detectability of the colour pattern in the aposematic firebug, Pyrrhocoris apterus: an image‐based experiment with human ‘predators’

Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red‐and‐black firebug, Pyrrhocoris apterus, by presenting images of na...

Full description

Saved in:
Bibliographic Details
Published inBiological journal of the Linnean Society Vol. 105; no. 4; pp. 806 - 816
Main Authors BOHLIN, TITTI, GAMBERALE‐STILLE, GABRIELLA, MERILAITA, SAMI, EXNEROVÁ, ALICE, ŠTYS, PAVEL, TULLBERG, BIRGITTA S
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red‐and‐black firebug, Pyrrhocoris apterus, by presenting images of natural and digitally manipulated phenotypes in their natural habitat on a computer screen to human ‘predators’, and comparing the detection times. We asked whether the natural colour pattern can be made more or less conspicuous by rearranging the spatial distribution of colour elements. Hence, we created a phenotype in which the black colour elements were moved to the body outline to test for a possible disruptive effect. In the ‘black’ and ‘red’ manipulations, we removed one of the two colours, creating two uniform colour variants. We found that some of our manipulations increased, but none reduced, the detection time significantly; this indicates that the naturally coloured firebug is highly conspicuous. The detection time varied among backgrounds and there was a significant relationship between detection time and chromatic similarity between the bug and the background for the natural and black phenotypes. Although background colour composition has an important effect on the signal, we argue that the coloration of P. apterus has evolved for high conspicuousness. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 806–816.
AbstractList Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red‐and‐black firebug, Pyrrhocoris apterus, by presenting images of natural and digitally manipulated phenotypes in their natural habitat on a computer screen to human ‘predators’, and comparing the detection times. We asked whether the natural colour pattern can be made more or less conspicuous by rearranging the spatial distribution of colour elements. Hence, we created a phenotype in which the black colour elements were moved to the body outline to test for a possible disruptive effect. In the ‘black’ and ‘red’ manipulations, we removed one of the two colours, creating two uniform colour variants. We found that some of our manipulations increased, but none reduced, the detection time significantly; this indicates that the naturally coloured firebug is highly conspicuous. The detection time varied among backgrounds and there was a significant relationship between detection time and chromatic similarity between the bug and the background for the natural and black phenotypes. Although background colour composition has an important effect on the signal, we argue that the coloration of P. apterus has evolved for high conspicuousness. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 806–816.
Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red-and-black firebug, Pyrrhocoris apterus, by presenting images of natural and digitally manipulated phenotypes in their natural habitat on a computer screen to human predators, and comparing the detection times. We asked whether the natural colour pattern can be made more or less conspicuous by rearranging the spatial distribution of colour elements. Hence, we created a phenotype in which the black colour elements were moved to the body outline to test for a possible disruptive effect. In the black and red manipulations, we removed one of the two colours, creating two uniform colour variants. We found that some of our manipulations increased, but none reduced, the detection time significantly; this indicates that the naturally coloured firebug is highly conspicuous. The detection time varied among backgrounds and there was a significant relationship between detection time and chromatic similarity between the bug and the background for the natural and black phenotypes. Although background colour composition has an important effect on the signal, we argue that the coloration of P. apterus has evolved for high conspicuousness.
Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies. In this article, we investigated the conspicuousness of the aposematic red-and-black firebug, Pyrrhocoris apterus, by presenting images of natural and digitally manipulated phenotypes in their natural habitat on a computer screen to human 'predators', and comparing the detection times. We asked whether the natural colour pattern can be made more or less conspicuous by rearranging the spatial distribution of colour elements. Hence, we created a phenotype in which the black colour elements were moved to the body outline to test for a possible disruptive effect. In the 'black' and 'red' manipulations, we removed one of the two colours, creating two uniform colour variants. We found that some of our manipulations increased, but none reduced, the detection time significantly; this indicates that the naturally coloured firebug is highly conspicuous. The detection time varied among backgrounds and there was a significant relationship between detection time and chromatic similarity between the bug and the background for the natural and black phenotypes. Although background colour composition has an important effect on the signal, we argue that the coloration of P.apterus has evolved for high conspicuousness.[copy 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 806-816.
Author BOHLIN, TITTI
MERILAITA, SAMI
TULLBERG, BIRGITTA S
EXNEROVÁ, ALICE
ŠTYS, PAVEL
GAMBERALE‐STILLE, GABRIELLA
Author_xml – sequence: 1
  fullname: BOHLIN, TITTI
– sequence: 2
  fullname: GAMBERALE‐STILLE, GABRIELLA
– sequence: 3
  fullname: MERILAITA, SAMI
– sequence: 4
  fullname: EXNEROVÁ, ALICE
– sequence: 5
  fullname: ŠTYS, PAVEL
– sequence: 6
  fullname: TULLBERG, BIRGITTA S
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-76139$$DView record from Swedish Publication Index
BookMark eNqFkc9uEzEQh1eoSKSFZ8BHJNjUf9ZrLxKHNkBpVUEQFI6Wd3c2cdisF9urJLece-IIr5cnwWlQrszF1sz3G430nSYnne0gSRDBYxLrfDEmuOCpZISOKSZkjIlk2Xj9KBkdByfJCGOapRnO8yfJqfcLHMlM0FFyX0OAKujStCZskG1QmAOqbGsHh3odArgOme6hq3vrYamDqVBjHJTD7BWabpyb28o64-M80oN_jXSMLPUMdttfpfZQI1j34MwSuoBWJszRfFhGZrf93TuodbDO77Z_niaPG916ePbvPUvu3r_7OvmQ3n66up5c3KYNEyxLJdGNZpRzBjIrpZCyYFnVlLLgUmdZUzOdVYJJWtSlIKKUwIsq58BpQ2rMBTtLXh72-hX0Q6n6eJl2G2W1UW_Ntwtl3Uz5QYmcsCLSLw507-zPAXxQS-MraFvdgR28ooXkguKC8P-iBFPKc0ZyHNE3B3RlWtgcTyBY7aWqhdq7U3t3ai9VPUhVa3V5fbP_xXx6yBsfYH3Ma_dD5YIJrr5_vFITwW7wlHxW08g_P_CNtkrPoi119yVuznAszjFmfwEsrbZN
ContentType Journal Article
Copyright 2012 The Linnean Society of London
Copyright_xml – notice: 2012 The Linnean Society of London
DBID FBQ
BSCLL
7QG
7SN
C1K
7S9
L.6
ADTPV
AOWAS
DG7
DOI 10.1111/j.1095-8312.2011.01834.x
DatabaseName AGRIS
Istex
Animal Behavior Abstracts
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
SWEPUB Stockholms universitet
DatabaseTitle Ecology Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList


AGRICOLA
Ecology Abstracts
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1095-8312
EndPage 816
ExternalDocumentID oai_DiVA_org_su_76139
BIJ1834
ark_67375_WNG_C73J0P1Q_P
US201400005500
Genre article
GroupedDBID --K
-~X
.3N
.GA
.Y3
05W
10A
1B1
1OC
1TH
1~5
23N
31~
33P
3SF
4.4
48X
4G.
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
5WD
66C
6J9
7-5
702
71M
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AACTN
AAEDT
AAESR
AAEVG
AAHHS
AAIMJ
AAJQQ
AALCJ
AALRI
AAONW
AAPQZ
AAPXW
AAQFI
AAQXK
AAUQX
AAVAP
AAWDT
AAXUO
AAZKR
ABCQN
ABDBF
ABEML
ABJNI
ABLJU
ABPTD
ABPTK
ABPVW
ABSAR
ABTAH
ABWST
ABXZS
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACIWK
ACPRK
ACSCC
ACUFI
ACUTJ
ACXME
ACXQS
ADBBV
ADEIU
ADEZT
ADFGL
ADGKP
ADGZP
ADHKW
ADIPN
ADIZJ
ADMUD
ADRTK
ADVEK
ADZOD
AEEZP
AEGXH
AEIMD
AELWJ
AEMDU
AENEX
AENZO
AEQDE
AETBJ
AEUQT
AEWNT
AFBPY
AFEBI
AFFZL
AFGWE
AFRAH
AFYAG
AFZJQ
AGQXC
AHEFC
AIAGR
AIKOY
AIWBW
AJAOE
AJBDE
AJEEA
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALXQX
AMBMR
ANFBD
APIBT
APJGH
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATUGU
AVWKF
AZBYB
AZFZN
AZQFJ
AZVAB
BAFTC
BAYMD
BCRHZ
BDRZF
BEYMZ
BFHJK
BHBCM
BNHUX
BROTX
BRXPI
BSWAC
BY8
CAG
CDBKE
CO8
COF
CS3
D-E
D-F
DAKXR
DCZOG
DM4
DPXWK
DR2
DU5
EAD
EAP
EBD
EBS
EJD
ELUNK
EMK
EST
ESX
F00
F01
F04
FBQ
FDB
FEDTE
FGOYB
FHSFR
FIRID
FLUFQ
FOEOM
FQBLK
G-S
G.N
GAUVT
GJXCC
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBUDW
KOP
KSI
KSN
LC2
LC3
LG5
LH4
LP6
LP7
LW6
MBTAY
MK4
N04
N05
NF~
NLBLG
NOMLY
NQ-
NVLIB
O-L
O66
OBOKY
ODMLO
OJZSN
OWPYF
OZT
P2P
P2W
P2X
P4D
PAFKI
PEELM
Q.N
Q11
QB0
R.K
R2-
RIWAO
RJQFR
ROL
ROX
ROZ
RPZ
RUSNO
RX1
SSZ
SUPJJ
TCN
TLC
TN5
TUS
UB1
UHS
V8K
W8V
W99
WBKPD
WIH
WNSPC
WQJ
WRC
WYUIH
XG1
XPP
YAYTL
YKOAZ
YXANX
ZMT
ZY4
~02
~IA
~KM
~WT
0R~
AAHBH
AARHZ
AAUAY
ABEJV
ABMNT
ABXVV
ACZBC
ADQBN
AGKRT
AGMDO
AKRWK
ATGXG
BSCLL
H13
OIG
AAMMB
AANHP
AAYWO
ABDFA
ABGNP
ABIME
ABPIB
ABPQP
ABVGC
ABWVN
ABZEO
ACRPL
ACUHS
ACVCV
ACYXJ
ADNBA
ADNMO
AEFGJ
AGORE
AGQPQ
AGXDD
AHGBF
AIDQK
AIDYY
AJBYB
AJDVS
AJNCP
JXSIZ
NU-
7QG
7SN
C1K
7S9
L.6
ADTPV
AOWAS
DG7
ID FETCH-LOGICAL-f3734-81afa32553e84b8788934cfb8958a44fd3a4c73829db717b8e59c65e52f1d0573
IEDL.DBID DR2
ISSN 0024-4066
1095-8312
IngestDate Thu Aug 21 06:35:42 EDT 2025
Fri Jul 11 18:35:20 EDT 2025
Fri Jul 11 05:34:13 EDT 2025
Wed Aug 20 07:25:48 EDT 2025
Wed Oct 30 09:53:41 EDT 2024
Wed Dec 27 19:19:58 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f3734-81afa32553e84b8788934cfb8958a44fd3a4c73829db717b8e59c65e52f1d0573
Notes http://dx.doi.org/10.1111/j.1095-8312.2011.01834.x
istex:0A5896E5536FBBAF39B5F4E4B8C4FA8E2B7F2283
ArticleID:BIJ1834
ark:/67375/WNG-C73J0P1Q-P
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1022563160
PQPubID 23462
PageCount 11
ParticipantIDs swepub_primary_oai_DiVA_org_su_76139
proquest_miscellaneous_2985720915
proquest_miscellaneous_1022563160
wiley_primary_10_1111_j_1095_8312_2011_01834_x_BIJ1834
istex_primary_ark_67375_WNG_C73J0P1Q_P
fao_agris_US201400005500
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle Biological journal of the Linnean Society
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Skow CD, Jakob EM. 2006. Jumping spiders attend to context during learned avoidance of aposematic prey. Behavioral Ecology 17: 34-40.
Schaefer MH, Stobbe N. 2006. Disruptive coloration provides camouflage independent of background matching. Proceedings of the Royal Society B 273: 2427-2432.
Järvi T, Sillén-Tullberg B, Wiklund C. 1981. The cost of being aposematic. An experimental study of predation on larvae of Papilio machaon by the great tit Parus major. OIKOS 36: 267-272.
Lindström L, Alatalo RV, Mappes J, Riipi M, Vertainen L. 1999. Can aposematic signals evolve by gradual change? Nature 397: 249-251.
Endler JA, Mappes J. 2004. Mixes and the conspicuousness of aposematic signals. The American Naturalist 163: 532-547.
Beatty CD, Bain RS, Sherratt TN. 2005. The evolution of aggregation in profitable and unprofitable prey. Animal Behaviour 70: 199-208.
Farine JP, Bonnard O, Brossut R, Le Quere JL. 1992. Chemistry of defensive secretions in nymphs and adults of fire bug, Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae). Journal of Chemical Ecology 18: 1673-1682.
Aldrich JR, Leal WS, Nishida R, Khrimian AP, Lee C-J, Sakuratani Y. 1997. Semiochemistry of aposematic seed bugs. Entomologia Experimentalis et Applicata 84: 127-135.
Thayer GH. 1909. Concealing-coloration in the animal kingdom: an exposition of the laws of disguise through color and pattern: being a summary of Abbott H. Thayer's discoveries. New York, NY: Macmillan.
Stevens M, Merilaita S. 2009. Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society, Series B 364: 481-488.
Exnerová A, Svádová K, Štys P, Barcalová S, Landová E, Prokopová M, Fuchs R, Socha R. 2006. Importance of colour in the reaction of passerine predators to aposematic prey: experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biological Journal of the Linnean Society 88: 143-153.
Darst CR, Cummings ME, Cannatella DC. 2006. A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences, USA 103: 5852-5857.
Ruxton GD, Sherratt TN, Speed MP. 2004. Avoiding attack. Oxford: Oxford University Press.
Marešová J, Landová E, Frynta D. 2009. What makes some species of milk snakes more attractive to humans than others? Theory of Biosciences 128: 227-235.
Bennett ATD, Cuthill IC. 1994. Ultraviolet vision in birds. What is its function? Vision Research 34: 1471-1478.
Speed MP, Ruxton GD. 2007. How bright and how nasty: explaining diversity in warning signal strength. Evolution 61: 623-635.
Merilaita S. 1998. Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London, Series B 256: 1-6.
Svádová K, Exnerová A, Štys P, Landová E, Valenta J, Fučíková A, Socha R. 2009. Role of different colours of aposematic insects in learning, memory and generalization of naïve predators. Animal Behaviour 77: 327-336.
Ojala K, Lindström L, Mappes J. 2007. Life-history constraints and warning signal expression in an arctiid moth. Functional Ecology 21: 1162-1167.
Exnerová A, Štys P, Kristin A, Volf O, Pudil M. 2003b. Birds as predators of true bugs (Heteroptera) in different habitats. Biologia (Bratislava) 58: 253-264.
Lindstedt C, Lindström L, Mappes J. 2008. Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Animal Behaviour 75: 1703-1713.
Sillén-Tullberg B. 1985. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia (Berlin) 67: 411-415.
Summers K, Clough ME. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences 98: 6227-6232.
Gamberale G, Tullberg BS. 1996. Evidence for a peak-shift in predator generalization among aposematic prey. Proceedings of the Royal Society of London, Series B 263: 1329-1334.
Remold H. 1963. Scent-glands of land bugs, their physiology and biological function. Nature 198: 764-768.
Paradise CJ, Stamp NE. 1991. Prey recognition time of praying mantids (Dictyoptera: Mantidae) and consequent survivorship of unpalatable prey (Hemiptera: Lygaeidae). Journal of Insect Behaviour 4: 265-273.
Poulton EB. 1890. The colours of animals: their meaning and use especially considered in the case of insects. London: Kegan Paul.
Sexton OJ. 1964. Differential predation by the lizard, Anolis carolinensis, upon unicoloured and polycoloured insects after an interval of no contact. Animal Behaviour 12: 101-110.
Svádová HK, Exnerová A, Kopečková M, Štys P. 2010. Predator dependent mimetic complexes: do passerine birds avoid Central European red-and-black Heteroptera? European Journal of Entomology 107: 349-355.
Alatalo R, Mappes J. 1996. Tracking down the evolution of warning signals. Nature 382: 708-710.
Blount JD, Speed MP, Ruxton GD, Stephens PA. 2009. Warning displays may function as honest signals of toxicity. Proceedings of the Royal Society B 276: 871-877.
Merilaita S, Ruxton GD. 2007. Aposematic signals and the relationship between conspicuousness and distinctiveness. Journal of Theoretical Biology 245: 268-277.
Endler JA. 1988. Frequency-dependent predation, crypsis and aposematic coloration. Philosophical Transactions of the Royal Society of London, Series B 319: 505-523.
Marples NM, Brakefield PM. 1995. Genetic variation for the rate of recruitment of novel insect prey into the diet of a bird. Biological Journal of the Linnean Society 55: 17-27.
Socha R. 1993. Pyrrhocoris apterus (Heteroptera) - an experimental model species. A review. European Journal of Entomology 90: 241-286.
Lindstedt C, Lindström L, Mappes J. 2009. Thermoregulation constrains effective warning signal expression. Evolution 63: 469-478.
Hazel WN. 2002. The environmental and genetic control of seasonal polyphenism in larval color and its adaptive significance in a swallowtail butterfly. Evolution 56: 342-348.
Sandre SL, Tammaru T, Mänd T. 2007. Size-dependent colouration in larvae of Orgyia antiqua (Lepidoptera: Lymantriidae): a trade-off between warning effect and detectability. European Journal of Entomology 104: 745-752.
Gamberale G, Tullberg BS. 1999. Experienced chicks show biased avoidance of stronger signals: an experiment with natural colour variation in live aposematic prey. Evolutionary Ecology 13: 579-589.
McIver JD, Lattin JD. 1990. Evidence for aposematism in the plant bug Lopidea nigridea Uhler (Hemiptera: Miridae: Orthotylinae). Biological Journal of the Linnean Society 40: 99-112.
Exnerová A, Landová E, Štys P, Fuchs R, Prokopová M, Cehláriková P. 2003a. Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus, Heteroptera). Biological Journal of the Linnean Society 78: 517-525.
Gamberale-Stille G. 2001. Benefit by contrast: an experiment with live aposematic prey. Behavioral Ecology 12: 768-772.
Halpin CG, Skelhorn J, Rowe C. 2008. Naïve predators and selection for rare conspicuous defended prey: the initial evolution of aposematism revisited. Animal Behaviour 75: 771-781.
Fraser S, Callahan A, Klassen D, Sherratt TN. 2007. Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society of London, Series B 274: 1325-1331.
Gittleman JL, Harvey PH. 1980. Why are distasteful prey not cryptic? Nature 286: 149-150.
Merilaita S, Tullberg BS. 2005. Constrained camouflage facilitates the evolution of conspicuous warning coloration. Evolution 59: 38-45.
Dimitrova M, Merilaita S. 2010. Prey concealment: visual background complexity and prey contrast distribution. Behavioral Ecology 21: 176-181.
Tullberg BS, Merilaita S, Wiklund C. 2005. Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London, Series B 272: 1315-1321.
Bohlin T, Tullberg BS, Merilaita S. 2008. The effect of signal appearance and distance on detection risk in an aposematic butterfly larva (Parnassius apollo). Animal Behaviour 76: 577-584.
Lindsey E, Altizer S. 2009. Sex differences in immune defenses and response to parasitism in monarch butterflies. Evolutionary Ecology 23: 607-620.
Williams L III, Evans PE, Bowers WS. 2001. Defensive chemistry of an aposematic bug, Pachycoris stallii Uhler and volatile compounds of its host plant Croton californicus Muell.-Arg. Journal of Chemical Ecology 27: 203-216.
Sherratt TN, Beatty CD. 2003. The evolution of warning signals as reliable indicators of prey defense. The American Naturalist 162: 377-389.
Brakefield PM. 1985. Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biological Journal of the Linnean Society 26: 243-267.
Tullberg BS, Gamberale-Stille G, Bohlin T, Merilaita S. 2008. Seasonal ontogenetic colour plasticity in the adult striated shieldbug Graphosoma lineatum (Heteroptera) and its effect on detectability. Behavioral Ecology and Sociobiology 62: 1389-1396.
Wilson K, Cotter SC, Reeson AF, Pell JK. 2001. Melanism and disease resistance in insects. Ecology Letters 4: 637-649.
Johansen AI, Exnerová A, Hotová Svádová K, Štys P, Gamberale-Stille G, Tullberg BS. 2010. Adaptive change in protective coloration in adult striated shieldbugs Graphosoma lineatum (Heteroptera: Pentatomidae): test of detectability of two colour forms by avian predators. Ecological Entomology 35: 602-610.
Beatty CD, Beirinckx K, Sherratt TN. 2004. The evolution of müllerian mimicry in multispecies communities. Nature 431: 63-67.
Grill CP, Moore AJ, Brodie ED III. 1997. The genetics of phenotypic plasticity in a colonizing population of the ladybird beetle, Harmonia axyridis. Heredity 78: 261-269.
Papageorgis C. 1975. Mimicry in neotropical butterflies. American Scientist 63: 522-532.
Roper TJ, Redston S. 1987. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Animal Behaviour 35: 739-747.
Cott HC. 1940. Adaptive
1987; 35
2007; 104
1997; 84
2010; 107
2004; 163
2002; 56
1996; 382
2009; 276
1992; 18
1975
2008; 76
1996; 263
2008; 75
1985; 67
19972011
1985; 26
2003a; 78
1990; 40
2003b; 58
2010; 21
1909
1990
1994; 34
1999; 13
1981; 36
2003; 162
2009; 364
1940
2005; 70
2007; 61
2001; 12
2007; 21
2008; 62
2009; 128
2001; 98
1867
2009; 23
1991; 4
2007; 245
2009; 63
1963; 198
2005; 272
2010; 35
2010; 127
1984; 43
2005; 434
2006; 17
1995; 55
2006; 273
1996; 51
2004
1993; 90
2001; 27
1998; 256
2004; 431
2009; 77
1890
2006; 88
2001; 4
2007; 274
1997; 78
1975; 63
1999; 397
1964; 12
2005; 59
1988; 319
1980; 286
2006; 103
References_xml – reference: Endler JA. 1988. Frequency-dependent predation, crypsis and aposematic coloration. Philosophical Transactions of the Royal Society of London, Series B 319: 505-523.
– reference: Remold H. 1963. Scent-glands of land bugs, their physiology and biological function. Nature 198: 764-768.
– reference: Exnerová A, Štys P, Kristin A, Volf O, Pudil M. 2003b. Birds as predators of true bugs (Heteroptera) in different habitats. Biologia (Bratislava) 58: 253-264.
– reference: Sandre SL, Tammaru T, Mänd T. 2007. Size-dependent colouration in larvae of Orgyia antiqua (Lepidoptera: Lymantriidae): a trade-off between warning effect and detectability. European Journal of Entomology 104: 745-752.
– reference: Blount JD, Speed MP, Ruxton GD, Stephens PA. 2009. Warning displays may function as honest signals of toxicity. Proceedings of the Royal Society B 276: 871-877.
– reference: Hazel WN. 2002. The environmental and genetic control of seasonal polyphenism in larval color and its adaptive significance in a swallowtail butterfly. Evolution 56: 342-348.
– reference: McIver JD, Lattin JD. 1990. Evidence for aposematism in the plant bug Lopidea nigridea Uhler (Hemiptera: Miridae: Orthotylinae). Biological Journal of the Linnean Society 40: 99-112.
– reference: Cott HC. 1940. Adaptive coloration in animals. London: Methuen.
– reference: Tullberg BS, Merilaita S, Wiklund C. 2005. Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva. Proceedings of the Royal Society of London, Series B 272: 1315-1321.
– reference: Darst CR, Cummings ME, Cannatella DC. 2006. A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs. Proceedings of the National Academy of Sciences, USA 103: 5852-5857.
– reference: Endler JA, Mappes J. 2004. Mixes and the conspicuousness of aposematic signals. The American Naturalist 163: 532-547.
– reference: Exnerová A, Landová E, Štys P, Fuchs R, Prokopová M, Cehláriková P. 2003a. Reactions of passerine birds to aposematic and non-aposematic firebugs (Pyrrhocoris apterus, Heteroptera). Biological Journal of the Linnean Society 78: 517-525.
– reference: Summers K, Clough ME. 2001. The evolution of coloration and toxicity in the poison frog family (Dendrobatidae). Proceedings of the National Academy of Sciences 98: 6227-6232.
– reference: Tullberg BS, Gamberale-Stille G, Bohlin T, Merilaita S. 2008. Seasonal ontogenetic colour plasticity in the adult striated shieldbug Graphosoma lineatum (Heteroptera) and its effect on detectability. Behavioral Ecology and Sociobiology 62: 1389-1396.
– reference: Ruxton GD, Sherratt TN, Speed MP. 2004. Avoiding attack. Oxford: Oxford University Press.
– reference: Dimitrova M, Merilaita S. 2010. Prey concealment: visual background complexity and prey contrast distribution. Behavioral Ecology 21: 176-181.
– reference: Merilaita S. 1998. Crypsis through disruptive coloration in an isopod. Proceedings of the Royal Society of London, Series B 256: 1-6.
– reference: Schaefer MH, Stobbe N. 2006. Disruptive coloration provides camouflage independent of background matching. Proceedings of the Royal Society B 273: 2427-2432.
– reference: Cuthill IC, Stevens M, Sheppard J, Maddocks T, Párraga CA, Troscianko TS. 2005. Disruptive coloration and background matching. Nature 434: 72-74.
– reference: Poulton EB. 1890. The colours of animals: their meaning and use especially considered in the case of insects. London: Kegan Paul.
– reference: Halpin CG, Skelhorn J, Rowe C. 2008. Naïve predators and selection for rare conspicuous defended prey: the initial evolution of aposematism revisited. Animal Behaviour 75: 771-781.
– reference: Papageorgis C. 1975. Mimicry in neotropical butterflies. American Scientist 63: 522-532.
– reference: Speed MP, Ruxton GD. 2007. How bright and how nasty: explaining diversity in warning signal strength. Evolution 61: 623-635.
– reference: Gamberale G, Tullberg BS. 1999. Experienced chicks show biased avoidance of stronger signals: an experiment with natural colour variation in live aposematic prey. Evolutionary Ecology 13: 579-589.
– reference: Marešová J, Landová E, Frynta D. 2009. What makes some species of milk snakes more attractive to humans than others? Theory of Biosciences 128: 227-235.
– reference: Marples NM, Brakefield PM. 1995. Genetic variation for the rate of recruitment of novel insect prey into the diet of a bird. Biological Journal of the Linnean Society 55: 17-27.
– reference: Gamberale G, Tullberg BS. 1996. Evidence for a peak-shift in predator generalization among aposematic prey. Proceedings of the Royal Society of London, Series B 263: 1329-1334.
– reference: Bezzerides AL, McGraw KJ, Parker RS, Husseini J. 2007. Elytra color as a signal of chemical defense in the Asian ladybird beetle Harmonia axyridis. Behavioral Ecology and Sociobiology 61: 1401-1408.
– reference: Ojala K, Lindström L, Mappes J. 2007. Life-history constraints and warning signal expression in an arctiid moth. Functional Ecology 21: 1162-1167.
– reference: Skow CD, Jakob EM. 2006. Jumping spiders attend to context during learned avoidance of aposematic prey. Behavioral Ecology 17: 34-40.
– reference: Lindstedt C, Lindström L, Mappes J. 2008. Hairiness and warning colours as components of antipredator defence: additive or interactive benefits? Animal Behaviour 75: 1703-1713.
– reference: Sillén-Tullberg B. 1985. Higher survival of an aposematic than of a cryptic form of a distasteful bug. Oecologia (Berlin) 67: 411-415.
– reference: Johansen AI, Exnerová A, Hotová Svádová K, Štys P, Gamberale-Stille G, Tullberg BS. 2010. Adaptive change in protective coloration in adult striated shieldbugs Graphosoma lineatum (Heteroptera: Pentatomidae): test of detectability of two colour forms by avian predators. Ecological Entomology 35: 602-610.
– reference: Lindström L, Alatalo RV, Mappes J, Riipi M, Vertainen L. 1999. Can aposematic signals evolve by gradual change? Nature 397: 249-251.
– reference: Bennett ATD, Cuthill IC. 1994. Ultraviolet vision in birds. What is its function? Vision Research 34: 1471-1478.
– reference: Socha R. 1993. Pyrrhocoris apterus (Heteroptera) - an experimental model species. A review. European Journal of Entomology 90: 241-286.
– reference: Merilaita S, Ruxton GD. 2007. Aposematic signals and the relationship between conspicuousness and distinctiveness. Journal of Theoretical Biology 245: 268-277.
– reference: Järvi T, Sillén-Tullberg B, Wiklund C. 1981. The cost of being aposematic. An experimental study of predation on larvae of Papilio machaon by the great tit Parus major. OIKOS 36: 267-272.
– reference: Aldrich JR, Leal WS, Nishida R, Khrimian AP, Lee C-J, Sakuratani Y. 1997. Semiochemistry of aposematic seed bugs. Entomologia Experimentalis et Applicata 84: 127-135.
– reference: Bohlin T, Tullberg BS, Merilaita S. 2008. The effect of signal appearance and distance on detection risk in an aposematic butterfly larva (Parnassius apollo). Animal Behaviour 76: 577-584.
– reference: Forsman A, Merilaita S. 1999. Fearful symmetry: pattern size and symmetry affects aposematic signal efficacy. Evolutionary Ecology 13: 131-140.
– reference: Seddon N, Tobias JA, Eaton M, Ödeen A. 2010. Human vision can provide a valid proxy for avian perception of sexual dichromatism. The Auk 127: 283-292.
– reference: Merilaita S, Tullberg BS. 2005. Constrained camouflage facilitates the evolution of conspicuous warning coloration. Evolution 59: 38-45.
– reference: Farine JP, Bonnard O, Brossut R, Le Quere JL. 1992. Chemistry of defensive secretions in nymphs and adults of fire bug, Pyrrhocoris apterus L. (Heteroptera, Pyrrhocoridae). Journal of Chemical Ecology 18: 1673-1682.
– reference: Lindsey E, Altizer S. 2009. Sex differences in immune defenses and response to parasitism in monarch butterflies. Evolutionary Ecology 23: 607-620.
– reference: Alatalo R, Mappes J. 1996. Tracking down the evolution of warning signals. Nature 382: 708-710.
– reference: Sherratt TN, Beatty CD. 2003. The evolution of warning signals as reliable indicators of prey defense. The American Naturalist 162: 377-389.
– reference: Gittleman JL, Harvey PH. 1980. Why are distasteful prey not cryptic? Nature 286: 149-150.
– reference: Stevens M, Merilaita S. 2009. Defining disruptive coloration and distinguishing its functions. Philosophical Transactions of the Royal Society, Series B 364: 481-488.
– reference: McLain DK. 1984. Coevolution: Müllerian mimicry between a plant bug (Miridae) and a seed bug (Lygaeidae) and the relationship between host plant and choice unpalatability. OIKOS 43: 143-148.
– reference: Williams L III, Evans PE, Bowers WS. 2001. Defensive chemistry of an aposematic bug, Pachycoris stallii Uhler and volatile compounds of its host plant Croton californicus Muell.-Arg. Journal of Chemical Ecology 27: 203-216.
– reference: Svádová HK, Exnerová A, Kopečková M, Štys P. 2010. Predator dependent mimetic complexes: do passerine birds avoid Central European red-and-black Heteroptera? European Journal of Entomology 107: 349-355.
– reference: Beatty CD, Bain RS, Sherratt TN. 2005. The evolution of aggregation in profitable and unprofitable prey. Animal Behaviour 70: 199-208.
– reference: Lindstedt C, Lindström L, Mappes J. 2009. Thermoregulation constrains effective warning signal expression. Evolution 63: 469-478.
– reference: Paradise CJ, Stamp NE. 1991. Prey recognition time of praying mantids (Dictyoptera: Mantidae) and consequent survivorship of unpalatable prey (Hemiptera: Lygaeidae). Journal of Insect Behaviour 4: 265-273.
– reference: Exnerová A, Svádová K, Štys P, Barcalová S, Landová E, Prokopová M, Fuchs R, Socha R. 2006. Importance of colour in the reaction of passerine predators to aposematic prey: experiments with mutants of Pyrrhocoris apterus (Heteroptera). Biological Journal of the Linnean Society 88: 143-153.
– reference: Svádová K, Exnerová A, Štys P, Landová E, Valenta J, Fučíková A, Socha R. 2009. Role of different colours of aposematic insects in learning, memory and generalization of naïve predators. Animal Behaviour 77: 327-336.
– reference: Roper TJ, Redston S. 1987. Conspicuousness of distasteful prey affects the strength and durability of one-trial avoidance learning. Animal Behaviour 35: 739-747.
– reference: Gamberale-Stille G. 2001. Benefit by contrast: an experiment with live aposematic prey. Behavioral Ecology 12: 768-772.
– reference: Marples NM, Roper TJ. 1996. Effects of novel colour and smell on the response of naïve chicks towards food and water. Animal Behaviour 51: 1417-1424.
– reference: Fraser S, Callahan A, Klassen D, Sherratt TN. 2007. Empirical tests of the role of disruptive coloration in reducing detectability. Proceedings of the Royal Society of London, Series B 274: 1325-1331.
– reference: Beatty CD, Beirinckx K, Sherratt TN. 2004. The evolution of müllerian mimicry in multispecies communities. Nature 431: 63-67.
– reference: Grill CP, Moore AJ, Brodie ED III. 1997. The genetics of phenotypic plasticity in a colonizing population of the ladybird beetle, Harmonia axyridis. Heredity 78: 261-269.
– reference: Thayer GH. 1909. Concealing-coloration in the animal kingdom: an exposition of the laws of disguise through color and pattern: being a summary of Abbott H. Thayer's discoveries. New York, NY: Macmillan.
– reference: Sexton OJ. 1964. Differential predation by the lizard, Anolis carolinensis, upon unicoloured and polycoloured insects after an interval of no contact. Animal Behaviour 12: 101-110.
– reference: Wilson K, Cotter SC, Reeson AF, Pell JK. 2001. Melanism and disease resistance in insects. Ecology Letters 4: 637-649.
– reference: Brakefield PM. 1985. Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis. Biological Journal of the Linnean Society 26: 243-267.
– volume: 75
  start-page: 1703
  year: 2008
  end-page: 1713
  article-title: Hairiness and warning colours as components of antipredator defence: additive or interactive benefits?
  publication-title: Animal Behaviour
– volume: 104
  start-page: 745
  year: 2007
  end-page: 752
  article-title: Size‐dependent colouration in larvae of (Lepidoptera: Lymantriidae): a trade‐off between warning effect and detectability
  publication-title: European Journal of Entomology
– volume: 245
  start-page: 268
  year: 2007
  end-page: 277
  article-title: Aposematic signals and the relationship between conspicuousness and distinctiveness
  publication-title: Journal of Theoretical Biology
– start-page: 20
  year: 1975
  end-page: 50
– volume: 34
  start-page: 1471
  year: 1994
  end-page: 1478
  article-title: Ultraviolet vision in birds. What is its function?
  publication-title: Vision Research
– volume: 98
  start-page: 6227
  year: 2001
  end-page: 6232
  article-title: The evolution of coloration and toxicity in the poison frog family (Dendrobatidae)
  publication-title: Proceedings of the National Academy of Sciences
– volume: 434
  start-page: 72
  year: 2005
  end-page: 74
  article-title: Disruptive coloration and background matching
  publication-title: Nature
– volume: 56
  start-page: 342
  year: 2002
  end-page: 348
  article-title: The environmental and genetic control of seasonal polyphenism in larval color and its adaptive significance in a swallowtail butterfly
  publication-title: Evolution
– volume: 128
  start-page: 227
  year: 2009
  end-page: 235
  article-title: What makes some species of milk snakes more attractive to humans than others?
  publication-title: Theory of Biosciences
– volume: 162
  start-page: 377
  year: 2003
  end-page: 389
  article-title: The evolution of warning signals as reliable indicators of prey defense
  publication-title: The American Naturalist
– volume: 70
  start-page: 199
  year: 2005
  end-page: 208
  article-title: The evolution of aggregation in profitable and unprofitable prey
  publication-title: Animal Behaviour
– volume: 286
  start-page: 149
  year: 1980
  end-page: 150
  article-title: Why are distasteful prey not cryptic?
  publication-title: Nature
– year: 19972011
– volume: 13
  start-page: 579
  year: 1999
  end-page: 589
  article-title: Experienced chicks show biased avoidance of stronger signals: an experiment with natural colour variation in live aposematic prey
  publication-title: Evolutionary Ecology
– volume: 77
  start-page: 327
  year: 2009
  end-page: 336
  article-title: Role of different colours of aposematic insects in learning, memory and generalization of naïve predators
  publication-title: Animal Behaviour
– volume: 21
  start-page: 176
  year: 2010
  end-page: 181
  article-title: Prey concealment: visual background complexity and prey contrast distribution
  publication-title: Behavioral Ecology
– volume: 35
  start-page: 739
  year: 1987
  end-page: 747
  article-title: Conspicuousness of distasteful prey affects the strength and durability of one‐trial avoidance learning
  publication-title: Animal Behaviour
– volume: 17
  start-page: 34
  year: 2006
  end-page: 40
  article-title: Jumping spiders attend to context during learned avoidance of aposematic prey
  publication-title: Behavioral Ecology
– year: 1940
– volume: 263
  start-page: 1329
  year: 1996
  end-page: 1334
  article-title: Evidence for a peak‐shift in predator generalization among aposematic prey
  publication-title: Proceedings of the Royal Society of London, Series B
– volume: 272
  start-page: 1315
  year: 2005
  end-page: 1321
  article-title: Aposematism and crypsis combined as a result of distance dependence: functional versatility of the colour pattern in the swallowtail butterfly larva
  publication-title: Proceedings of the Royal Society of London, Series B
– volume: 51
  start-page: 1417
  year: 1996
  end-page: 1424
  article-title: Effects of novel colour and smell on the response of naïve chicks towards food and water
  publication-title: Animal Behaviour
– volume: 397
  start-page: 249
  year: 1999
  end-page: 251
  article-title: Can aposematic signals evolve by gradual change?
  publication-title: Nature
– year: 2004
– volume: 43
  start-page: 143
  year: 1984
  end-page: 148
  article-title: Coevolution: Müllerian mimicry between a plant bug (Miridae) and a seed bug (Lygaeidae) and the relationship between host plant and choice unpalatability
  publication-title: OIKOS
– volume: 63
  start-page: 522
  year: 1975
  end-page: 532
  article-title: Mimicry in neotropical butterflies
  publication-title: American Scientist
– volume: 12
  start-page: 101
  year: 1964
  end-page: 110
  article-title: Differential predation by the lizard, , upon unicoloured and polycoloured insects after an interval of no contact
  publication-title: Animal Behaviour
– volume: 276
  start-page: 871
  year: 2009
  end-page: 877
  article-title: Warning displays may function as honest signals of toxicity
  publication-title: Proceedings of the Royal Society B
– volume: 431
  start-page: 63
  year: 2004
  end-page: 67
  article-title: The evolution of müllerian mimicry in multispecies communities
  publication-title: Nature
– volume: 256
  start-page: 1
  year: 1998
  end-page: 6
  article-title: Crypsis through disruptive coloration in an isopod
  publication-title: Proceedings of the Royal Society of London, Series B
– volume: 35
  start-page: 602
  year: 2010
  end-page: 610
  article-title: Adaptive change in protective coloration in adult striated shieldbugs (Heteroptera: Pentatomidae): test of detectability of two colour forms by avian predators
  publication-title: Ecological Entomology
– volume: 163
  start-page: 532
  year: 2004
  end-page: 547
  article-title: Mixes and the conspicuousness of aposematic signals
  publication-title: The American Naturalist
– volume: 107
  start-page: 349
  year: 2010
  end-page: 355
  article-title: Predator dependent mimetic complexes: do passerine birds avoid Central European red‐and‐black Heteroptera?
  publication-title: European Journal of Entomology
– volume: 62
  start-page: 1389
  year: 2008
  end-page: 1396
  article-title: Seasonal ontogenetic colour plasticity in the adult striated shieldbug (Heteroptera) and its effect on detectability
  publication-title: Behavioral Ecology and Sociobiology
– year: 1867
– volume: 78
  start-page: 517
  year: 2003a
  end-page: 525
  article-title: Reactions of passerine birds to aposematic and non‐aposematic firebugs ( , Heteroptera)
  publication-title: Biological Journal of the Linnean Society
– volume: 67
  start-page: 411
  year: 1985
  end-page: 415
  article-title: Higher survival of an aposematic than of a cryptic form of a distasteful bug
  publication-title: Oecologia (Berlin)
– volume: 127
  start-page: 283
  year: 2010
  end-page: 292
  article-title: Human vision can provide a valid proxy for avian perception of sexual dichromatism
  publication-title: The Auk
– volume: 61
  start-page: 623
  year: 2007
  end-page: 635
  article-title: How bright and how nasty: explaining diversity in warning signal strength
  publication-title: Evolution
– volume: 18
  start-page: 1673
  year: 1992
  end-page: 1682
  article-title: Chemistry of defensive secretions in nymphs and adults of fire bug, L. (Heteroptera, Pyrrhocoridae)
  publication-title: Journal of Chemical Ecology
– volume: 76
  start-page: 577
  year: 2008
  end-page: 584
  article-title: The effect of signal appearance and distance on detection risk in an aposematic butterfly larva ( )
  publication-title: Animal Behaviour
– volume: 21
  start-page: 1162
  year: 2007
  end-page: 1167
  article-title: Life‐history constraints and warning signal expression in an arctiid moth
  publication-title: Functional Ecology
– year: 1890
– volume: 78
  start-page: 261
  year: 1997
  end-page: 269
  article-title: The genetics of phenotypic plasticity in a colonizing population of the ladybird beetle,
  publication-title: Heredity
– volume: 90
  start-page: 241
  year: 1993
  end-page: 286
  article-title: (Heteroptera) – an experimental model species. A review
  publication-title: European Journal of Entomology
– volume: 103
  start-page: 5852
  year: 2006
  end-page: 5857
  article-title: A mechanism for diversity in warning signals: conspicuousness versus toxicity in poison frogs
  publication-title: Proceedings of the National Academy of Sciences, USA
– volume: 75
  start-page: 771
  year: 2008
  end-page: 781
  article-title: Naïve predators and selection for rare conspicuous defended prey: the initial evolution of aposematism revisited
  publication-title: Animal Behaviour
– volume: 319
  start-page: 505
  year: 1988
  end-page: 523
  article-title: Frequency‐dependent predation, crypsis and aposematic coloration
  publication-title: Philosophical Transactions of the Royal Society of London, Series B
– volume: 40
  start-page: 99
  year: 1990
  end-page: 112
  article-title: Evidence for aposematism in the plant bug Uhler (Hemiptera: Miridae: Orthotylinae)
  publication-title: Biological Journal of the Linnean Society
– volume: 274
  start-page: 1325
  year: 2007
  end-page: 1331
  article-title: Empirical tests of the role of disruptive coloration in reducing detectability
  publication-title: Proceedings of the Royal Society of London, Series B
– volume: 198
  start-page: 764
  year: 1963
  end-page: 768
  article-title: Scent‐glands of land bugs, their physiology and biological function
  publication-title: Nature
– volume: 13
  start-page: 131
  year: 1999
  end-page: 140
  article-title: Fearful symmetry: pattern size and symmetry affects aposematic signal efficacy
  publication-title: Evolutionary Ecology
– volume: 36
  start-page: 267
  year: 1981
  end-page: 272
  article-title: The cost of being aposematic. An experimental study of predation on larvae of by the great tit
  publication-title: OIKOS
– year: 1909
– volume: 84
  start-page: 127
  year: 1997
  end-page: 135
  article-title: Semiochemistry of aposematic seed bugs
  publication-title: Entomologia Experimentalis et Applicata
– volume: 382
  start-page: 708
  year: 1996
  end-page: 710
  article-title: Tracking down the evolution of warning signals
  publication-title: Nature
– volume: 12
  start-page: 768
  year: 2001
  end-page: 772
  article-title: Benefit by contrast: an experiment with live aposematic prey
  publication-title: Behavioral Ecology
– volume: 23
  start-page: 607
  year: 2009
  end-page: 620
  article-title: Sex differences in immune defenses and response to parasitism in monarch butterflies
  publication-title: Evolutionary Ecology
– volume: 273
  start-page: 2427
  year: 2006
  end-page: 2432
  article-title: Disruptive coloration provides camouflage independent of background matching
  publication-title: Proceedings of the Royal Society B
– volume: 61
  start-page: 1401
  year: 2007
  end-page: 1408
  article-title: Elytra color as a signal of chemical defense in the Asian ladybird beetle
  publication-title: Behavioral Ecology and Sociobiology
– volume: 4
  start-page: 265
  year: 1991
  end-page: 273
  article-title: Prey recognition time of praying mantids (Dictyoptera: Mantidae) and consequent survivorship of unpalatable prey (Hemiptera: Lygaeidae)
  publication-title: Journal of Insect Behaviour
– volume: 26
  start-page: 243
  year: 1985
  end-page: 267
  article-title: Polymorphic Müllerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle: a hypothesis
  publication-title: Biological Journal of the Linnean Society
– start-page: 23
  year: 1990
  end-page: 61
– volume: 4
  start-page: 637
  year: 2001
  end-page: 649
  article-title: Melanism and disease resistance in insects
  publication-title: Ecology Letters
– volume: 58
  start-page: 253
  year: 2003b
  end-page: 264
  article-title: Birds as predators of true bugs (Heteroptera) in different habitats
  publication-title: Biologia (Bratislava)
– volume: 59
  start-page: 38
  year: 2005
  end-page: 45
  article-title: Constrained camouflage facilitates the evolution of conspicuous warning coloration
  publication-title: Evolution
– volume: 364
  start-page: 481
  year: 2009
  end-page: 488
  article-title: Defining disruptive coloration and distinguishing its functions
  publication-title: Philosophical Transactions of the Royal Society, Series B
– volume: 88
  start-page: 143
  year: 2006
  end-page: 153
  article-title: Importance of colour in the reaction of passerine predators to aposematic prey: experiments with mutants of (Heteroptera)
  publication-title: Biological Journal of the Linnean Society
– volume: 27
  start-page: 203
  year: 2001
  end-page: 216
  article-title: Defensive chemistry of an aposematic bug, Uhler and volatile compounds of its host plant Muell.‐Arg
  publication-title: Journal of Chemical Ecology
– volume: 63
  start-page: 469
  year: 2009
  end-page: 478
  article-title: Thermoregulation constrains effective warning signal expression
  publication-title: Evolution
– volume: 55
  start-page: 17
  year: 1995
  end-page: 27
  article-title: Genetic variation for the rate of recruitment of novel insect prey into the diet of a bird
  publication-title: Biological Journal of the Linnean Society
SSID ssj0011472
Score 2.1042628
Snippet Crypsis and aposematism are often regarded as two opposite protective strategies. However, there is large variation in prey appearance within both strategies....
SourceID swepub
proquest
wiley
istex
fao
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 806
SubjectTerms Aposematism
color
crypsis
distance dependent
habitats
human subjects
humans
natural backgrounds
phenotype
predation
predators
prey coloration
Pyrrhocoris apterus
warning coloration
Title detectability of the colour pattern in the aposematic firebug, Pyrrhocoris apterus: an image‐based experiment with human ‘predators’
URI https://api.istex.fr/ark:/67375/WNG-C73J0P1Q-P/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1095-8312.2011.01834.x
https://www.proquest.com/docview/1022563160
https://www.proquest.com/docview/2985720915
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-76139
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQICQ2vNGEx8hII1akamLHcdi1M5ShEqPyKMzOsmOnU1UkVdJIU1b9AsQSfq9fwr1Jp1AEG8QucuxEjs_1Pde-OSbkkEvwSdZon1lmfPDXDOZBof3YWt7Voch4o1Pw-lScjPnwLDrb5D_hvzCtPsR2wQ0to5mv0cC1qXaNHOiBL1kQbpQ4AZ28g3wSU7eQH73dKkkB6483wuEcQiYhdpN6_vgg8DaZLoC04ve-2GWgraroLqFtPNLgJpld9qVNRJl16oXppJ9_k3n8P529RW5siCvttUi7Ta64_A651h5lubxLvgDeqHW4JdEqfy9pkVFglxRlseuSzhshz5xO86ZUz4uqlYulGcy6pp48o6NlWZ4XEA5PK7gPtevqOdXQ5BNMeuvVV_S4lv48k4DiIjJtThmk69W3eeksLiFU69X3e2Q8ePH-6MTfnPXgZyxm3JeBzjSD-IY5yY2EwDxhPM2MTCKpOc8s0zyNmQwTayACNdJFSSoiF4VZYFHU8T7Zy4vc7RPqUiNkqq20MuCh00aIJEMZIKYdsPPMI_swrkpPoDdq_C7EGBOpa9TteuRpM9hq3kp9KF3OMPMtjtTH05fqKGbD7ih4o0YeeXKJBgX2iJssOndFXSmMoCPBAtH9e50wkVEcAlOLPHLYQmn7RpT7Pp5-6KminKiqVjHwrcQjokHHttYvoRvgQiEuFOJCNbhQF6r_aohXD_614UNyHYrDNkfpEdlblLV7DPRrYQ7I1V7_uD84aAzsBwRDJis
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1db9MwFLXQJgQvjE-tfBpp4olUTew4Dm9jY3RlqwqssDfLie1SDZIqaaSVp_4CxCP8vf4S7k26QhG8IN6ixEnk-Fzfc6-dcwnZ4RJ8kkm0xwxLPPDXDOZBob3IGN7RgXC81ik47ovukPdOw9NlOSD8F6bRh1gl3NAy6vkaDRwT0utWDvzAk8wPllKcAE_eBkK5iQW-UUh__81KSwp4f7SUDucQNAmxvq3nj08Cf-N0DrQVv_j5OgdtdEXXKW3tkw62yMeL3jRbUc7a1TRpp59_E3r8T929Tq4tuSvdbcB2g1yy2U1yualmObtFvgDkqLG4KtGIf89o7igQTIrK2FVBJ7WWZ0bHWX1WT_KyUYylDibepBo9pYNZUXzIISIel3AdWlflM6rhlk8w7y3mX9HpGvqzLAHFPDKtCw3SxfzbpLAGswjlYv79NhkevDjZ63rLcg-eYxHjnvS10wxCHGYlTyTE5jHjqUtkHErNuTNM8zRiMohNAkFoIm0YpyK0YeB8g7qOd8hGlmd2m1CbJkKm2kgjfR5YnQgRO1QCYtoCQXctsg0Dq_QIeqOGbwMMM5G9hp1OizypR1tNGrUPpYsz3PwWhep9_6Xai1ivM_Bfq0GLPL6AgwKTxHUWndm8KhUG0aFgvuj8vU0QyzAKgKyFLbLTYGn1RlT83h-_21V5MVJlpSKgXHGLiBoeq1a_RG-AC4W4UIgLVeNCnavnhz08uvuvNz4iV7onx0fq6LD_6h65Ck2CZsvSfbIxLSr7ANjYNHlYW9kPF3go1Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LjtMwFLXQIBAb3mgyvIw0YkWqJHYch90wpcwUqMqjMDvLju1SVZNUSSNNWfULEEv4vX4J10mnUAQbxC5KnESOz_U91745F6F9ysEnaSV9oonywV8TmAeZ9BOtaSAjZmmjU_B6wI5GtH8Sn6zzn9y_MK0-xGbBzVlGM187A59pu23kQA98TsJorcQJ6KQd4JMXKQtSV8ah-3YjJQW0P1krh1OImRjbzur545PA3VhZAGt1H_xsm4K2sqLbjLZxSb1raHremTYTZdqp56qTff5N5_H_9PY6urpmrvighdoNdMHkN9Gltpbl4hb6AoDD2rg9iVb6e4ELi4FeYqeLXZd41ih55niSN2flrKhavVhsYdpV9fgJHi7K8lMB8fCkguvQuq6eYgm3nMKst1p-dS5X459FCbBbRcZNmUG8Wn6blUa7NYRqtfx-G416z98fHvnrYg--JQmhPg-llQQCHGI4VRwi85TQzCqexlxSajWRNEsIj1KtIARV3MRpxmITRzbUTtXxDtrJi9zsImwyxXgmNdc8pJGRirHUOh0gIg3Qc-uhXRhXIcfQGzF6F7kg03HXOAg89LgZbDFrtT6ELKcu9S2JxcfBC3GYkH4wDN-IoYcenaNBgEG6XRaZm6KuhAuhY0ZCFvy9TZTyOImAqsUe2m-htHmj0_vuTj4ciKIci6oWCRCu1EOsQcem1S-xG-BCOFwIhwvR4EKciWfHfXe09683PkSXh92eeHU8eHkXXYEWUZuvdA_tzMva3AcqNlcPGhv7AXd5J4Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+detectability+of+the+colour+pattern+in+the+aposematic+firebug%2C+Pyrrhocoris+apterus%3A+an+image-based+experiment+with+human+%27predators%27&rft.jtitle=Biological+journal+of+the+Linnean+Society&rft.au=BOHLIN%2C+TITTI&rft.au=GAMBERALE-STILLE%2C+GABRIELLA&rft.au=MERILAITA%2C+SAMI&rft.au=EXNEROV%C3%81%2C+ALICE&rft.date=2012-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0024-4066&rft.eissn=1095-8312&rft.volume=105&rft.issue=4&rft.spage=806&rft.epage=816&rft_id=info:doi/10.1111%2Fj.1095-8312.2011.01834.x&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C73J0P1Q_P
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-4066&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-4066&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-4066&client=summon