Late Cenozoic climate and the phylogenetic structure of regional conifer floras world‐wide

AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscil...

Full description

Saved in:
Bibliographic Details
Published inGlobal ecology and biogeography Vol. 24; no. 10; pp. 1136 - 1148
Main Authors Eiserhardt, Wolf L, Borchsenius, Finn, Sandel, Brody, Kissling, W. Daniel, Svenning, Jens‐Christian
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Science 01.10.2015
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non‐random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. LOCATION: Global. METHODS: We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3–11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. RESULTS: Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. MAIN CONCLUSIONS: The climate–NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity.
AbstractList AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non‐random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. LOCATION: Global. METHODS: We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3–11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. RESULTS: Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. MAIN CONCLUSIONS: The climate–NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity.
Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non‐random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location Global. Methods We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3–11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions The climate–NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity.
Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non-random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location Global. Methods We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3-11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions The climate-NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last greater than or equal to 11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity.
Aim: Using conifers as a model system, we aim to test four hypotheses. HI: the processes that shape the phylogenetic structure of regional species assemblages depend on climate. H2: apparent effects of current climate can be equally well explained by past climate. H3: strong Quaternary climate oscillations have led to phylogenetically non-random assemblages, either with few closely related species because isolated populations do not persist long enough to become new species or with many close relatives due to increased allopatric speciation. H4: strong late Cenozoic aridification has led to assemblages with many close relatives due to extinction and adaptive radiation. Location: Global. Methods: We used boosted regression trees to relate the net relatedness index (NRI) of regional conifer assemblages to current climate, past climate (0.021, 3 and 7.3-11.6 Ma), and gradual and cyclic late Cenozoic climate change while simultaneously accounting for habitat and biogeographic covariates. Results: Climate was the most important predictor of NRI, supporting H1. Current and past climate showed similar relationships with NRI, supporting H2. Conifer NRI was further related to Quaternary climate oscillations and gradual late Cenozoic climate trends, but the shape of the relationships supported neither H3 nor H4. Main conclusions: The climate-NRI relationships suggest that late Cenozoic climate consistently influenced the dynamics of conifer speciation, extinction and dispersal, leading to global patterns of phylogenetic assemblage structure. We deduce from the phylogenetic structure that diversification has been highest in warm or dry climates over the last ≥11.6 Myr. The fact that phylogenetic structure is related to climate trends and oscillations indicates that climate change plays an important role in addition to climate per se, but the exact underlying mechanisms remain unclear. Our results suggest that past climate needs to be taken into account when aiming to explain the phylogenetic structure of regional assemblages and other related aspects of biodiversity.
Author Eiserhardt, Wolf L.
Borchsenius, Finn
Kissling, W. Daniel
Sandel, Brody
Svenning, Jens-Christian
Author_xml – sequence: 1
  fullname: Eiserhardt, Wolf L
– sequence: 2
  fullname: Borchsenius, Finn
– sequence: 3
  fullname: Sandel, Brody
– sequence: 4
  fullname: Kissling, W. Daniel
– sequence: 5
  fullname: Svenning, Jens‐Christian
BookMark eNqNkcFu1DAQhiNUJNrCgQdAROLCJe3Yju3kCKuyRVqVSl0EByTLccZbL268tRMty6mPwDPyJGQbtAdO-OLR_N8_0sx_kh11ocMse0ngjIzvfIXNGaGMw5PsmJRCFBVl1dGhpl-fZScprQGAl1wcZ98Wusd8hl34GZzJjXd3-4bu2ry_xXxzu_NhhR32o5j6OJh-iJgHm0dcudBpn5vQOYsxtz5EnfJtiL79_fBr61p8nj212id88fc_zZYfLpazy2Lxaf5x9m5RWCYZFLymEjg1gLQlpKmM4NIww5qaUGuMtI1oGG-tgUabhjNGUdNa8JbpWpSSnWZvp7GbGO4HTL26c8mg97rDMCRFJGclFZLy_0ApJRVwQUb0zT_oOgxx3HhPQS0qIGQ_8Hyits7jTm3ieL-4UwTUPg41xqEe41Dzi_ePxeh4NTnWqQ_x4ChZJSkDNurFpLvU44-DruN3JSSTXH25mqurmlzD8kaq65F_PfFWB6VX0SX1-YYC4QCUAghgfwAqGKL2
CODEN GEBIFS
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons Ltd.
2015 John Wiley & Sons Ltd
Copyright © 2015 John Wiley & Sons Ltd
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons Ltd.
– notice: 2015 John Wiley & Sons Ltd
– notice: Copyright © 2015 John Wiley & Sons Ltd
DBID FBQ
BSCLL
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
DOI 10.1111/geb.12350
DatabaseName AGRIS
Istex
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle Entomology Abstracts
Ecology Abstracts
Environment Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Entomology Abstracts
Ecology Abstracts


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1466-8238
EndPage 1148
ExternalDocumentID 3799101031
GEB12350
43872303
ark_67375_WNG_N91P0TS7_P
US201500220060
Genre article
GrantInformation_xml – fundername: University of Amsterdam
– fundername: Danish Council for Independent Research | Natural Sciences
  funderid: 12‐125079
GroupedDBID -~X
.3N
.GA
.Y3
10A
1OC
29I
31~
33P
4.4
50Y
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAEVG
AAHHS
AAHKG
AAISJ
AAKGQ
AANLZ
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABLJU
ABPLY
ABPPZ
ABPTK
ABPVW
ABTLG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACPOU
ACPRK
ACSCC
ACSTJ
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AIRJO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANHSF
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BMNLL
BMXJE
BRXPI
BY8
CAG
CBGCD
COF
CS3
CUYZI
CWIXF
D-E
D-F
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DWIUU
EBS
ECGQY
EJD
EQZMY
ESX
F00
F01
F04
FBQ
FEDTE
G-S
GODZA
GTFYD
HF~
HGD
HQ2
HTVGU
HVGLF
HZI
IHE
IX1
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
P2W
P4D
Q11
QB0
ROL
RX1
SA0
SUPJJ
TN5
UB1
UPT
VQP
W99
WIH
WIK
WQJ
WRC
WXSBR
XG1
ZZTAW
~KM
0R~
AAHBH
ABXSQ
ADACV
AHBTC
AHXOZ
AILXY
AITYG
AQVQM
BSCLL
HGLYW
IPSME
OIG
AAHQN
AAMMB
AAMNL
AANHP
AAYCA
ABSQW
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AEYWJ
AFWVQ
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
ALVPJ
7QG
7SN
7SS
7ST
7U6
C1K
7S9
L.6
ID FETCH-LOGICAL-f3730-5927052c0e2d11b8c657c3c3b912fcc7fb6b35dfc0bacb5332ea2965d3a96473
IEDL.DBID DR2
ISSN 1466-822X
IngestDate Fri Jul 11 18:27:02 EDT 2025
Fri Jul 11 06:27:55 EDT 2025
Mon Jul 14 09:53:25 EDT 2025
Wed Jan 22 16:30:48 EST 2025
Thu Jul 03 22:32:20 EDT 2025
Wed Oct 30 09:52:10 EDT 2024
Wed Dec 27 18:42:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-f3730-5927052c0e2d11b8c657c3c3b912fcc7fb6b35dfc0bacb5332ea2965d3a96473
Notes http://dx.doi.org/10.1111/geb.12350
Danish Council for Independent Research | Natural Sciences - No. 12-125079
University of Amsterdam
Appendix S1 Supplementary methods. Appendix S2 Species not included in the molecular phylogenetic tree. Table S1 Taxonomic matching of the molecular phylogenetic tree and the World Checklist of Selected Plant Families. Table S2 Relative importance of predictor variables in models of conifer phylogenetic structure. Figure S1 Maps of predictor variables used to predict the phylogenetic structure of regional conifer assemblages. Figure S2 Moran's I correlograms of the residuals of ordinary least squares and spatial autoregression models used to calculate the average phylogenetic structure of regional conifer floras world-wide. Figure S3 Relationships between geographic area and conifer phylogenetic structure, conifer species richness and environmental variables across all 'botanical countries' with conifers. Figure S4 Partial responses of conifer phylogenetic structure to climate variables in the Old World and the New World. Figure S5 Partial responses of conifer phylogenetic structure to habitat and biogeographic variables. Figure S6 Partial responses of conifer phylogenetic structure to climate variables, taking into account climatic variation within 'botanical countries' - pine clade. Figure S7 Partial responses of conifer phylogenetic structure to climate variables, taking into account climatic variation within 'botanical countries' - podocarp clade. Figure S8 Partial responses of conifer phylogenetic structure to climate variables, taking into account climatic variation within 'botanical countries' - cypress clade.
istex:10F90C52B7247BA00089BF370AAA636206616F70
ark:/67375/WNG-N91P0TS7-P
ArticleID:GEB12350
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1709680115
PQPubID 1066347
PageCount 13
ParticipantIDs proquest_miscellaneous_1753426725
proquest_miscellaneous_1722180561
proquest_journals_1709680115
wiley_primary_10_1111_geb_12350_GEB12350
jstor_primary_43872303
istex_primary_ark_67375_WNG_N91P0TS7_P
fao_agris_US201500220060
PublicationCentury 2000
PublicationDate October 2015
PublicationDateYYYYMMDD 2015-10-01
PublicationDate_xml – month: 10
  year: 2015
  text: October 2015
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Global ecology and biogeography
PublicationTitleAlternate Global Ecology and Biogeography
PublicationYear 2015
Publisher Blackwell Science
Blackwell Publishing Ltd
John Wiley & Sons Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Science
– name: Blackwell Publishing Ltd
– name: John Wiley & Sons Ltd
– name: Wiley Subscription Services, Inc
References Hortal, J., Diniz, J.A.F., Bini, L.M., Rodriguez, M.A., Baselga, A., Nogues-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748.
Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137.
Kissling, W.D., Baker, W.J., Balslev, H., Barfod, A.S., Borchsenius, F., Dransfield, J., Govaerts, R. & Svenning, J.C. (2012b) Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21, 909-921.
Haywood, A.M. & Valdes, P.J. (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218, 363-377.
Blach-Overgaard, A., Kissling, W.D., Dransfield, J., Balslev, H. & Svenning, J.C. (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology, 94, 2426-2435.
Condamine, F.L., Rolland, J. & Morlon, H. (2013) Macroevolutionary perspectives to environmental change. Ecology Letters, 16, 72-85.
Ricklefs, R.E. (2006) Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87, S3-S13.
Jansson, R., Rodríguez-Castañeda, G. & Harding, L.E. (2013) What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution, 67, 1741-1755.
Kembel, S.W. & Hubbell, S.P. (2006) The phylogenetic structure of a Neotropical forest tree community. Ecology, 87, S86-S99.
Palazzesi, L., Barreda, V.D., Cuitino, J.I., Guler, M.V., Telleria, M.C. & Santos, R.V. (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications, 5, 3558.
Crisp, M.D. & Cook, L.G. (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192, 997-1009.
Sniderman, J.M.K., Jordan, G.J. & Cowling, R.M. (2013) Fossil evidence for a hyperdiverse sclerophyll flora under a non-Mediterranean-type climate. Proceedings of the National Academy of Sciences USA, 110, 3423-3428.
Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A. & Huxman, T.E. (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences USA, 106, 7063-7066.
Laubach, T. & von Haeseler, A. (2007) TreeSnatcher: Coding trees from images. Bioinformatics, 23, 3384-3385.
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
Brodribb, T.J., Pittermann, J. & Coomes, D.A. (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences, 173, 673-694.
Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. & Hunter, S.J. (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 29-45.
Svenning, J.C., Borchsenius, F., Bjorholm, S. & Balslev, H. (2008b) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography, 35, 394-406.
Wiens, J.J. (2011) The causes of species richness patterns across space, time, and clades and the role of 'ecological limits. Quarterly Review of Biology, 86, 75-96.
Sigman, D.M. & Boyle, E.A. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869.
Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
Farjon, A. (2010) A handbook of the world's conifers. Brill, Leiden.
Pittermann, J., Stuart, S.A., Dawson, T.E. & Moreau, A. (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences USA, 109, 9647-9652.
Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L. & Wiberg, D. (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg and FAO, Rome.
Eiserhardt, W.L., Svenning, J.C., Baker, W.J., Couvreur, T.L.P. & Balslev, H. (2013) Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3, 1164.
Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. & Svenning, J.-C. (2012a) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, 109, 7379-7384.
Svenning, J.C. (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters, 6, 646-653.
Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
Gillooly, J.F. & Allen, A.P. (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88, 1890-1894.
Svenning, J.C., Normand, S. & Skov, F. (2008a) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography, 31, 316-326.
Brunbjerg, A.K., Cavender-Bares, J., Eiserhardt, W.L., Ejrnæs, R., Aarssen, L.W., Buckley, H.J., Forey, E., Jansen, F., Kattge, J., Lane, C., Lubke, R.A., Moles, A.T., Monserrat, A.L., Peet, R.K., Roncal, J., Wootton, L. & Svenning, J.-C. (2014) Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 7, 101-114.
Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59-71.
Cardillo, M. (2011) Phylogenetic structure of mammal assemblages at large geographic scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2545-2553.
Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R. & Renner, S. (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences USA, 109, 7793-7798.
Lawing, A.M. & Matzke, N.J. (2014) Conservation paleobiology needs phylogenetic methods. Ecography, 37, 1109-1122.
Swenson, N.G. (2011) The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American Journal of Botany, 98, 472-480.
Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644.
Rakotoarinivo, M., Blach-Overgaard, A., Baker, W.J., Dransfield, J., Moat, J. & Svenning, J.C. (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280: 20123048.
Bond, W.J. (1989) The tortoise and the hare - ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36, 227-249.
Braconnot, P., Otto-Bliesner, B., Harrison, S. et al. (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Climate of the Past, 3, 261-277.
Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. & Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences USA, 109, 16217-16221.
Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R.G., Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.
Eiserhardt, W.L., Borchsenius, F., Plum, C.M., Ordonez, A. & Svenning, J.-C. (2015) Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecology Letters, 18, 263-272.
Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.C. (2011) The influence of late Quaternary climate-change velocity on species endemism. Science, 334, 660-664.
Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA, 97, 9115-9120.
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
2011; 334
2013; 3
2015; 18
2010
2013; 67
2008; 17
2002; 33
2008
2008b; 35
2011; 98
2011; 192
2008; 77
1993
2011; 14
2013; 280
2012b; 21
2012; 109
1969; 165
2005; 25
2009; 12
2000; 407
2012; 173
2012a; 109
2011; 366
2011; 300
2014; 5
2013; 36
2013; 16
2004; 19
2006; 87
2003; 6
2013; 94
2000; 97
2011; 86
2014; 37
2013; 110
2007; 3
2013
2004; 218
2014; 7
2007; 88
2003; 84
1989; 36
2007; 23
2008a; 31
2009; 106
References_xml – reference: Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.
– reference: Fischer, G., Nachtergaele, F., Prieler, S., van Velthuizen, H.T., Verelst, L. & Wiberg, D. (2008) Global agro-ecological zones assessment for agriculture (GAEZ 2008). IIASA, Laxenburg and FAO, Rome.
– reference: Crisp, M.D. & Cook, L.G. (2011) Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytologist, 192, 997-1009.
– reference: Leslie, A.B., Beaulieu, J.M., Rai, H.S., Crane, P.R., Donoghue, M.J. & Mathews, S. (2012) Hemisphere-scale differences in conifer evolutionary dynamics. Proceedings of the National Academy of Sciences USA, 109, 16217-16221.
– reference: Cavender-Bares, J., Kozak, K.H., Fine, P.V.A. & Kembel, S.W. (2009) The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715.
– reference: Wiens, J.J. & Donoghue, M.J. (2004) Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644.
– reference: Pittermann, J., Stuart, S.A., Dawson, T.E. & Moreau, A. (2012) Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers. Proceedings of the National Academy of Sciences USA, 109, 9647-9652.
– reference: Haffer, J. (1969) Speciation in Amazonian forest birds. Science, 165, 131-137.
– reference: Kissling, W.D. & Carl, G. (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17, 59-71.
– reference: Ricklefs, R.E. (2006) Evolutionary diversification and the origin of the diversity-environment relationship. Ecology, 87, S3-S13.
– reference: Jansson, R., Rodríguez-Castañeda, G. & Harding, L.E. (2013) What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses. Evolution, 67, 1741-1755.
– reference: Haywood, A.M. & Valdes, P.J. (2004) Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth and Planetary Science Letters, 218, 363-377.
– reference: Kembel, S.W. & Hubbell, S.P. (2006) The phylogenetic structure of a Neotropical forest tree community. Ecology, 87, S86-S99.
– reference: Condamine, F.L., Rolland, J. & Morlon, H. (2013) Macroevolutionary perspectives to environmental change. Ecology Letters, 16, 72-85.
– reference: Blach-Overgaard, A., Kissling, W.D., Dransfield, J., Balslev, H. & Svenning, J.C. (2013) Multimillion-year climatic effects on palm species diversity in Africa. Ecology, 94, 2426-2435.
– reference: Cardillo, M. (2011) Phylogenetic structure of mammal assemblages at large geographic scales: linking phylogenetic community ecology with macroecology. Philosophical Transactions of the Royal Society B: Biological Sciences, 366, 2545-2553.
– reference: Palazzesi, L., Barreda, V.D., Cuitino, J.I., Guler, M.V., Telleria, M.C. & Santos, R.V. (2014) Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift. Nature Communications, 5, 3558.
– reference: Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G.A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A. & Huxman, T.E. (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences USA, 106, 7063-7066.
– reference: Svenning, J.C., Normand, S. & Skov, F. (2008a) Postglacial dispersal limitation of widespread forest plant species in nemoral Europe. Ecography, 31, 316-326.
– reference: Sandel, B., Arge, L., Dalsgaard, B., Davies, R.G., Gaston, K.J., Sutherland, W.J. & Svenning, J.C. (2011) The influence of late Quaternary climate-change velocity on species endemism. Science, 334, 660-664.
– reference: Pound, M.J., Haywood, A.M., Salzmann, U., Riding, J.B., Lunt, D.J. & Hunter, S.J. (2011) A Tortonian (Late Miocene, 11.61-7.25 Ma) global vegetation reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 300, 29-45.
– reference: Hortal, J., Diniz, J.A.F., Bini, L.M., Rodriguez, M.A., Baselga, A., Nogues-Bravo, D., Rangel, T.F., Hawkins, B.A. & Lobo, J.M. (2011) Ice age climate, evolutionary constraints and diversity patterns of European dung beetles. Ecology Letters, 14, 741-748.
– reference: Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002) Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505.
– reference: Eiserhardt, W.L., Borchsenius, F., Plum, C.M., Ordonez, A. & Svenning, J.-C. (2015) Climate-driven extinctions shape the phylogenetic structure of temperate tree floras. Ecology Letters, 18, 263-272.
– reference: Dynesius, M. & Jansson, R. (2000) Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences USA, 97, 9115-9120.
– reference: Hawkins, B.A., Field, R., Cornell, H.V., Currie, D.J., Guegan, J.F., Kaufman, D.M., Kerr, J.T., Mittelbach, G.G., Oberdorff, T., O'Brien, E.M., Porter, E.E. & Turner, J.R.G. (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84, 3105-3117.
– reference: Farjon, A. (2010) A handbook of the world's conifers. Brill, Leiden.
– reference: Brodribb, T.J., Pittermann, J. & Coomes, D.A. (2012) Elegance versus speed: examining the competition between conifer and angiosperm trees. International Journal of Plant Sciences, 173, 673-694.
– reference: Sniderman, J.M.K., Jordan, G.J. & Cowling, R.M. (2013) Fossil evidence for a hyperdiverse sclerophyll flora under a non-Mediterranean-type climate. Proceedings of the National Academy of Sciences USA, 110, 3423-3428.
– reference: Mao, K., Milne, R.I., Zhang, L., Peng, Y., Liu, J., Thomas, P., Mill, R.R. & Renner, S. (2012) Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences USA, 109, 7793-7798.
– reference: Rakotoarinivo, M., Blach-Overgaard, A., Baker, W.J., Dransfield, J., Moat, J. & Svenning, J.C. (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280: 20123048.
– reference: Svenning, J.C., Borchsenius, F., Bjorholm, S. & Balslev, H. (2008b) High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography, 35, 394-406.
– reference: Lawing, A.M. & Matzke, N.J. (2014) Conservation paleobiology needs phylogenetic methods. Ecography, 37, 1109-1122.
– reference: Svenning, J.C. (2003) Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters, 6, 646-653.
– reference: Kissling, W.D., Eiserhardt, W.L., Baker, W.J., Borchsenius, F., Couvreur, T.L.P., Balslev, H. & Svenning, J.-C. (2012a) Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide. Proceedings of the National Academy of Sciences USA, 109, 7379-7384.
– reference: Eiserhardt, W.L., Svenning, J.C., Baker, W.J., Couvreur, T.L.P. & Balslev, H. (2013) Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3, 1164.
– reference: Brunbjerg, A.K., Cavender-Bares, J., Eiserhardt, W.L., Ejrnæs, R., Aarssen, L.W., Buckley, H.J., Forey, E., Jansen, F., Kattge, J., Lane, C., Lubke, R.A., Moles, A.T., Monserrat, A.L., Peet, R.K., Roncal, J., Wootton, L. & Svenning, J.-C. (2014) Multi-scale phylogenetic structure in coastal dune plant communities across the globe. Journal of Plant Ecology, 7, 101-114.
– reference: Dormann, C.F., Elith, J., Bacher, S., Buchmann, C., Carl, G., Carre, G., Marquez, J.R.G., Gruber, B., Lafourcade, B., Leitao, P.J., Munkemuller, T., McClean, C., Osborne, P.E., Reineking, B., Schroder, B., Skidmore, A.K., Zurell, D. & Lautenbach, S. (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27-46.
– reference: Wiens, J.J. (2011) The causes of species richness patterns across space, time, and clades and the role of 'ecological limits. Quarterly Review of Biology, 86, 75-96.
– reference: Bond, W.J. (1989) The tortoise and the hare - ecology of angiosperm dominance and gymnosperm persistence. Biological Journal of the Linnean Society, 36, 227-249.
– reference: Braconnot, P., Otto-Bliesner, B., Harrison, S. et al. (2007) Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum - Part 1: experiments and large-scale features. Climate of the Past, 3, 261-277.
– reference: Kissling, W.D., Baker, W.J., Balslev, H., Barfod, A.S., Borchsenius, F., Dransfield, J., Govaerts, R. & Svenning, J.C. (2012b) Quaternary and pre-Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography, 21, 909-921.
– reference: Gillooly, J.F. & Allen, A.P. (2007) Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory. Ecology, 88, 1890-1894.
– reference: Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. & Jarvis, A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
– reference: Sigman, D.M. & Boyle, E.A. (2000) Glacial/interglacial variations in atmospheric carbon dioxide. Nature, 407, 859-869.
– reference: Laubach, T. & von Haeseler, A. (2007) TreeSnatcher: Coding trees from images. Bioinformatics, 23, 3384-3385.
– reference: Swenson, N.G. (2011) The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. American Journal of Botany, 98, 472-480.
– volume: 334
  start-page: 660
  year: 2011
  end-page: 664
  article-title: The influence of late Quaternary climate‐change velocity on species endemism
  publication-title: Science
– volume: 3
  start-page: 1164
  year: 2013
  article-title: Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents
  publication-title: Scientific Reports
– volume: 94
  start-page: 2426
  year: 2013
  end-page: 2435
  article-title: Multimillion‐year climatic effects on palm species diversity in Africa
  publication-title: Ecology
– volume: 19
  start-page: 639
  year: 2004
  end-page: 644
  article-title: Historical biogeography, ecology and species richness
  publication-title: Trends in Ecology and Evolution
– volume: 87
  start-page: S86
  year: 2006
  end-page: S99
  article-title: The phylogenetic structure of a Neotropical forest tree community
  publication-title: Ecology
– volume: 37
  start-page: 1109
  year: 2014
  end-page: 1122
  article-title: Conservation paleobiology needs phylogenetic methods
  publication-title: Ecography
– volume: 109
  start-page: 9647
  year: 2012
  end-page: 9652
  article-title: Cenozoic climate change shaped the evolutionary ecophysiology of the Cupressaceae conifers
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 33
  start-page: 475
  year: 2002
  end-page: 505
  article-title: Phylogenies and community ecology
  publication-title: Annual Review of Ecology and Systematics
– volume: 7
  start-page: 101
  year: 2014
  end-page: 114
  article-title: Multi‐scale phylogenetic structure in coastal dune plant communities across the globe
  publication-title: Journal of Plant Ecology
– volume: 300
  start-page: 29
  year: 2011
  end-page: 45
  article-title: A Tortonian (Late Miocene, 11.61‐7.25 Ma) global vegetation reconstruction
  publication-title: Palaeogeography, Palaeoclimatology, Palaeoecology
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  article-title: A working guide to boosted regression trees
  publication-title: Journal of Animal Ecology
– volume: 14
  start-page: 741
  year: 2011
  end-page: 748
  article-title: Ice age climate, evolutionary constraints and diversity patterns of European dung beetles
  publication-title: Ecology Letters
– volume: 97
  start-page: 9115
  year: 2000
  end-page: 9120
  article-title: Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 5
  start-page: 3558
  year: 2014
  article-title: Fossil pollen records indicate that Patagonian desertification was not solely a consequence of Andean uplift
  publication-title: Nature Communications
– volume: 407
  start-page: 859
  year: 2000
  end-page: 869
  article-title: Glacial/interglacial variations in atmospheric carbon dioxide
  publication-title: Nature
– year: 2008
– volume: 23
  start-page: 3384
  year: 2007
  end-page: 3385
  article-title: TreeSnatcher: Coding trees from images
  publication-title: Bioinformatics
– volume: 3
  start-page: 261
  year: 2007
  end-page: 277
  article-title: Results of PMIP2 coupled simulations of the mid‐Holocene and Last Glacial Maximum – Part 1: experiments and large‐scale features
  publication-title: Climate of the Past
– volume: 366
  start-page: 2545
  year: 2011
  end-page: 2553
  article-title: Phylogenetic structure of mammal assemblages at large geographic scales: linking phylogenetic community ecology with macroecology
  publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences
– volume: 36
  start-page: 27
  year: 2013
  end-page: 46
  article-title: Collinearity: a review of methods to deal with it and a simulation study evaluating their performance
  publication-title: Ecography
– volume: 35
  start-page: 394
  year: 2008b
  end-page: 406
  article-title: High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness
  publication-title: Journal of Biogeography
– volume: 109
  start-page: 16217
  year: 2012
  end-page: 16221
  article-title: Hemisphere‐scale differences in conifer evolutionary dynamics
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 88
  start-page: 1890
  year: 2007
  end-page: 1894
  article-title: Linking global patterns in biodiversity to evolutionary dynamics using metabolic theory
  publication-title: Ecology
– volume: 16
  start-page: 72
  year: 2013
  end-page: 85
  article-title: Macroevolutionary perspectives to environmental change
  publication-title: Ecology Letters
– volume: 21
  start-page: 909
  year: 2012b
  end-page: 921
  article-title: Quaternary and pre‐Quaternary historical legacies in the global distribution of a major tropical plant lineage
  publication-title: Global Ecology and Biogeography
– volume: 218
  start-page: 363
  year: 2004
  end-page: 377
  article-title: Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere
  publication-title: Earth and Planetary Science Letters
– volume: 280
  start-page: 20123048
  year: 2013
  article-title: Palaeo‐precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 110
  start-page: 3423
  year: 2013
  end-page: 3428
  article-title: Fossil evidence for a hyperdiverse sclerophyll flora under a non‐Mediterranean‐type climate
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 173
  start-page: 673
  year: 2012
  end-page: 694
  article-title: Elegance versus speed: examining the competition between conifer and angiosperm trees
  publication-title: International Journal of Plant Sciences
– volume: 106
  start-page: 7063
  year: 2009
  end-page: 7066
  article-title: Temperature sensitivity of drought‐induced tree mortality portends increased regional die‐off under global‐change‐type drought
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 109
  start-page: 7793
  year: 2012
  end-page: 7798
  article-title: Distribution of living Cupressaceae reflects the breakup of Pangea
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 17
  start-page: 59
  year: 2008
  end-page: 71
  article-title: Spatial autocorrelation and the selection of simultaneous autoregressive models
  publication-title: Global Ecology and Biogeography
– volume: 87
  start-page: S3
  year: 2006
  end-page: S13
  article-title: Evolutionary diversification and the origin of the diversity–environment relationship
  publication-title: Ecology
– volume: 109
  start-page: 7379
  year: 2012a
  end-page: 7384
  article-title: Cenozoic imprints on the phylogenetic structure of palm species assemblages worldwide
  publication-title: Proceedings of the National Academy of Sciences USA
– volume: 84
  start-page: 3105
  year: 2003
  end-page: 3117
  article-title: Energy, water, and broad‐scale geographic patterns of species richness
  publication-title: Ecology
– volume: 86
  start-page: 75
  year: 2011
  end-page: 96
  article-title: The causes of species richness patterns across space, time, and clades and the role of ‘ecological limits
  publication-title: Quarterly Review of Biology
– volume: 31
  start-page: 316
  year: 2008a
  end-page: 326
  article-title: Postglacial dispersal limitation of widespread forest plant species in nemoral Europe
  publication-title: Ecography
– year: 2010
– volume: 25
  start-page: 1965
  year: 2005
  end-page: 1978
  article-title: Very high resolution interpolated climate surfaces for global land areas
  publication-title: International Journal of Climatology
– start-page: 294
  year: 1993
  end-page: 314
– volume: 36
  start-page: 227
  year: 1989
  end-page: 249
  article-title: The tortoise and the hare – ecology of angiosperm dominance and gymnosperm persistence
  publication-title: Biological Journal of the Linnean Society
– volume: 98
  start-page: 472
  year: 2011
  end-page: 480
  article-title: The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity
  publication-title: American Journal of Botany
– volume: 165
  start-page: 131
  year: 1969
  end-page: 137
  article-title: Speciation in Amazonian forest birds
  publication-title: Science
– volume: 18
  start-page: 263
  year: 2015
  end-page: 272
  article-title: Climate‐driven extinctions shape the phylogenetic structure of temperate tree floras
  publication-title: Ecology Letters
– volume: 12
  start-page: 693
  year: 2009
  end-page: 715
  article-title: The merging of community ecology and phylogenetic biology
  publication-title: Ecology Letters
– volume: 192
  start-page: 997
  year: 2011
  end-page: 1009
  article-title: Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms
  publication-title: New Phytologist
– volume: 6
  start-page: 646
  year: 2003
  end-page: 653
  article-title: Deterministic Plio‐Pleistocene extinctions in the European cool‐temperate tree flora
  publication-title: Ecology Letters
– volume: 67
  start-page: 1741
  year: 2013
  end-page: 1755
  article-title: What can multiple phylogenies say about the latitudinal diversity gradient? A new look at the tropical conservatism, out of the tropics, and diversification rate hypotheses
  publication-title: Evolution
– year: 2013
SSID ssj0005456
Score 2.254841
Snippet AIM: Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages...
Aim: Using conifers as a model system, we aim to test four hypotheses. HI: the processes that shape the phylogenetic structure of regional species assemblages...
Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages...
Aim Using conifers as a model system, we aim to test four hypotheses. H1: the processes that shape the phylogenetic structure of regional species assemblages...
SourceID proquest
wiley
jstor
istex
fao
SourceType Aggregation Database
Publisher
StartPage 1136
SubjectTerms adaptive radiation
allopatric speciation
Araucariaceae
biodiversity
biogeography
climate
Climate change
community phylogenetic structure
conifers
Cupressaceae
disequilibrium
Endangered & extinct species
Evolution
extinction
gymnosperms
habitats
macroecology
net relatedness index
new species
palaeoclimate
Phylogenetics
phylogeny
Pinaceae
Podocarpaceae
Trends
Title Late Cenozoic climate and the phylogenetic structure of regional conifer floras world‐wide
URI https://api.istex.fr/ark:/67375/WNG-N91P0TS7-P/fulltext.pdf
https://www.jstor.org/stable/43872303
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgeb.12350
https://www.proquest.com/docview/1709680115
https://www.proquest.com/docview/1722180561
https://www.proquest.com/docview/1753426725
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqSkhc-CmsGijISAhxySqxN3YiTlBtWyFYVXQr9lDJsidOtWpJULcroCcegWfkSZhxflo4IMQtSiZO4vGMv3FmPjP2XIK20ikVp95pDFC8i4sckjitcnAgAJJAmf9-pg6OJ28X2WKDveprYVp-iGHBjSwj-GsycOtWN4z81LsxFXpSvE65WgSIPlxTRxEyaCuLVIyT4KJjFaIsnuFOnE8q2yAspR792mck_oY1byLWMOXs3WUn_cu2mSZn4_WlG8PVHzyO__k199idDory1-3Yuc82fL3Fbk0DjfW3LTaaXtfAoVjnBFYP2Mk7xKd819fNVbMEDufLT3TC1iVHNMlRb9gAulBslrf0tOsLz5uK0yYQBPw5xuCUUcOrcxyAKx5YW39-__FlWfqHbL43ne8exN0mDXEl0TvEWSF0kglIvCjT1OWgMg0SpCtSUQHoyikns7KCxFlwCC6Ft6JQWSktFcHKEdusm9pvMz6B1MlKEcGdDDyAushtqqHMS-EzYSO2jdoy9hS9nzk-ErRWQ3XCiUoi9iKo0HxuKTqMvTijjDWdmY-zfTMr0sNkfqTNYcRGQceD4ETmGqMwGbGdXumms-KVSTUGeDmB5og9Gy6j_dFPFVv7Zk0yAlESxWF_k8kkIiEtsJ2XYRQMz-9jMNS_Cfo3-9M34eDRv4s-ZrepN9ocwx22iar1TxArXbqnwSh-AcSVDR8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5NQwheBgyqBQYYCSFeUiV2EycSLzB1K9BVE-tEH0CW7ThTtZGgdRWwJ34Cv5Ffwp3TZIMHhHiLkouT-Hzn75y7zwBPhZVamDQNY2ckBijOhHlmozAuM2sstzbylPn7k3R0NHgzS2Zr8KKthWn4IboFN7IM76_JwGlB-oqVHzvTp0pPDNiv0Y7ePqB6d0keRdigqS1KQ5wGZyteIcrj6W7FGaXUNQJT6tOvbU7ib2jzKmb1k87uLfjYvm6Ta3LSX56bvr34g8nxf7_nNmys0Ch72QyfO7Dmqk24PvRM1t82oTe8LINDsZUfWNyFD2OEqGzHVfVFPbfMns4_0QldFQwBJUPVYQPoRbFZ1jDULs8cq0tG-0AQ9mcYhlNSDStPcQwumCdu_fn9x5d54e7BdHc43RmFq30awlKggwiTnMso4TZyvIhjk9k0kVZYYfKYl9bK0qRGJEVpI6OtQXzJneZ5mhRCUx2s6MF6VVduC9jAxkaUKXHcCU8FKPNMx9IWWcFdwnUAW6gupY_RAaqjQ07LNVQqHKVRAM-8DtXnhqVD6bMTSlqTiXo_2VOTPD6IpodSHQTQ80ruBAcikxiIiQC2W62rlSEvVCwxxssINwfwpLuMJkj_VXTl6iXJcARKFIr9TSYRCIYkx3ae-2HQPb8Nw1D_yutf7Q1f-YP7_y76GG6MpvtjNX49efsAblLPNCmH27COanYPETqdm0feQn4BjfsROg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqIhCXFgqrhhYwEkJcskrsjZ2IE7S7LVBWK7oVe6hk2Y5TrVqSqtsV0BOPwDPyJMw4Py0cEOIWJRMn8XjG3zgznwl5zq3U3AgRxs5ICFCcCbPURmFcpNZYZm3kKfM_jMX-0eDdLJmtkFdtLUzND9EtuKFleH-NBn6eFzeM_MSZPhZ6Qrx-ayCiFIf07sdr7iiEBnVpkQhhFpw1tEKYxtPdChNKoSvApdilX9uUxN_A5k3I6uec0To5bt-2TjU57S8vTd9e_UHk-J-fc4-sNViUvq4Hz32y4soNcnvoeay_bZDe8LoIDsQaL7B4QI4PAKDSHVdWV9XcUns2_4wndJlTgJMUFAcNgA-FZmnNT7u8cLQqKO4CgcifQhCOKTW0OIMRuKCetvXn9x9f5rl7SKaj4XRnP2x2aQgLDu4hTDImo4TZyLE8jk1qRSItt9xkMSuslYURhid5YSOjrQF0yZxmmUhyrrEKlvfIalmVbpPQgY0NLwQy3HFPBCizVMfS5mnOXMJ0QDZBW0qfgPtTR4cMF2uwUDgSUUBeeBWq85qjQ-mLU0xZk4n6NN5T4yyeRNNDqSYB6Xkdd4IDnkoIw3hAtlulq8aMFyqWEOGliJoD8qy7DAaIf1V06aolyjCASRiI_U0m4QCFJIN2XvpR0D2_DcJA_8rrX-0N3_iDR_8u-pTcmeyO1MHb8fstchc7ps433CaroGX3GHDTpXni7eMXZzoP8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Late+Cenozoic+climate+and+the+phylogenetic+structure+of+regional+conifer+floras+world-wide&rft.jtitle=Global+ecology+and+biogeography&rft.au=Eiserhardt%2C+Wolf+L&rft.au=Borchsenius%2C+Finn&rft.au=Sandel%2C+Brody&rft.au=Kissling%2C+WDaniel&rft.date=2015-10-01&rft.issn=1466-822X&rft.eissn=1466-8238&rft.volume=24&rft.issue=10&rft.spage=1136&rft.epage=1148&rft_id=info:doi/10.1111%2Fgeb.12350&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1466-822X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1466-822X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1466-822X&client=summon