Solà S, Pons-Moyà J. 1981. Les quimeres del passat. Palma de Mallorca: Editorial Moll. – reference: Jordana X, Köhler M. 2011. Enamel microstructure in the fossil bovid Myotragus balearicus (Majorca, Spain): implications for life-history evolution of dwarf mammals in insular ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology 300: 59-66. – year: 2009 – volume: 45 start-page: 246 year: 2010 end-page: 249 article-title: Biometrics, testosterone, cortisol and antler growth cycle in Iberian red deer stags ( ) publication-title: Reproduction in Domestic Animals – start-page: 261 year: 2010 end-page: 280 – year: 1981 – volume: 86 start-page: 205 year: 1991 end-page: 214 article-title: Enamel incremental periodicity in the pig‐tailed macaque: a polychrome fluorescent labeling study of dental hard tissue publication-title: American Journal of Physical Anthropology – volume: 112 start-page: 678 year: In press end-page: 687 article-title: Correlation of quantitative bone histology data with life history and climate: a phylogenetic approach publication-title: Biological Journal of the Linnean Society – volume: 274 start-page: 134 year: 2008 end-page: 142 article-title: Hypsodonty in ungulates: an adaptation for grass consumption or for foraging in open habitat? publication-title: Journal of Zoology – year: 2005 – volume: 279 start-page: 3339 year: 2012 end-page: 3346 article-title: Evidence of correlated evolution of hypsodonty and exceptional longevity in endemic insular mammals publication-title: Proceedings of the Royal Society of London Series B, Biological Sciences – volume: 31 start-page: 367 year: 2000 end-page: 393 article-title: Temporal variation in fitness components and population dynamics of large herbivores publication-title: Annual Review of Ecology and Systematic – volume: 33 start-page: 1332 year: 2012 end-page: 1363 article-title: Life‐history inference in the early hominins and publication-title: International Journal of Primatology – volume: 99 start-page: 6124 year: 2002 end-page: 6129 article-title: Dental microstructure and life history in subfossil Malagasy lemurs publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 54 start-page: 205 year: 2008 end-page: 224 article-title: Incremental dental development: methods and applications in hominoid evolutionary studies publication-title: Journal of Human Evolution – start-page: 212 year: 2000 end-page: 227 – volume: 208 start-page: 99 year: 2006 end-page: 113 article-title: Experimental determination of the periodicity of incremental features in enamel publication-title: Journal of Anatomy – volume: 12 start-page: 135 issue: Supp1 year: 2012 article-title: What does the life history of a fossil bovid tell us about paleoenvironment? publication-title: Special Issue Society of Vertebrate Paleontology – volume: 8 start-page: e70743 year: 2013 article-title: First fossil evidence for the advance of replacement teeth coupled with life history evolution along an anagenetic mammalian lineage publication-title: PLoS ONE – year: 1982 – volume: 543 start-page: 385 year: 1909 end-page: 388 article-title: A new artiodactyle from Majorca publication-title: Geological Magazine – volume: 10 start-page: 469 year: 2011 end-page: 478 article-title: Tracing the evolution of fitness components in fossil bovids under different selective regimes publication-title: Comptes Rendus Pale – volume: 43 start-page: 683 year: 1989 end-page: 688 article-title: Dental development as a measure of life history in primates publication-title: Evolution – year: 1997 – volume: 49 start-page: 702 year: 2005 end-page: 721 article-title: Dental development in (Primates, Lemuriformes): implications for understanding life history variation in subfossil lemurs publication-title: Journal of Human Evolution – volume: 225 start-page: 79 year: 2011 end-page: 85 article-title: The duration and rate of molar plate formation in and from dental histology publication-title: Quaternary International – volume: 273 start-page: 2799 year: 2006 end-page: 2808 article-title: Tooth microstructure tracks the pace of human life‐history evolution publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences – volume: 80 start-page: 269 year: 2005 end-page: 302 article-title: A complete estimate of the phylogenetic relationships in Ruminantia: a dated species‐level supertree of the extant ruminants publication-title: Biological Review – volume: 8 start-page: e74597 year: 2013 article-title: Lines of evidence incremental markings in molar enamel of soay sheep as revealed by a fluorochrome labeling and backscattered electron imaging study publication-title: PLoS ONE – volume: 105 start-page: 103 year: 2008 end-page: 136 article-title: Morphological variables and associated individual body weight for bovids. New equations for body mass predictions publication-title: Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut – volume: 246 start-page: 206 year: 2007 end-page: 227 article-title: Nature of laminations and mineralization in rhinoceros enamel using histology and X‐ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies publication-title: Palaeogeography. Palaeoclimatology. Palaeoecology – volume: 300 start-page: 59 year: 2011 end-page: 66 article-title: Enamel microstructure in the fossil bovid (Majorca, Spain): implications for life‐history evolution of dwarf mammals in insular ecosystems publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – year: 1983 – year: 1964 – volume: 414 start-page: 628 year: 2001 end-page: 631 article-title: Growth processes in teeth distinguish modern humans from and earlier hominins publication-title: Nature – volume: 86 start-page: 157 year: 1991 end-page: 174 article-title: Dental development and the evolution of life history in hominidae publication-title: American Journal of Physical Anthropology – volume: 29 start-page: 697 year: 1984 end-page: 705 article-title: Variations in growth of the enamel crown in human teeth and a possible relationship between growth and enamel structure publication-title: Archives of Oral Biology – start-page: 3 year: 2009 end-page: 8 – year: 1996 – volume: 35 start-page: 427 year: 1998 end-page: 448 article-title: A histological reconstruction of dental development in the common chimpanzee, publication-title: Jorunal of Human Evolution – start-page: 309 year: 1989 end-page: 473 – volume: 220 start-page: 484 year: 2012 end-page: 495 article-title: Enamel hypoplasia in molars of sheep and goats, and its relationship to the pattern of tooth crown growth publication-title: Journal of Anatomy – volume: 16 start-page: 157 year: 1987 end-page: 172 article-title: Growth layers and incremental markings in hard tissues, a review of the literature and some preliminary observations about enamel structure of publication-title: Journal of Human Evolution – volume: 106 start-page: 20354 year: 2009 end-page: 20358 article-title: Physiological and life history strategies of a fossil large mammal in a resourcelimited environment publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 1992 – volume: 491 start-page: 1 year: 1995 end-page: 6 publication-title: Mammalian species – volume: 753 start-page: 1 year: 2004 end-page: 7 article-title: Antidorcas marsupialis publication-title: Mammalian Species – volume: 387 start-page: 211 year: 2013 end-page: 216 article-title: Occlusal enamel complexity and its implications for lophodonty, hypsodony, body mass, and diet in extinct and extant ungulates publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 294 start-page: 2193 year: 2011 end-page: 2206 article-title: Life‐history correlates of enamel microstructure in Cebidae (Platyrrhini, Primates) publication-title: Anatomical Record – volume: 317 start-page: 525 year: 1985 end-page: 527 article-title: Re‐evaluation of the age at death of immature fossil hominids publication-title: Nature – year: 2002 – year: 1988 – volume: 66 start-page: 665 year: 2004 end-page: 669 article-title: Dental incremental lines in sika deer ( ); polarized light and fluorescence microscopy of ground sections publication-title: Journal of Veterinary Medical Science – volume: 44 start-page: 283 year: 2003 end-page: 306 article-title: Enamel thickness, microstructure and development in Afropithecus turkanensis publication-title: Journal of Human Evolution – year: 1991 – volume: 90 start-page: 2648 year: 2009 article-title: PanTHERIA: a species‐level database of life history, ecology, and geography of extant and recently extinct mammals publication-title: Ecology – year: 1999 – volume: 17 start-page: 213 year: 2008 end-page: 226 article-title: New visions of dental tissue research: tooth development, chemistry, and structure publication-title: Evolutionary Anthropology |
SSID | ssj0011472 |
Score | 2.1762578 |
Snippet | Enamel incremental markings are widely used to reconstruct growth patterns of extinct mammals. However, the likely existence of an allometric relationship... |
SourceID | proquest wiley istex fao |
SourceType | Aggregation Database Publisher |
StartPage | 657 |
SubjectTerms | Artiodactyla correlation dental growth dental histology diet enamel fossils hypsodonty incremental markings laminations least squares life cycle Life history Light microscopy Mammals paleohistology phylogeny polarized light reproduction Ruminantia ruminants secretion teeth |
Title | Ecological and life‐history correlates of enamel growth in ruminants (Artiodactyla) |
URI | https://api.istex.fr/ark:/67375/WNG-KPKCB9DS-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fbij.12264 https://www.proquest.com/docview/1547301248 https://www.proquest.com/docview/1566835358 https://www.proquest.com/docview/1663602836 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSpW4AOWhLhRkJITKIVU2cexEnNrSUlqoEGVFD0jW-FVWXRK0zUpdTvwEfiO_hJm8VDgghJSDlTiynfHMfHbG3zD2dFwom9o4i5Sj3ao4QASxM1iCJLcIaNOGJOntiTyciKOz7GyFvejPwrT8EMOGG2lGY69JwcFcXlNyM0U1p2OgaH8pVosA0fuBOgphvuqYwgU2LGXHKkRRPMOb6E8CVAhL6Yte_YYxryPVxtUc3GKf-k62ESYX24vabNtvf_A3_ucobrObHQTlO-2cWWcrvrzD1tqklMu7bLJve4PIoXR8Ng3-5_cfLTHxkltK5zEjhMqrwH0JX_yMn-Nivv7MpyWfL7rYGr5FDVQObL2cwfN7bHKw_2HvMOqSL0QBxSMio9K0sLmCAmRilBUqF8a4ROIlrJGpywWggxVWAWQWrHIu5JC4MWSBCG_vs9WyKv0G4xCnKvGZDEIUwoUMvAmpMEns8IYt8hHbQDFoOEezpienCW3CULLAIk5G7FkjG_215d7QML-gUDSV6Y8nr_Txu-O93eLlqX4zYpu98HSnhZd6TImV0QMLbOLJ8Bj1h36KQOmrBdWRElFomv2tjiRWNQRicsS2GmkO_enXUChH3chR774-agoP_r3qQ3YDBy3auMJNtlrPF_4RYp3aPG4m9S8fFviy |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILb9SFAkZCqBxSZRPHTiQu9MW2u10h2hW9IGtsx2XVJYuWrMRy4ifwG_klzOSlwgEhpBysxJEdj8fzeTL-hrHn_UzZ2IZJoBx5q0IPAYTOYAmi1CKgjSuSpOOxHEzE0VlytsZetWdhan6IzuFGmlGt16Tg5JC-pOVminpO50CvsKuU0ZvUcu9dRx6FQF81XOECm5ay4RWiOJ7uVbQoHuYITGlMv_6GMi9j1crYHNxiH9pu1jEmF9vL0mzbb38wOP7vd9xmNxsUyl_X0-YOW8uLu-xanZdydY9N9m27JnIoHJ9Nff7z-4-am3jFLWX0mBFI5XPP8wI-5TN-jvv58iOfFnyxbMJr-BY1MHdgy9UMXt5nk4P9091B0ORfCDxKSARGxXFmUwUZyMgoK1QqjHGRxEtYI2OXCkAbK6wCSCxY5ZxPIXJ9SDxx3j5g68W8yDcYhzBWUZ5IL0QmnE8gNz4WJgod3rBZ2mMbKAcN57iy6clJRH4YyheYhVGPvaiEoz_X9BsaFhcUjaYS_X78Rg_fDnd3sr0TPeqxzVZ6ulHEL7pPuZXRCAts4ln3GFWI_otAkc-XVEdKBKJx8rc6kojVEIvJHtuqxNn1p91GoRx1JUe9c3hUFR7-e9Wn7Prg9HikR4fj4SN2AwdA1GGGm2y9XCzzxwh9SvOkmuG_AKD0_Ms |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIhAX_lEXChgJoXJIlU0cOxEn2u3SdsuqoqzoAcka23FZdUmqJSuxnHgEnpEnYZyfVeGAEFIOVuLIdsbj-cYZfwPwvJ9JE5swCaT1u1WhwwBDq6mEUWoI0MY1SdLbsdif8MPT5HQNXnVnYRp-iNWGm9eMer32Cn5h3SUl11NSc38M9Apc5SJMvec1eLfijiKcL1uqcE4tC9HSCvkwntWrZFAcloRL_Sf9-hvIvAxVa1szvAUfu142ISbn24tKb5tvfxA4_ucwbsPNFoOy182kuQNreXEXrjVZKZf3YLJnuhWRYWHZbOryn99_NMzES2Z8Po-Zh6isdCwv8HM-Y2fkzVef2LRg80UbXMO2fAOlRVMtZ_jyPkyGe-9394M2-0LgSD480DKOM5NKzFBEWhouU661jQRd3GgR25QjWVhuJGJi0EhrXYqR7WPiPOPtA1gvyiLfAIZhLKM8EY7zjFuXYK5dzHUUWrphsrQHGyQGhWe0rqnJSeR3YXy2wCyMevCilo26aMg3FM7PfSyaTNSH8Rs1Oh7t7mSDE3XUg81OeKpVwy-q7zMrkwnm1MSz1WNSIP9XBIu8XPg6QhAMjZO_1RGeVo2QmOjBVi3NVX86J4rkqGo5qp2Dw7rw8N-rPoXrx4OhOjoYjx7BDRo_b2IMN2G9mi_yx4R7Kv2knt-_AMmt-4M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ecological+and+life%E2%80%90history+correlates+of+enamel+growth+in+ruminants+%28Artiodactyla%29&rft.jtitle=Biological+journal+of+the+Linnean+Society&rft.au=Jordana%2C+Xavier&rft.au=Mar%C3%ADn%E2%80%90Moratalla%2C+Nekane&rft.au=Moncunill%E2%80%90Sol%C3%A9%2C+Blanca&rft.au=K%C3%B6hler%2C+Meike&rft.date=2014-08-01&rft.pub=Published+for+the+Linnean+Society+of+London+by+Blackwell+%5Betc.%5D&rft.issn=0024-4066&rft.eissn=1095-8312&rft.volume=112&rft.issue=4&rft.spage=657&rft.epage=667&rft_id=info:doi/10.1111%2Fbij.12264&rft.externalDocID=US201500018902 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-4066&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-4066&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-4066&client=summon |