머신러닝 기반 고춧가루 원산지 판별기법

최근 국내산 고추의 생산 비용 상승과 수입산 고추의 도입으로 고춧가루 원산지 허위표기 등의 피해사례가 속 출하고 있다. 이에 따라 원산지를 신속하고 정확하게 판별하는 문제가 대두되었다. 기존의 고춧가루 원산지 판별법의 경우 무기 및 유기성분을 실험적으로 대조 및 분석하여 비용과 시간이 많이 든다는 한계가 있다. 이를 보완하기 위 해, 본 연구는 머신러닝을 도입하여 국내산, 수입산 고춧가루 분류를 제안한다. 고춧가루에 포함된 53가지 성분에 대 하여 머신러닝 모델을 설계하고 검증하였다. 본 연구를 통해 어떠한 성분이 원산지 판별 시...

Full description

Saved in:
Bibliographic Details
Published inJournal of the convergence on culture technology : JCCT Vol. 8; no. 4; pp. 355 - 360
Main Authors 유성민, 박민서
Format Journal Article
LanguageKorean
Published 국제문화기술진흥원 31.07.2022
Subjects
Online AccessGet full text
ISSN2384-0358
2384-0366

Cover

More Information
Summary:최근 국내산 고추의 생산 비용 상승과 수입산 고추의 도입으로 고춧가루 원산지 허위표기 등의 피해사례가 속 출하고 있다. 이에 따라 원산지를 신속하고 정확하게 판별하는 문제가 대두되었다. 기존의 고춧가루 원산지 판별법의 경우 무기 및 유기성분을 실험적으로 대조 및 분석하여 비용과 시간이 많이 든다는 한계가 있다. 이를 보완하기 위 해, 본 연구는 머신러닝을 도입하여 국내산, 수입산 고춧가루 분류를 제안한다. 고춧가루에 포함된 53가지 성분에 대 하여 머신러닝 모델을 설계하고 검증하였다. 본 연구를 통해 어떠한 성분이 원산지 판별 시 중요하게 활용되는지 파 악 할 수 있었다. 추후 고춧가루뿐만 아니라 다양한 식품으로 확장하여 원산지 판별에 드는 비용을 보다 줄일 수 있 을 것으로 기대된다.
Bibliography:KISTI1.1003/JNL.JAKO202221737433257
http://www.ipact.kr/eng/iconf/jcct/sub05.php
ISSN:2384-0358
2384-0366