Late Cenozoic climate and the phylogenetic structure of regional conifer floras world‐wide
AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscil...
Saved in:
Published in | Global ecology and biogeography Vol. 24; no. 10; pp. 1136 - 1148 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Science
01.10.2015
Blackwell Publishing Ltd John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non‐random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. LOCATION: Global. METHODS: We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3–11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. RESULTS: Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. MAIN CONCLUSIONS: The climate–NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity. |
---|---|
AbstractList | AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non‐random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. LOCATION: Global. METHODS: We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3–11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. RESULTS: Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. MAIN CONCLUSIONS: The climate–NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity. Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non‐random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location Global. Methods We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3–11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions The climate–NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity. Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non-random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location Global. Methods We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3-11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions The climate-NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last greater than or equal to 11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity. Aim: Using conifers as a model system, we aim to test four hypotheses. HI: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non-random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location: Global. Methods: We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3-11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results: Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions: The climate-NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity. |
Author | Eiserhardt, Wolf L. Borchsenius, Finn Kissling, W. Daniel Sandel, Brody Svenning, Jens-Christian |
Author_xml | – sequence: 1 fullname: Eiserhardt, Wolf L – sequence: 2 fullname: Borchsenius, Finn – sequence: 3 fullname: Sandel, Brody – sequence: 4 fullname: Kissling, W. Daniel – sequence: 5 fullname: Svenning, Jens‐Christian |
BookMark | eNqNkcFu1DAQhiNUJNrCgQdAROLCJe3Yju3kCKuyRVqVSl0EByTLccZbL268tRMty6mPwDPyJGQbtAdO-OLR_N8_0sx_kh11ocMse0ngjIzvfIXNGaGMw5PsmJRCFBVl1dGhpl-fZScprQGAl1wcZ98Wusd8hl34GZzJjXd3-4bu2ry_xXxzu_NhhR32o5j6OJh-iJgHm0dcudBpn5vQOYsxtz5EnfJtiL79_fBr61p8nj212id88fc_zZYfLpazy2Lxaf5x9m5RWCYZFLymEjg1gLQlpKmM4NIww5qaUGuMtI1oGG-tgUabhjNGUdNa8JbpWpSSnWZvp7GbGO4HTL26c8mg97rDMCRFJGclFZLy_0ApJRVwQUb0zT_oOgxx3HhPQS0qIGQ_8Hyits7jTm3ieL-4UwTUPg41xqEe41Dzi_ePxeh4NTnWqQ_x4ChZJSkDNurFpLvU44-DruN3JSSTXH25mqurmlzD8kaq65F_PfFWB6VX0SX1-YYC4QCUAghgfwAqGKL2 |
CODEN | GEBIFS |
ContentType | Journal Article |
Copyright | Copyright © 2015 John Wiley & Sons Ltd. 2015 John Wiley & Sons Ltd Copyright © 2015 John Wiley & Sons Ltd |
Copyright_xml | – notice: Copyright © 2015 John Wiley & Sons Ltd. – notice: 2015 John Wiley & Sons Ltd – notice: Copyright © 2015 John Wiley & Sons Ltd |
DBID | FBQ BSCLL 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
DOI | 10.1111/geb.12350 |
DatabaseName | AGRIS Istex Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | Entomology Abstracts Ecology Abstracts Environment Abstracts Sustainability Science Abstracts Animal Behavior Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Entomology Abstracts Ecology Abstracts |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1466-8238 |
EndPage | 1148 |
ExternalDocumentID | 3799101031 GEB12350 43872303 ark_67375_WNG_N91P0TS7_P US201500220060 |
Genre | article |
GrantInformation_xml | – fundername: University of Amsterdam – fundername: Danish Council for Independent Research | Natural Sciences funderid: 12‐125079 |
GroupedDBID | -~X .3N .GA .Y3 10A 1OC 29I 31~ 33P 4.4 50Y 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAEVG AAHHS AAHKG AAISJ AAKGQ AANLZ AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABLJU ABPLY ABPPZ ABPTK ABPVW ABTLG ACAHQ ACBWZ ACCFJ ACCZN ACPOU ACPRK ACSCC ACSTJ ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADULT ADXAS ADZLD ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AESBF AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AIRJO AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANHSF ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BMNLL BMXJE BRXPI BY8 CAG CBGCD COF CS3 CUYZI CWIXF D-E D-F DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DWIUU EBS ECGQY EJD EQZMY ESX F00 F01 F04 FBQ FEDTE G-S GODZA GTFYD HF~ HGD HQ2 HTVGU HVGLF HZI IHE IX1 JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A P2W P4D Q11 QB0 ROL RX1 SA0 SUPJJ TN5 UB1 UPT VQP W99 WIH WIK WQJ WRC WXSBR XG1 ZZTAW ~KM 0R~ AAHBH ABXSQ ADACV AHBTC AHXOZ AILXY AITYG AQVQM BSCLL HGLYW IPSME OIG AAHQN AAMMB AAMNL AANHP AAYCA ABSQW ACHIC ACRPL ACYXJ ADNMO AEFGJ AEYWJ AFWVQ AGQPQ AGXDD AGYGG AIDQK AIDYY ALVPJ 7QG 7SN 7SS 7ST 7U6 C1K 7S9 L.6 |
ID | FETCH-LOGICAL-f3730-5927052c0e2d11b8c657c3c3b912fcc7fb6b35dfc0bacb5332ea2965d3a96473 |
IEDL.DBID | DR2 |
ISSN | 1466-822X |
IngestDate | Fri Jul 11 18:27:02 EDT 2025 Fri Jul 11 06:27:55 EDT 2025 Mon Jul 14 09:53:25 EDT 2025 Wed Jan 22 16:30:48 EST 2025 Thu Jul 03 22:32:20 EDT 2025 Wed Oct 30 09:52:10 EDT 2024 Wed Dec 27 18:42:33 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-f3730-5927052c0e2d11b8c657c3c3b912fcc7fb6b35dfc0bacb5332ea2965d3a96473 |
Notes | http://dx.doi.org/10.1111/geb.12350 Danish Council for Independent Research | Natural Sciences - No. 12-125079 University of Amsterdam Appendix S1 Supplementary methods. Appendix S2 Species not included in the molecular phylogenetic tree. Table S1 Taxonomic matching of the molecular phylogenetic tree and the World Checklist of Selected Plant Families. Table S2 Relative importance of predictor variables in models of conifer phylogenetic structure. Figure S1 Maps of predictor variables used to predict the phylogenetic structure of regional conifer assemblages. Figure S2 Moran's I correlograms of the residuals of ordinary least squares and spatial autoregression models used to calculate the average phylogenetic structure of regional conifer floras world-wide. Figure S3 Relationships between geographic area and conifer phylogenetic structure, conifer species richness and environmental variables across all 'botanical countries' with conifers. Figure S4 Partial responses of conifer phylogenetic structure to climate variables in the Old World and the New World. Figure S5 Partial responses of conifer phylogenetic structure to habitat and biogeographic variables. Figure S6 Partial responses of conifer phylogenetic structure to climate variables, taking into account climatic variation within 'botanical countries' - pine clade. Figure S7 Partial responses of conifer phylogenetic structure to climate variables, taking into account climatic variation within 'botanical countries' - podocarp clade. Figure S8 Partial responses of conifer phylogenetic structure to climate variables, taking into account climatic variation within 'botanical countries' - cypress clade. istex:10F90C52B7247BA00089BF370AAA636206616F70 ark:/67375/WNG-N91P0TS7-P ArticleID:GEB12350 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1709680115 |
PQPubID | 1066347 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1753426725 proquest_miscellaneous_1722180561 proquest_journals_1709680115 wiley_primary_10_1111_geb_12350_GEB12350 jstor_primary_43872303 istex_primary_ark_67375_WNG_N91P0TS7_P fao_agris_US201500220060 |
PublicationCentury | 2000 |
PublicationDate | October 2015 |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: October 2015 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Global ecology and biogeography |
PublicationTitleAlternate | Global Ecology and Biogeography |
PublicationYear | 2015 |
Publisher | Blackwell Science Blackwell Publishing Ltd John Wiley & Sons Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Science – name: Blackwell Publishing Ltd – name: John Wiley & Sons Ltd – name: Wiley Subscription Services, Inc |
References | Hortal, J., Diniz, J.A.F., Bini, L.M., Rodriguez, M.A., Baselga, A., Nogues-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748. Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. Kissling, W.D., Baker, W.J., Balslev, H., Barfod, A.S., Borchsenius, F., Dransfield, J., Govaerts, R. & Svenning, J.C. (2012b) Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21, 909-921. Haywood, A.M. & Valdes, P.J. (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218, 363-377. Blach-Overgaard, A., Kissling, W.D., Dransfield, J., Balslev, H. & Svenning, J.C. (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology, 94, 2426-2435. Condamine, F.L., Rolland, J. & Morlon, H. (2013) Macroevolutionary perspectives to environmental change. Ecology Letters, 16, 72-85. Ricklefs, R.E. (2006) Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87, S3-S13. Jansson, R., Rodríguez-Castañeda, G. & Harding, L.E. (2013) What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution, 67, 1741-1755. Kembel, S.W. & Hubbell, S.P. (2006) The phylogenetic structure of a Neotropical forest tree community. Ecology, 87, S86-S99. Palazzesi, L., Barreda, V.D., Cuitino, J.I., Guler, M.V., Telleria, M.C. & Santos, R.V. (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications, 5, 3558. Crisp, M.D. & Cook, L.G. (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192, 997-1009. Sniderman, J.M.K., Jordan, G.J. & Cowling, R.M. (2013) Fossil evidence for a hyperdiverse sclerophyll flora under a non-Mediterranean-type climate. Proceedings of the National Academy of Sciences USA, 110, 3423-3428. Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A. & Huxman, T.E. (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences USA, 106, 7063-7066. Laubach, T. & von Haeseler, A. (2007) TreeSnatcher: Coding trees from images. Bioinformatics, 23, 3384-3385. Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. Brodribb, T.J., Pittermann, J. & Coomes, D.A. (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences, 173, 673-694. Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. & Hunter, S.J. (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 29-45. Svenning, J.C., Borchsenius, F., Bjorholm, S. & Balslev, H. (2008b) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography, 35, 394-406. Wiens, J.J. (2011) The causes of species richness patterns across space, time, and clades and the role of 'ecological limits. Quarterly Review of Biology, 86, 75-96. Sigman, D.M. & Boyle, E.A. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869. Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. Farjon, A. (2010) A handbook of the world's conifers. Brill, Leiden. Pittermann, J., Stuart, S.A., Dawson, T.E. & Moreau, A. (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences USA, 109, 9647-9652. Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L. & Wiberg, D. (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg and FAO, Rome. Eiserhardt, W.L., Svenning, J.C., Baker, W.J., Couvreur, T.L.P. & Balslev, H. (2013) Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3, 1164. Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. & Svenning, J.-C. (2012a) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, 109, 7379-7384. Svenning, J.C. (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters, 6, 646-653. Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. Gillooly, J.F. & Allen, A.P. (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88, 1890-1894. Svenning, J.C., Normand, S. & Skov, F. (2008a) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography, 31, 316-326. Brunbjerg, A.K., Cavender-Bares, J., Eiserhardt, W.L., Ejrnæs, R., Aarssen, L.W., Buckley, H.J., Forey, E., Jansen, F., Kattge, J., Lane, C., Lubke, R.A., Moles, A.T., Monserrat, A.L., Peet, R.K., Roncal, J., Wootton, L. & Svenning, J.-C. (2014) Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 7, 101-114. Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59-71. Cardillo, M. (2011) Phylogenetic structure of mammal assemblages at large geographic scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2545-2553. Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R. & Renner, S. (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences USA, 109, 7793-7798. Lawing, A.M. & Matzke, N.J. (2014) Conservation paleobiology needs phylogenetic methods. Ecography, 37, 1109-1122. Swenson, N.G. (2011) The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American Journal of Botany, 98, 472-480. Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644. Rakotoarinivo, M., Blach-Overgaard, A., Baker, W.J., Dransfield, J., Moat, J. & Svenning, J.C. (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280: 20123048. Bond, W.J. (1989) The tortoise and the hare - ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36, 227-249. Braconnot, P., Otto-Bliesner, B., Harrison, S. et al. (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Climate of the Past, 3, 261-277. Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. & Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences USA, 109, 16217-16221. Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R.G., Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46. Eiserhardt, W.L., Borchsenius, F., Plum, C.M., Ordonez, A. & Svenning, J.-C. (2015) Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecology Letters, 18, 263-272. Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.C. (2011) The influence of late Quaternary climate-change velocity on species endemism. Science, 334, 660-664. Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA, 97, 9115-9120. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. 2011; 334 2013; 3 2015; 18 2010 2013; 67 2008; 17 2002; 33 2008 2008b; 35 2011; 98 2011; 192 2008; 77 1993 2011; 14 2013; 280 2012b; 21 2012; 109 1969; 165 2005; 25 2009; 12 2000; 407 2012; 173 2012a; 109 2011; 366 2011; 300 2014; 5 2013; 36 2013; 16 2004; 19 2006; 87 2003; 6 2013; 94 2000; 97 2011; 86 2014; 37 2013; 110 2007; 3 2013 2004; 218 2014; 7 2007; 88 2003; 84 1989; 36 2007; 23 2008a; 31 2009; 106 |
References_xml | – reference: Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813. – reference: Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L. & Wiberg, D. (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg and FAO, Rome. – reference: Crisp, M.D. & Cook, L.G. (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192, 997-1009. – reference: Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. & Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences USA, 109, 16217-16221. – reference: Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. – reference: Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644. – reference: Pittermann, J., Stuart, S.A., Dawson, T.E. & Moreau, A. (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences USA, 109, 9647-9652. – reference: Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137. – reference: Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59-71. – reference: Ricklefs, R.E. (2006) Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87, S3-S13. – reference: Jansson, R., Rodríguez-Castañeda, G. & Harding, L.E. (2013) What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution, 67, 1741-1755. – reference: Haywood, A.M. & Valdes, P.J. (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218, 363-377. – reference: Kembel, S.W. & Hubbell, S.P. (2006) The phylogenetic structure of a Neotropical forest tree community. Ecology, 87, S86-S99. – reference: Condamine, F.L., Rolland, J. & Morlon, H. (2013) Macroevolutionary perspectives to environmental change. Ecology Letters, 16, 72-85. – reference: Blach-Overgaard, A., Kissling, W.D., Dransfield, J., Balslev, H. & Svenning, J.C. (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology, 94, 2426-2435. – reference: Cardillo, M. (2011) Phylogenetic structure of mammal assemblages at large geographic scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2545-2553. – reference: Palazzesi, L., Barreda, V.D., Cuitino, J.I., Guler, M.V., Telleria, M.C. & Santos, R.V. (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications, 5, 3558. – reference: Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A. & Huxman, T.E. (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences USA, 106, 7063-7066. – reference: Svenning, J.C., Normand, S. & Skov, F. (2008a) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography, 31, 316-326. – reference: Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.C. (2011) The influence of late Quaternary climate-change velocity on species endemism. Science, 334, 660-664. – reference: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. & Hunter, S.J. (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 29-45. – reference: Hortal, J., Diniz, J.A.F., Bini, L.M., Rodriguez, M.A., Baselga, A., Nogues-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748. – reference: Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. – reference: Eiserhardt, W.L., Borchsenius, F., Plum, C.M., Ordonez, A. & Svenning, J.-C. (2015) Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecology Letters, 18, 263-272. – reference: Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA, 97, 9115-9120. – reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117. – reference: Farjon, A. (2010) A handbook of the world's conifers. Brill, Leiden. – reference: Brodribb, T.J., Pittermann, J. & Coomes, D.A. (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences, 173, 673-694. – reference: Sniderman, J.M.K., Jordan, G.J. & Cowling, R.M. (2013) Fossil evidence for a hyperdiverse sclerophyll flora under a non-Mediterranean-type climate. Proceedings of the National Academy of Sciences USA, 110, 3423-3428. – reference: Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R. & Renner, S. (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences USA, 109, 7793-7798. – reference: Rakotoarinivo, M., Blach-Overgaard, A., Baker, W.J., Dransfield, J., Moat, J. & Svenning, J.C. (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280: 20123048. – reference: Svenning, J.C., Borchsenius, F., Bjorholm, S. & Balslev, H. (2008b) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography, 35, 394-406. – reference: Lawing, A.M. & Matzke, N.J. (2014) Conservation paleobiology needs phylogenetic methods. Ecography, 37, 1109-1122. – reference: Svenning, J.C. (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters, 6, 646-653. – reference: Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. & Svenning, J.-C. (2012a) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, 109, 7379-7384. – reference: Eiserhardt, W.L., Svenning, J.C., Baker, W.J., Couvreur, T.L.P. & Balslev, H. (2013) Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3, 1164. – reference: Brunbjerg, A.K., Cavender-Bares, J., Eiserhardt, W.L., Ejrnæs, R., Aarssen, L.W., Buckley, H.J., Forey, E., Jansen, F., Kattge, J., Lane, C., Lubke, R.A., Moles, A.T., Monserrat, A.L., Peet, R.K., Roncal, J., Wootton, L. & Svenning, J.-C. (2014) Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 7, 101-114. – reference: Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R.G., Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46. – reference: Wiens, J.J. (2011) The causes of species richness patterns across space, time, and clades and the role of 'ecological limits. Quarterly Review of Biology, 86, 75-96. – reference: Bond, W.J. (1989) The tortoise and the hare - ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36, 227-249. – reference: Braconnot, P., Otto-Bliesner, B., Harrison, S. et al. (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Climate of the Past, 3, 261-277. – reference: Kissling, W.D., Baker, W.J., Balslev, H., Barfod, A.S., Borchsenius, F., Dransfield, J., Govaerts, R. & Svenning, J.C. (2012b) Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21, 909-921. – reference: Gillooly, J.F. & Allen, A.P. (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88, 1890-1894. – reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978. – reference: Sigman, D.M. & Boyle, E.A. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869. – reference: Laubach, T. & von Haeseler, A. (2007) TreeSnatcher: Coding trees from images. Bioinformatics, 23, 3384-3385. – reference: Swenson, N.G. (2011) The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American Journal of Botany, 98, 472-480. – volume: 334 start-page: 660 year: 2011 end-page: 664 article-title: The influence of late Quaternary climate‐change velocity on species endemism publication-title: Science – volume: 3 start-page: 1164 year: 2013 article-title: Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents publication-title: Scientific Reports – volume: 94 start-page: 2426 year: 2013 end-page: 2435 article-title: Multimillion‐year climatic effects on palm species diversity in Africa publication-title: Ecology – volume: 19 start-page: 639 year: 2004 end-page: 644 article-title: Historical biogeography, ecology and species richness publication-title: Trends in Ecology and Evolution – volume: 87 start-page: S86 year: 2006 end-page: S99 article-title: The phylogenetic structure of a Neotropical forest tree community publication-title: Ecology – volume: 37 start-page: 1109 year: 2014 end-page: 1122 article-title: Conservation paleobiology needs phylogenetic methods publication-title: Ecography – volume: 109 start-page: 9647 year: 2012 end-page: 9652 article-title: Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers publication-title: Proceedings of the National Academy of Sciences USA – volume: 33 start-page: 475 year: 2002 end-page: 505 article-title: Phylogenies and community ecology publication-title: Annual Review of Ecology and Systematics – volume: 7 start-page: 101 year: 2014 end-page: 114 article-title: Multi‐scale phylogenetic structure in coastal dune plant communities across the globe publication-title: Journal of Plant Ecology – volume: 300 start-page: 29 year: 2011 end-page: 45 article-title: A Tortonian (Late Miocene, 11.61‐7.25 Ma) global vegetation reconstruction publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology – volume: 77 start-page: 802 year: 2008 end-page: 813 article-title: A working guide to boosted regression trees publication-title: Journal of Animal Ecology – volume: 14 start-page: 741 year: 2011 end-page: 748 article-title: Ice age climate, evolutionary constraints and diversity patterns of European dung beetles publication-title: Ecology Letters – volume: 97 start-page: 9115 year: 2000 end-page: 9120 article-title: Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations publication-title: Proceedings of the National Academy of Sciences USA – volume: 5 start-page: 3558 year: 2014 article-title: Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift publication-title: Nature Communications – volume: 407 start-page: 859 year: 2000 end-page: 869 article-title: Glacial/interglacial variations in atmospheric carbon dioxide publication-title: Nature – year: 2008 – volume: 23 start-page: 3384 year: 2007 end-page: 3385 article-title: TreeSnatcher: Coding trees from images publication-title: Bioinformatics – volume: 3 start-page: 261 year: 2007 end-page: 277 article-title: Results of PMIP2 coupled simulations of the mid‐Holocene and Last Glacial Maximum – Part 1: experiments and large‐scale features publication-title: Climate of the Past – volume: 366 start-page: 2545 year: 2011 end-page: 2553 article-title: Phylogenetic structure of mammal assemblages at large geographic scales: linking phylogenetic community ecology with macroecology publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 36 start-page: 27 year: 2013 end-page: 46 article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance publication-title: Ecography – volume: 35 start-page: 394 year: 2008b end-page: 406 article-title: High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness publication-title: Journal of Biogeography – volume: 109 start-page: 16217 year: 2012 end-page: 16221 article-title: Hemisphere‐scale differences in conifer evolutionary dynamics publication-title: Proceedings of the National Academy of Sciences USA – volume: 88 start-page: 1890 year: 2007 end-page: 1894 article-title: Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory publication-title: Ecology – volume: 16 start-page: 72 year: 2013 end-page: 85 article-title: Macroevolutionary perspectives to environmental change publication-title: Ecology Letters – volume: 21 start-page: 909 year: 2012b end-page: 921 article-title: Quaternary and pre‐Quaternary historical legacies in the global distribution of a major tropical plant lineage publication-title: Global Ecology and Biogeography – volume: 218 start-page: 363 year: 2004 end-page: 377 article-title: Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere publication-title: Earth and Planetary Science Letters – volume: 280 start-page: 20123048 year: 2013 article-title: Palaeo‐precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot publication-title: Proceedings of the Royal Society B: Biological Sciences – volume: 110 start-page: 3423 year: 2013 end-page: 3428 article-title: Fossil evidence for a hyperdiverse sclerophyll flora under a non‐Mediterranean‐type climate publication-title: Proceedings of the National Academy of Sciences USA – volume: 173 start-page: 673 year: 2012 end-page: 694 article-title: Elegance versus speed: examining the competition between conifer and angiosperm trees publication-title: International Journal of Plant Sciences – volume: 106 start-page: 7063 year: 2009 end-page: 7066 article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought publication-title: Proceedings of the National Academy of Sciences USA – volume: 109 start-page: 7793 year: 2012 end-page: 7798 article-title: Distribution of living Cupressaceae reflects the breakup of Pangea publication-title: Proceedings of the National Academy of Sciences USA – volume: 17 start-page: 59 year: 2008 end-page: 71 article-title: Spatial autocorrelation and the selection of simultaneous autoregressive models publication-title: Global Ecology and Biogeography – volume: 87 start-page: S3 year: 2006 end-page: S13 article-title: Evolutionary diversification and the origin of the diversity–environment relationship publication-title: Ecology – volume: 109 start-page: 7379 year: 2012a end-page: 7384 article-title: Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide publication-title: Proceedings of the National Academy of Sciences USA – volume: 84 start-page: 3105 year: 2003 end-page: 3117 article-title: Energy, water, and broad‐scale geographic patterns of species richness publication-title: Ecology – volume: 86 start-page: 75 year: 2011 end-page: 96 article-title: The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits publication-title: Quarterly Review of Biology – volume: 31 start-page: 316 year: 2008a end-page: 326 article-title: Postglacial dispersal limitation of widespread forest plant species in nemoral Europe publication-title: Ecography – year: 2010 – volume: 25 start-page: 1965 year: 2005 end-page: 1978 article-title: Very high resolution interpolated climate surfaces for global land areas publication-title: International Journal of Climatology – start-page: 294 year: 1993 end-page: 314 – volume: 36 start-page: 227 year: 1989 end-page: 249 article-title: The tortoise and the hare – ecology of angiosperm dominance and gymnosperm persistence publication-title: Biological Journal of the Linnean Society – volume: 98 start-page: 472 year: 2011 end-page: 480 article-title: The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity publication-title: American Journal of Botany – volume: 165 start-page: 131 year: 1969 end-page: 137 article-title: Speciation in Amazonian forest birds publication-title: Science – volume: 18 start-page: 263 year: 2015 end-page: 272 article-title: Climate‐driven extinctions shape the phylogenetic structure of temperate tree floras publication-title: Ecology Letters – volume: 12 start-page: 693 year: 2009 end-page: 715 article-title: The merging of community ecology and phylogenetic biology publication-title: Ecology Letters – volume: 192 start-page: 997 year: 2011 end-page: 1009 article-title: Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms publication-title: New Phytologist – volume: 6 start-page: 646 year: 2003 end-page: 653 article-title: Deterministic Plio‐Pleistocene extinctions in the European cool‐temperate tree flora publication-title: Ecology Letters – volume: 67 start-page: 1741 year: 2013 end-page: 1755 article-title: What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses publication-title: Evolution – year: 2013 |
SSID | ssj0005456 |
Score | 2.254841 |
Snippet | AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages... Aim: Using conifers as a model system, we aim to test four hypotheses. HI: the processes that shape the phylogenetic structure of regional species assemblages... Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages... Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages... |
SourceID | proquest wiley jstor istex fao |
SourceType | Aggregation Database Publisher |
StartPage | 1136 |
SubjectTerms | adaptive radiation allopatric speciation Araucariaceae biodiversity biogeography climate Climate change community phylogenetic structure conifers Cupressaceae disequilibrium Endangered & extinct species Evolution extinction gymnosperms habitats macroecology net relatedness index new species palaeoclimate Phylogenetics phylogeny Pinaceae Podocarpaceae Trends |
Title | Late Cenozoic climate and the phylogenetic structure of regional conifer floras world‐wide |
URI | https://api.istex.fr/ark:/67375/WNG-N91P0TS7-P/fulltext.pdf https://www.jstor.org/stable/43872303 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12350 https://www.proquest.com/docview/1709680115 https://www.proquest.com/docview/1722180561 https://www.proquest.com/docview/1753426725 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqSkhc-CmsGijISAhxySqxN3YiTlBtWyFYVXQr9lDJsidOtWpJULcroCcegWfkSZhxflo4IMQtSiZO4vGMv3FmPjP2XIK20ikVp95pDFC8i4sckjitcnAgAJJAmf9-pg6OJ28X2WKDveprYVp-iGHBjSwj-GsycOtWN4z81LsxFXpSvE65WgSIPlxTRxEyaCuLVIyT4KJjFaIsnuFOnE8q2yAspR792mck_oY1byLWMOXs3WUn_cu2mSZn4_WlG8PVHzyO__k199idDory1-3Yuc82fL3Fbk0DjfW3LTaaXtfAoVjnBFYP2Mk7xKd819fNVbMEDufLT3TC1iVHNMlRb9gAulBslrf0tOsLz5uK0yYQBPw5xuCUUcOrcxyAKx5YW39-__FlWfqHbL43ne8exN0mDXEl0TvEWSF0kglIvCjT1OWgMg0SpCtSUQHoyikns7KCxFlwCC6Ft6JQWSktFcHKEdusm9pvMz6B1MlKEcGdDDyAushtqqHMS-EzYSO2jdoy9hS9nzk-ErRWQ3XCiUoi9iKo0HxuKTqMvTijjDWdmY-zfTMr0sNkfqTNYcRGQceD4ETmGqMwGbGdXumms-KVSTUGeDmB5og9Gy6j_dFPFVv7Zk0yAlESxWF_k8kkIiEtsJ2XYRQMz-9jMNS_Cfo3-9M34eDRv4s-ZrepN9ocwx22iar1TxArXbqnwSh-AcSVDR8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NQwheBgyqBQYYCSFeUiV2EycSLzB1K9BVE-tEH0CW7ThTtZGgdRWwJ34Cv5Ffwp3TZIMHhHiLkouT-Hzn75y7zwBPhZVamDQNY2ckBijOhHlmozAuM2sstzbylPn7k3R0NHgzS2Zr8KKthWn4IboFN7IM76_JwGlB-oqVHzvTp0pPDNiv0Y7ePqB6d0keRdigqS1KQ5wGZyteIcrj6W7FGaXUNQJT6tOvbU7ib2jzKmb1k87uLfjYvm6Ta3LSX56bvr34g8nxf7_nNmys0Ch72QyfO7Dmqk24PvRM1t82oTe8LINDsZUfWNyFD2OEqGzHVfVFPbfMns4_0QldFQwBJUPVYQPoRbFZ1jDULs8cq0tG-0AQ9mcYhlNSDStPcQwumCdu_fn9x5d54e7BdHc43RmFq30awlKggwiTnMso4TZyvIhjk9k0kVZYYfKYl9bK0qRGJEVpI6OtQXzJneZ5mhRCUx2s6MF6VVduC9jAxkaUKXHcCU8FKPNMx9IWWcFdwnUAW6gupY_RAaqjQ07LNVQqHKVRAM-8DtXnhqVD6bMTSlqTiXo_2VOTPD6IpodSHQTQ80ruBAcikxiIiQC2W62rlSEvVCwxxssINwfwpLuMJkj_VXTl6iXJcARKFIr9TSYRCIYkx3ae-2HQPb8Nw1D_yutf7Q1f-YP7_y76GG6MpvtjNX49efsAblLPNCmH27COanYPETqdm0feQn4BjfsROg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIhCXFgqrhhYwEkJcskrsjZ2IE7S7LVBWK7oVe6hk2Y5TrVqSqtsV0BOPwDPyJMw4Py0cEOIWJRMn8XjG3zgznwl5zq3U3AgRxs5ICFCcCbPURmFcpNZYZm3kKfM_jMX-0eDdLJmtkFdtLUzND9EtuKFleH-NBn6eFzeM_MSZPhZ6Qrx-ayCiFIf07sdr7iiEBnVpkQhhFpw1tEKYxtPdChNKoSvApdilX9uUxN_A5k3I6uec0To5bt-2TjU57S8vTd9e_UHk-J-fc4-sNViUvq4Hz32y4soNcnvoeay_bZDe8LoIDsQaL7B4QI4PAKDSHVdWV9XcUns2_4wndJlTgJMUFAcNgA-FZmnNT7u8cLQqKO4CgcifQhCOKTW0OIMRuKCetvXn9x9f5rl7SKaj4XRnP2x2aQgLDu4hTDImo4TZyLE8jk1qRSItt9xkMSuslYURhid5YSOjrQF0yZxmmUhyrrEKlvfIalmVbpPQgY0NLwQy3HFPBCizVMfS5mnOXMJ0QDZBW0qfgPtTR4cMF2uwUDgSUUBeeBWq85qjQ-mLU0xZk4n6NN5T4yyeRNNDqSYB6Xkdd4IDnkoIw3hAtlulq8aMFyqWEOGliJoD8qy7DAaIf1V06aolyjCASRiI_U0m4QCFJIN2XvpR0D2_DcJA_8rrX-0N3_iDR_8u-pTcmeyO1MHb8fstchc7ps433CaroGX3GHDTpXni7eMXZzoP8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Late+Cenozoic+climate+and+the+phylogenetic+structure+of+regional+conifer+floras+world-wide&rft.jtitle=Global+ecology+and+biogeography&rft.au=Eiserhardt%2C+Wolf+L&rft.au=Borchsenius%2C+Finn&rft.au=Sandel%2C+Brody&rft.au=Kissling%2C+WDaniel&rft.date=2015-10-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=24&rft.issue=10&rft.spage=1136&rft.epage=1148&rft_id=info:doi/10.1111%2Fgeb.12350&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon |